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1. Introduction

The one-dimensional motion of a compressible viscous and heat-conducting fluid
can be formulated in the Lagrangian coordinates as

Ve — Uy = 0,

_ e

ue + £ _{ v L (1.1)
u? KOy  puy

e+ —| 4+ (uP); = + .
2], v v,

Here ¢t > 0 is the time variable, x € R is the Lagrangian spatial variable, and
the primary-dependent variables are the specific volume v, the fluid velocity u,
and the temperature 6. The pressure P, the specific internal energy e, and the
transport coefficients p (viscosity) and x (heat conductivity) are prescribed through
constitutive relations as functions of the specific volume v and the temperature 6.
The thermodynamic variables v, P, e, and 6 are related through Gibbs equation
de = 6ds — Pdv with s being the specific entropy.

This paper concerns the construction of globally smooth non-vacuum solutions
to the Cauchy problem of (1.1) for an ideal polytropic gas, which is identified by
the constitutive relations

P = g =7 exp (i), e = Cv97 (12)
v

Cy

with prescribed initial data
(v(t,x),u(t,x),0(t,z))|t=0 = (vo(x),uo(x),0p(x)) forz e R. (1.3)

Here ¢, = 1/(y — 1) is the specific heat at constant volume with v > 1 being the
adiabatic exponent and some gas constants involved have been normalized to be
unity without loss of generality. It is assumed that the initial data (vo, uo, 0o) satisfy
the far-field condition
rﬁrinoo(vo(x),uo(x),&o(x)) =(1,0,1). (1.4)
We are interested in the case when the transport coefficients i and x, especially
the viscosity u, depend on both the specific volume v and the temperature 6.
Recall that the study on such a dependence is motivated by the following three
observations:

(i) For certain class of solid-like materials considered in Refs. 6 and 7, both the
viscosity coefficient p and the heat conductivity coefficient £ may depend on
the density and/or temperature.

(ii) Experimental results in Ref. 36 show that the transport coefficients p and
vary in terms of temperature and density for gases at very high temperature
and density.
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Viscous heat-conducting gas with temperature-dependent viscosity 2239

(iii) If the compressible Navier—Stokes equations (1.1) are derived from the Boltz-
mann equation with slab symmetry for the monatomic gas by using the
Chapman—Enskog expansion, the constitutive relations between thermody-
namic variables satisfy (1.2) and the transport coefficients p and x depend
only on the temperature. Moreover, the functional dependence is the same
for both coefficients (see Refs. 4 and 32). In particular, if the intermolecule
potential varies as v~ with r being the molecule distance, then

w=pae%, r=rO%, (1.5)

where fi, &, and a = %E1 > £ are positive constants.

The crucial step to construct the global solutions of the compressible Navier—
Stokes equations (1.1) with large initial data is to obtain the positive upper and
lower bounds of the specific volume v and the temperature 6, which has been shown
in Ref. 18 for small and sufficiently smooth data. When the viscosity and the heat
conductivity coefficients are positive constants, Kazhikhov et al.?20:2! succeeded in
deriving a representation for specific volume v by employing the special structure
of ideal polytropic gases (1.1) and (1.2). By means of the representation for v and
the maximum principle, the positive upper and lower bounds of v and 6 as well as
the existence and uniqueness of globally smooth solutions have been obtained in
Refs. 2, 20 and 21 for (1.1) and (1.2) with arbitrarily large initial data. See also
Refs. 1, 13, 14, 15, 17 and 37 for related studies. In all of these works no vacuum
nor concentration of mass occur in a finite time.

We note that this argument can be applied to the case when the viscosity u
is a constant and the heat conductivity x is some function of temperature 6 (see
Refs. 12, 30 and 34). But this methodology seems not valid if the viscosity u is a
non-constant function of v and 6. For the case when the viscosity u is a function
of the specific volume v alone, as observed by Kanel’'® for the isentropic flow, the
identity

v

[&] it P, (16)

holds even for general gases. By employing this identity, one can deduce global
solvability results on the compressible Navier—Stokes equations (1.1) with large
data for certain types of density-dependent viscosity, and density and temperature-
dependent heat conductivity. See Refs. 5-7, 19, 31, and references therein for some
representative works in this direction.

When the viscosity p depends on the temperature 6 and the specific volume v,
the identity corresponding to (1.6) becomes

t

with pg(v,0) := Ou(v,0)/00. The temperature dependence of the viscosity p has a
strong influence on the solution and leads to difficulty in mathematical analysis for
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global solvability with large data. As pointed out in Ref. 12, such a dependence has
turned out to be especially problematic and challenging. One of the main difficulties
in analysis arises from the last term in (1.7), which is a highly nonlinear term.

A possible way to go on is to use some “smallness mechanism” induced by the
structure of Egs. (1.1) to control the last term in (1.7) suitably. A recent progress
along this way is a Nishida—Smgller-type global solvability result with large data
obtained in Ref. 25 for the Cauchy problem (1.1)—(1.4) when the viscosity p and the
heat conductivity  are both functions of the temperature. The main observation in
Ref. 25 is that for ideal polytropic gases (1.1) and (1.2), the temperature 6 satisfies

2
0 =071 and b + fus _ + i
| v v v,
from which one can deduce that [(0 — 1,60¢,0.)| 1~(0,7]xr) can be small under
the condition that the adiabatic exponent « is close to 1. Thus one can perform
the desired energy-type a priori estimates as in Refs. 8, 17, 28 and 29 based on the

a priori assumption

<O(t,x) <2 forall (t,z) € [0,T] x R. (1.8)

DO | =

It is to close the a priori assumption (1.8) on (¢, z) that one needs to impose that
the initial data satisfies a Nishida—Smgller-type condition, that is,

(y-1)xC <||(Uo —1,u0, 80 — 1)||H3(R)75161£U0($)) <1

for some (v — 1)-independent smooth function C'.

The result obtained in Ref. 25 shows that ||(vo—1,u0, S0 —1)|| g3 ®) can be large.
However, the oscillation of the temperature, ||0 — 1|z (jo,7]xR), is not arbitrarily
large but has to be small. Thus a natural question is: Whether can we obtain a
global solvability result for the Cauchy problem (1.1)—~(1.4) with large initial data
and general adiabatic exponent v for a class of temperature and density-dependent
viscosity coefficient p or not?

The main goal of this paper is devoted to the above problem and our motivation
is essentially the same as that of Ref. 25 mentioned above, that is to use some
“smallness mechanism” induced by the structure of Egs. (1.1) to control the last
term in (1.7) suitably. We note that v — 1 cannot be assumed to be small for the
case with general adiabatic exponent. In this paper, we will try to use the smallness
of |ug(v,8)| to control the possible growth of the solutions of the Cauchy problem
(1.1)-(1.4) caused by the last term in (1.7). Motivated by such an idea, we assume
throughout the rest of this paper that the viscosity p and the heat conductivity
k are smooth functions of the temperature 6 and the specific volume v, which are
given by

w= gh()0*, k= rkh(v)0*, (1.9)
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where 1 and & are positive constants, and there exist positive constants C', ¢1, and
{5 such that

Ch(v) > v + 0%, K(v)*v < Ch(v)? for all v € (0, 00). (1.10)

We expect to obtain a global solvability result to the Cauchy problem (1.1)—(1.4)
with large data and transport coefficients (1.9) and (1.10) for general adiabatic
exponent v provided that |a| is sufficiently small.

The very reason why we choose p and k as in (1.9) is that the transport coef-
ficients (1.9) and (1.10) with ¢; = ¢2 = 0 can include (1.5) as a special example.
Moreover, the special form (1.9) of the viscosity p with h(v) satisfying (1.10) is
essential in our argument and the role is two-fold:

(i) First, we will employ the smallness of resulting factor |a| to control the last
term in (1.7).

(ii) Second, the assumption (1.10) imposed on h(v) will be used to yield some
estimates on the lower and upper bounds for the specific volume v(t,z) in
terms of |6]| Lo (jo,7]xR)-

As for the heat conductivity r, the choice as in (1.9) is not so crucial and can be
replaced by some more general function of v and 6 which satisfies certain conditions
in terms of the parameters ¢1, f5, and a. Such a generalization is straightforward
and hence we will focus on the case when & is given by (1.9) and (1.10) for simplicity
of presentation.
We introduce
H(w):= sup |(h(o),h (0),h"(c),h"(0))| forw >0, (1.11)

w<o<w—1

and state our main result as follows.

Theorem 1.1. Assume that the viscosity p and the heat conductivity k satisfy (1.9)
and (1.10) for some ¢1 > 1 and ¢y > 1. Let the initial data (vo,wo,60) satisfy that
(Uo—LUo,eo—l) EHS(R)7 ||(’U0—1,’U,0790—1)HH3(R) SHQ, (112)

Vo <wolz) <Vyt,  Oo(x) >V forallz€R, (1.13)

where Iy and Vo are positive constants. Then there exists €9 > 0, which depends
only on Iy, Vo, and H(Cy) with positive constant Cy depending only on Iy, Vi,

and H(Vy), such that the Cauchy problem (1.1)=(1.4) with || < €9 admits a unique
solution (v(t,z),u(t,z),0(t,x)) satisfying

(v—1,u,0 — 1) € C([0,00), H3(R)), (1.14)
vy € L2(0,00; H3(R)), (ug,0.) € L?(0, 00; H3(R)), (1.15)

and
inf {v(t,x),0(t,x)} >0, sup  {v(t,2),0(t,x)} < 4oo.  (1.16)

(t,z)€[0,00) xR (t,x)€[0,00) xR
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Furthermore, the solution (v,u,0) converges to (1,0,1) uniformly as time tends
to infinity:
tlim sup |(v(t, z) — 1,u(t, ), 0(t, ) — 1)| = 0. (1.17)
T zeR
Remark 1.1. We deduce from (1.12), (1.13) and (1.16) that no vacuum will be
developed if the initial data do not contain a vacuum. It follows from (1.14) and
(1.15) and Sobolev’s imbedding theorem that the unique solution constructed in
Theorem 1.1 is a globally smooth non-vacuum solution with large initial data.
Moreover, this result in Lagrangian coordinates can easily be converted to equiva-
lent statement for the corresponding problem in Eulerian coordinates.

Remark 1.2. As far as we are aware, for ideal polytropic gases with general adi-
abatic exponent v, Theorem 1.1 is the first result on the global well-posedness of
smooth non-vacuum solutions to the compressible Navier-Stokes equations (1.1)
and (1.2) with temperature-dependent viscosity and large initial data.

Remark 1.3. The assumption we imposed on the parameters ¢; and £5 in Theo-
rem 1.1 is just for illustrating our main idea to deduce the desired result and is far
from being optimal. In fact, our approach can be applied to prove a similar global
solvability result when the parameters ¢1 and /5 satisfy

1 1
{1 >0, fy>0 and ﬁmax{&l—ﬁl}—i—%max{&l—ﬁg}<4.

Unfortunately, our result cannot cover the model satisfying (1.5) since the para-
meters /1 and /5 are assumed to be positive. The extension of our result to the case
with ¢; = ¢ = 0 is an open problem for future research.

Remark 1.4. The existence of global strong solutions to the one-dimensional com-
pressible Navier—Stokes equations for isentropic flows has been established in Ref. 27
with the viscosity p given by (1.9) and (1.10) for £; = 0,0 < ¢, < 4, and a =0,
and also in Ref. 11 for the shallow water system, where the viscosity p satisfies
(1.9) with h(v) = v~! and @ = 0. Note that our derivation of the uniform bounds
on v(t,x) and (¢, x) relies heavily on the assumption that the initial data is suf-
ficiently smooth. It is an interesting and difficult problem to extend the results in
Refs. 11 and 27 to the non-isentropic case with transport coefficients satisfying (1.9)

for nonzero «a.

Now we outline the main ideas to deduce our main result Theorem 1.1. As
pointed out before, the key point for the global solvability result with large data
is to deduce the desired positive lower and upper bounds on the specific volume
v(t,z) and the temperature 6(¢, x) uniformly in space x as in Refs. 20, 21, and 31.
Since we are trying to use the smallness of |a| to control the possible growth of the
solutions caused by the last term in (1.7), the amplitude of || should be determined
by pointwise bounds for the specific volume v(t, z) and the temperature 6(¢, x). The
main point in our analysis is to determine the positive parameter ¢; (namely, the
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upper bound of |a|) in Theorem 1.1 in terms of the initial data, such that the whole
analysis can be carried out for |a| < €¢p. To guarantee the existence of such an ¢
(i.e. to insure that the parameter o does not vanish) when we extend the local
solutions step-by-step to the global ones, we have to obtain the lower and upper
bounds for v(t,z) and (¢, x) uniformly in time ¢ and space z. It is worth noting
that, even for the Cauchy problem (1.1)—(1.4) with constant transport coeflicients,
such uniform bounds on (¢, z) are obtained only very recently by Li and Liang,??
although the corresponding global solvability result was addressed by Kazhikhov?°
a long time ago. The starting points of the argument in Ref. 23 are the following:

(i) the global existence result obtained in Ref. 20;
(ii) the uniform positive lower and upper bounds on v(¢,x) obtained in Refs. 14
and 15 by using a decent localized version of the expression for v(t, z).

Based on these two points, Li and Liang further deduce the uniform positive
lower and upper bounds on the temperature 6(¢,z) in Ref. 23 through a time-
asymptotically nonlinear stability analysis. However, the approach in Refs. 14 and
15 cannot be applied to the case when the viscosity p is a non-constant function
of v and 6. To overcome such a difficulty, we employ the argument developed by
Kanel’'6:25 to prove that the specific volume v(¢,r) can be bounded in terms of
the upper bound of the temperature 6(¢,z). Then we combine the local-in-time
lower bound on the temperature (¢, ) induced by the maximum principle and a
well-designed continuation argument to obtain the positive lower and upper bounds
of the temperature (¢, x) uniformly in time and space as well as the global exis-
tence of smooth solutions. Such a continuation argument is of some interest itself
and can be used to study some other problems, such as nonlinear stability of the
non-degenerate stationary solutions to the outflow problem of the compressible
Navier-Stokes equations (1.1) and (1.2) with large initial perturbation and general
adiabatic exponent v in Ref. 33.

Before concluding this section, let us point out that our result shows that no
vacuum, mass or heat concentration will be developed in any finite time, although
the motion of the flow has large oscillations. For the corresponding results on the
compressible Navier—Stokes equations with large data and vacuum, we refer to
Refs. 3, 10, 22, 24, 35, and the references therein.

The layout of the rest of this paper is organized as follows. In Sec. 2.1, we
deduce the estimate for H e (t) H under some a prior: assumptions as in Lemma 2.2,
and by applying the argument developed by Kanel’, we prove in Lemma 2.3 that
the bounds of the specific volume v(t, ) can be controlled in terms of the upper
bound of the temperature (¢, x). In Sec. 2.2, we estimate the H!(R)-norm of the
temperature 6(t,z) and obtain the upper and lower bound on the temperature
O(t,x). The estimates on second-order and third-order derivatives of the solution
(v(t,x), u(t,x),0(t,z)) will be deduced in Secs. 2.3 and 2.4, respectively. Finally,
in Sec. 3, by combining the a priori estimates and a well-designed continuation
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argument, we derive the positive lower and upper bounds of the temperature 0(¢, )
and the specific volume v(¢, z) uniformly in time and space and extend the local
solution step-by-step to the global one.

Notations. Throughout this paper, L(R) (1 < ¢ < oo) stands for the usual
Lebesgue space on R with norm ||-||z« and H*(R) (k € N) the usual Sobolev space
in the L*-sense with norm | - [|x. We introduce || - || = || - ||2(r) for notational
simplicity. We denote by C'(I; HP) the space of continuous functlons on the interval
I with values in HP(R) and L?(I; HP) the space of L?>-functions on I with values
in HP(R). We introduce A < B (or B 2 A) if A < CB holds uniformly for some
constant C' depending solely on Iy, Vp, and H(Vy), where Iy, Vp, and H are given
by (1.11), (1.12) and (1.13).

2. A Priori Estimates
We define, for constants N, m;, s, and t (i = 1,2, t > s), the set
X(s,t;m1,ma, N) := {(v,u,0) : (v—1,u,0 — 1) € C([s, t]; H?),

vy € L%(s,t; H?), (uy, 0,) € L2(s,t; H?),

E(s,t) < N? v(r,x) > mq,0(1,2) > mo,V(r,2) € [s,1] x R},

where

t
E(s,1) = sup, (v = 1,u,0 = 1)(7)|3 +/ [oa (D13 + 1| (e, 02) (7)3]dr
The main purpose of this section is to derive certain a priori estimates on the
solution (v, u,0) € X(0,T;m1, ma, N) to the Cauchy problem (1.1)—(1.4) with con-
stitutive relations (1.9) and (1.10) for T > 0and 0 < m; <1 < N < +o0 (i = 1,2).
It follows from the Sobolev’s inequality that

my <v(t,z) <4AN, mg <0(t,x) <4N forall (t,z) € [0,T]xR. (2.1)
To make the presentation clearly, we divide this section into the following four
parts, where we use ||| := ||| Lo ([o,7]x®) for notational simplicity.

2.1. Pointwise bounds on specific volume

In this part, we will deduce the lower and upper bounds on the specific volume
v(t,z) in terms of ||@]. To this end, we first have the basic energy estimate.

Lemma 2.1. Assume that the conditions listed in Theorem 1.1 hold. Then

2
sup / n(v,u,0)(t, x dx+/ / [uu /102} NES (2.2)
t€[0,7] vl

n(v,u,8) := ¢(v) + %uQ + ey (0), (2.3)
d(z)=2z—Inz—1. (2.4)

where
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Proof. In light of (1.1), we deduce
Oy 0. 2
(2] 2
v

cvet + (25)

v

Multiplying (1.1); (the first equation of (1.1)), (1.1)2, and (2.5) by (1 —v™1), u,
and (1 — 671), respectively, we find

2 2
pug kO, | puug 1 KO B Q
n(v,w, 0)e + w0 e T { v <1 9) v (1 U) uL

Integrate the above identity over [0,7] X R to have

/ n(v,u,0)(t, = dx—i—/ / [ ggg} :/Rﬁ(vo,uo,@o)(x)d% (2.6)

It follows from the identity ¢(z fo fo 010" (1 + 0102(z — 1))d02d0; (2 — 1)2
that

(z+1)2(z-12 < o(2) S (7 +1)% (2 — 1) (2.7)
Applying the last inequality to ¢(vg) and ¢(y), we obtain
7(vo, uo, o) (z) < 1.

Plug this last inequality into (2.6) to derive (2.2). The proof of this lemma is
completed. O

Our analysis will rely on the following lemma.

Lemma 2.2. Suppose that the conditions listed in Theorem 1.1 hold. Then there
is a constant 0 < e < 1, depending only on Iy, Vo, and H(Vy), such that if

m;‘al <2, Nlel<2 E(my,ma, N)la| < e, (2.8)
where
80
Z(ma, moe, N) := [m11+m21+N—|— sup  h(o)+1|
my<o<4N
then
T 2
UV 2 Ovz
sup (|22 "+ [ [ 25 140 (29)
tejo,r)" U o Jr U

Proof. According to the chain rule, we have
<&> —
v /¢

1
— (_>w S %””(uwt + pob)
(

Ut

(;L + %I(Mvvt + pots)
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which combined with (1.1) implies

N 0
(550, =+ (5), + ot~ (210)

v

Multiply (2.10) by povg /v to deduce

1 rUrz 62 T T

L] (s (o

2\ v 3 v Ja v t
2

t

vmew 0
a + 5—2(/1% —uv) (v, 0 — Opuy),

R
11/9

—z(uvx —uv)(vp0p — Oruy)|.

v v2

R

/M}m T

and hence

We deduce from Cauchy’s inequality and (2.2) that

’uvm / /uevm <1+
R

pu?

92
/ / s —g(;wgg —uv) (V0 — Opuy)|. (2.11)
R
We first estimate the last term in (2.11). It follows from (2.5) that
1 [kobs KO, 1 ; zo : x
ot:_[“e ”i]vm+—[“"9”+'€9 +‘“‘f_9L], (2.12)
| v v | v v v v
which yields
(g — uv) (v — Oyuy) = wvlypuy + Rivg + Rgvg (2.13)
with
Ry = —pbruy — X (5903 + KbOpe + uui - HuJC)7
Cy
bz
Ro ::uet—ﬁ |:I<§v . r }
Co v
Plug (2.13) into (2.11) to obtain
2
el [ [ [ 2 [
R R
@uﬂmum + u—gval + u_gUiRQ . (2.14)
v RV RV
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Next we estimate the terms on the right-hand side of (2.14). In view of (2.2),
we have

/t / ) 119/ 00 /t Hﬁu 11\ 00
—ubyu,| < u wlll .
o Jr ¥ VE[ o || Vvo Vvl VEL

We deduce from the identity g = au/60 and (2.1) that

ue\/geu
NG

S [Javeu|| S lalnt sup Ju()l S oIV,
t€[0,T]

//R | <

Apply Cauchy’s inequality to get
/LHU My
2R < . 2.1
//Ule// //M9U (210)

2 20922 | 2 204 | 2 202 2.2 4 292 2
Ri S pbzus + urgly +u k05, + p uuy, +u0<uy,

Hence

< |o|N3. (2.15)

Since

we have from ( ) that

lle 592 Hy 22 / /”emm Me’i u?
[ s [ ] e e
///W He 292+112u2u2)
R

Meo 242 ‘ H Ng"f 2 /t/ Haiw
u +u’k20 ——u —==
'H ks (u of) 10 o Je v
+ H %mﬂ + p2utu?) ‘ (2.17)

The a priori assumption (2.1) implies
6% + 67| < my '™ + (an)lel. (2.18)
Then we have from (2.8), (2.18) and Sobolev’s inequality that

20 2
I/‘L(Mu +u5292)‘+ Hok 2
pk e
2
+ H u—g(uzoz —|—M2u2u2) S 042E(m1,m2,N)§- (219)
1

Combine the estimates (2.16)—(2.19) to derive

_val

/ /R”H” )a?E(my, ma, N %{1+/ /RHQQ } (2.20)
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For the last term on the right-hand side of (2.14), we have

)
B0 2Ry | < H / / a UI. (2.21)
R
It follows from (2.8) and (2.12) that
0] < E(ma1,ma, N)F (02 + 02 + [050| + |000] + Jus]) (2.22)
and
[Ra| < E(ma,ma, N)F (62 4 62 + [0,00] + |00a| + [ua] + [ubs]) -
Hence
H ’l;feng < |o|E(m1, ma, N)3.

We plug this last estimate into (2.21) to find that

0
< |a|Z(my, ma, N / /“ Hov; (2.23)
R

Plugging (2.15), (2.20), and (2.23) into (2.14) and choosing € > 0 sufficiently small,

we derive
,LLUz / / phv? <14

t 2
0
+a25(m1,m2,N)% [1 n / M}

2R2

pu? 1192

o Jr U
t 2
- 1 Ov;
+laf2mme Wt [ [

If the parameter €; in (2.8) is chosen to be suitably small, then we obtain

ol f [ v [ [ f [ [ [

We next estimate the last term in (2.25). To this end, we multiply (2.12) by 6.,
to get

(), e, + 2

Ou,  KoUp0,  KOLU. K 0320 7475
[ —Z|.

v v v?2 v v
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Integrating this last identity over [0,¢#] x R and employing Cauchy’s inequality
give us

,%02 t %u? k20202 KkO20E K262 2y

VKR VKR v VKR VKR
G )\H/ s
2 ( R

v0? (K202 ko2 k0?2

— | ==+ == . 2.2

FEeEe R L ew
It follows from (2.8) that

W (0 R\ [0 (k2w s
i \vk VK K VK v3 VK
Insert the above inequality and (2.2) into (2.26) to derive

2 H0§m< 1
16 ()17 + 1+ Z(my,ma, N)3. (2.27)

Combining (2.25) and (2 27), we obtain

,va //MGU
<1+//R““ L

Under the assumptions (2 8), we take €; > 0 small enough to infer

‘;wm / /Ruﬁ% <1+/ / [W “92} (2.29)

The estimate (2.2) implies
bl k62
| [ <o eso

VA

Plugging (2.30) into (2.29) yields (2.9). This completes the proof of this lemma.
O

<14

~

+

~

H < E(ml,mg,N)%.

=(my, ma, N)F. (2.28)

In the next lemma, we apply the technique developed by Kanel’'6:25 to estimate
the upper and lower bounds for the specific volume v(t, x) in terms of ||6]|.

Lemma 2.3. Assume that the conditions listed in Lemma 2.2 hold. Then

ol S 1+ 017, o= S 1+ o)== (2.31)

Proof. Define

= [ na
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We infer from (1.10) that for suitably large constant C' and v > C,
d(v) Z/ + (b(z)zéldz,%/ ymathgy,
c % e}

Hence

vith <14 |®(v)] for all v € (0,00).
Similarly, it follows that

v 2 <14 |®(v)| for all v € (0,00).
Thus, we have

Poll 2t + Jlo " S 1+ sup  |@(u(t @) (2.32)
(t,z)€[0,T] xR

On the other hand, the a priori assumption v — 1 € C([0,T]; H3) implies

[@(0)(t,2)] =

| gerttn]
S/R\/m’(@vz) (t,y)’dy
<[[verm] | (*2=)

v

)

which combined with Lemmas 2.1-2.2 and the conditions (2.8) yields
- /j,’l)m ‘l
o)t a)| S ||(67E2) @] s 1+ 01 (2.33)

Combine (2.32) and (2.33) to deduce (2.31). The proof is complete. O

2.2. Pointwise bounds on temperature

This part is devoted to obtaining pointwise upper and lower bounds of the temper-
ature 0(t,x) as well as the estimates on Hl-norm of (v(t,z) — 1,u(t,x),0(¢t,x) —1).
We first consider the estimate on the L2(R)-norm of (f(t,2) — 1) in the following
lemma.

Lemma 2.4. Assume that the conditions listed in Lemma 2.2 hold. Then

T 2 2 2,2
0
sup {110 = V(O + lu(®)]3.] + / / [ Lpps B g (234)
t€[0,T) o JRL Y v v

Proof. For each ¢t > 0 and a > 1, define

Qu(t) :={x eR:0(t,x) > a}.
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Viscous heat-conducting gas with temperature-dependent viscosity 2251

Multiply (2.5) by (0 — 2)4+ := max{f — 2,0}, and integrate the resulting identity
over [0,¢] x R to find

62“ (6 - 2)2 dx——/( dx—i—/ /92(7 ”52
_/0 /RHUTf(e—z)“L/O /R“vﬁ(e—2p. (2.35)

To estimate the last term in this last identity, we multiply (1.1)2 by 2u(6 —2)4 and
then integrate the resulting identity over [0,¢] x R to infer

/ (0—2)+dx—/u0(00—2)+dx+2/ /"“ 0 —2).
—2// L (6 — 2++// [2 Zub, —2’“‘“*9 —|—u29t} (2.36)
RV Qa(7)

Combine (2.35) and (2.36) to get

/R[%’(e—z)im%e—z)@ d:c+/0t/92(f) {"52 +“Uii(9—2)+]

=/R[C2“(00—2) +ud(6o— 24 dx+ijp, (2.37)
p=1

where each term [, in the decomposition will be defined below. First, we consider

the term
Lre
Ji ;:/ /—(9—2)+u$.
0o JRY

We deduce from the condition (1.10) that
ot + o)l 5 1. 239
which along with (2.8) implies
fle o=+ e~ ol < 1. (2:39)

It follows from Cauchy’s inequality and (2.39) that

u2 1
M g9y, + )|t // %),
QQ(’T
uz 3
// 6 —2) ++C’()/ bup(@——) dr. (2.40)
0 zeR 2],

Here we have used

A

| /\

| /\

/ fde < / $(6)dz < 1. (2.41)
Qo (1) R
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For the terms

t
T :2/ / —u@ and J3:= —2/ / lmuf@
Qa(r) Y 0 Jau(r) ¥

we derive from Cauchy’s inequality, (2.2), and (2.39) that

e[ [ Sl [ o
Q2(7)
2 t
<e// i )/sup<9—§) dr,
Qo(r) U 0 zER 2],

2
wzcf [ e[ [ m
92 QQ(T) v

and

For the term

similar to the estimate for J», we have

e e T
Q T Qz( )
t
/ / pu / sup <0— §> dr.
Qa(r) Y 0 zeR 2).

t
e[ Le().
0 92(7') Cy v xT

we apply Lebesgue’s dominated convergence theorem to find

// lim ¢, (0 (Ke)
R v—0T Cy v .

KOy K62
=~ lim 20, - ! 2
cvu10+/ /[ oo (0)uu AL "

where ¢, is defined by

For the last term

I5

T

|

(2.42)

(2.43)

(2.44)
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Viscous heat-conducting gas with temperature-dependent viscosity 2253

0.,
(75§—— lim / /gpl, uumﬁ
Cy v—0+
_z// KU, 0,
Cy Qz(‘l’) v
2
<e// ik // ptu (2.45)
Qa(r) U Qo(r) U

Plug the estimates (2.40)—(2.45) into (2.37) to infer

2 2
/ 0 —2) dx+/ / [”9 + e (9—2)4
Qa(7) v
< 1—|—/ sup (0— —) d7'+/ / v . (2.46)
0 zER Qa(r) Y

It follows from (2.2) that

K62 /t / / k6>
+ I
0 Qo (7) R\Qa2(7)| VY
t 2 t 2
<L el L
0 JQu(r) VY o Jr vl
t 2
<14 / / aly (2.47)
0 JQu(r) Y

t 2 t 2
/ / pHuz _ / / n / g
o Jr v o [Jastr) Jrmasn]| v
t 2 t 2
s -z | [B
0 Jasr) v o Jr v0
t 2
< 1+/ / 9 —9),. (2.48)
Qa(r) U

Insert (2.47) and (2.48) into (2.46) to discover

2
/9 2) dx+//[“9 0"“}
514—/ sup <9——> d7'+/ / puug . (2.49)
0 z€R Qa(r) U

In order to estimate the last term in (2.49), we multiply (1.1)s by u? to have

1 xr xT
(—u4) + [u3 (Q - 1) — u3&] = 3uu, {Q —1- &]
4 " v v, v v

Hence

IA

and
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Integrate the above identity over [0,¢] x R to obtain

/4da:+//"“ “f<1+z (2.50)
p=1

where each term 7, in the decomposition will be defined and estimated as follows.
First we consider the term

t
0—1
A ::/ / uQuI
0 JQa(r) v

Applying Cauchy’s inequality, (2.2), and (2.39), we get

N T A s
<u//’“‘“ )/0t2161£<9—g>+d7. (2.51)

For the terms

—1 1 —
1-2 = / / Uy and Ig = / / Ua
R\QQ(T v <2

we have from (2.7) and (2.2) that

/ (0 —1)%dx —|—/ (v—1)%dz < / n(v,u, d)de < 1.
R\Qa(7) (r,2)<2 R
In view of Holder’s inequality and (2.2), we deduce

Aaf L[ L%

u
N = BN

Applying Cauchy’s inequality again, we infer from (2.2) and (2.39) that

IQ+I3<E//NHU +C(e //[ 3 ]
v,u9
t
¢ ¢ 2,2 4 =22 //&
[ e T
t 2
6//%-1-0(6). (2.52)
o Jr Y

Let us now consider the term

1_
o [
>2

In view of (2.7), we obtain that |[:=2| < \/¢(v) for all v > 2, which combined with
(2.2) implies

t ¢ .
< 2 < 2 < 5
25 [ [V £ [l W@ S [ el

pou;




Math. Models Methods Appl. Sci. 2016.26:2237-2275. Downloaded from www.worldscientific.com
by UNIVERSITA® DEGLI STUDI DI BRESCIA - FACULTY OF ENGINEERING LIBRARY on 10/25/16. For personal use only.

Viscous heat-conducting gas with temperature-dependent viscosity 2255

Hence we have from (2.2) and (2.39) that

nse [ [ME ooy [ [ s [
o JrR U R 0

Insert (2.51)—(2.53) into (2.50) and let v > 0 suitably small to derive

t 2,2 t 2 t 2
/u4dx +/ / £ Yy S Ce)+ 6/ / pbuy +/ sup <9 — §> dr. (2.54)
R o Jr U oJr U 0 z€R 2],

Combining (2.49) and (2.54), we take € > 0 small enough to get

t 2 2 2,,2
/[(9_2)3”4](1“/ / [ﬁ_%+9&+w]
R 0 R v v v

t 3 2
<1 —|—/ sup <0 - —) dr. (2.55)
0 zeR 2/,

In light of the fundamental theorem of calculus and (2.41), we infer

/sup(@——) d7'<//
0 zeR 93/2(7’)

pbu?

(2.53)

2 2
<5/ /50 vy
R R 14392
2 2 ||| 2
<5/ //i& KOz || v*
0 o 002 || K2
2
il (2.56)
R

If we plug this last inequality into (2.55) and choose § > 0 sufficiently small, then
we can deduce (2.34) and hence finish the proof of the lemma. O

The next lemma concerns the estimate for the first-order derivative with respect
to x of v(t,x).

Lemma 2.5. Assume that the conditions listed in Lemma 2.2 hold. Then

sup M - / / ,uﬁvw <1 (2.57)
t€[0,7]

Proof. Applying Cauchy’s inequality, we deduce from (2.29), (2.2) and (2.34) that

2 2
/wm //qum<1+//[u9u +u9 L]
R

v vh?% |~
The proof of the lemma is complete. |




Math. Models Methods Appl. Sci. 2016.26:2237-2275. Downloaded from www.worldscientific.com
by UNIVERSITA® DEGLI STUDI DI BRESCIA - FACULTY OF ENGINEERING LIBRARY on 10/25/16. For personal use only.

2256 T. Wang & H. Zhao

For the estimate on the first-order derivative of u(t, ), we have

Lemma 2.6. Assume that the conditions listed in Lemma 2.2 hold. Then

N N T
sup [[ua(8)] 4-J/ L/‘——ff,s L+ [l (2.58)
o JR U

t€[0,T]

Proof. Multiply (1.1)2 by ., to get

<EU2> — (Uaut)e — <€> (e gy I
T x Txr — .
t v/,

27 v v2 v

We integrate the above identity over [0,¢] x R and apply Cauchy’s inequality to

have
t 2 2
1 0 0
o [ 2 2] [ 14 2
o JrR U UK R R
[ 2 [ [ et
0 v o JrR HV

)
In view of (1.10) and (2.8), we obtain
il <o
K po ||~

which combined with (2.57) and (2.34) yields

2.2
s (8)] + L/ /ﬁ <:t+mem+p/ whﬂLm+—/"/£ S (25)

We have from (2.39) that

[t~ < [ e
sof Lo el [ L5
e/ot/R%if +Ce). (2.60)

For the last term on the right-hand side of (2.59), we use (2.8), (1.10), (2.2),
(2.57), and (2.60) to discover

Ll L L
2 |1 |f? || a0

[l 2]+ |2
§ ! 2N2/ //193
0 R U62
/ /“u” +O(e (2.61)

Plug (2.60) and (2.61) into (2.59) and choose € small enough to derive (2.58). O

v

L5
R ’U92




Math. Models Methods Appl. Sci. 2016.26:2237-2275. Downloaded from www.worldscientific.com
by UNIVERSITA® DEGLI STUDI DI BRESCIA - FACULTY OF ENGINEERING LIBRARY on 10/25/16. For personal use only.

Viscous heat-conducting gas with temperature-dependent viscosity 2257

We now turn to deduce an upper bound on the temperature (¢, x).

Lemma 2.7. Assume that the conditions listed in Lemma 2.2 hold. Then there
exist positive constants C; (i = 1,2,3), which depend only on Iy, Vo, and H(Vy),
such that for all (t,z) € [0,T] x R,

O(t,z) < C4, (2.62)
Cy <w(t,z) < CyY, (2.63)

0= 10,0 - 1))+ /[HM P+ 1160 ) (s)|2]ds < €2, (2.64)

Proof. Multiply (2.5) by 0,, and integrate the resulting identity to find

Co Co /i92
0O — % e + / |
2
v v v

Next we estimate each term in (2. 65) First,
K Ug
v v

/wg; =g K
1 1 K
em 2 emm 2 _gwm
/0 o 0erlt /%

L1 [t o2

In light of Young’s inequality, we combine (2.66), (2.39), (2. 34) and (2.57) to

KUz

[N

1

m}I

< H‘ v (2.66)

get
/wg; =g t Hﬁfm ¢ KUy |14
O 56/ /—+c<e>/ 16112
v 0 v
,%02 pvg |4 Y[ K62
C(e) sup)
o,r1'"" v
2
< / / K (2.67)

and

(13(13

// Sl
e / / CIUR (2.68)

[

!r
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Using Holder’s inequality, we have from (2.39) that

5/mum(@Hf@
0
k 1 1 1 1t
S sl 2 el 2 {4 —ua -
0 v v
e 1
< sup ||ug| \/jum \/juw
[0,7] 0 v v

which combined with ( (2.34), and (2.58) implies

N//Iwcﬁw%ﬁ/[

t Iiegr 2
Sef Lo e+l (2.69)
For the last term on the rlght hand side of (2.65), we have

2
Iigow 9
xrxr

g g
xrxr

1 1
2 2

\/Egmm
v

2
Hug 0,0

HI I
fL‘fL‘

HUUI fL‘

We obtam from ) and (2.8 that

/AM%MN//W W|//W
//R'ie?“jtc (2.70)

In view of (1. 10) (2.38), (2.57), and (2.34), we infer
JEe.
v

/WW
. 1
5/V@m ﬁ@
0 v v v
2 t 2
Q//%uc/"ﬁwuﬁ
R 0 v v
2
/ / ik (2.71)
R

We plug (2.67)—(2.71) into (2.65), and take € > 0 suitably small to derive

W|F// ”ﬂﬂw (2.72)

Combining (2.34) and (2.72) gives
617 = sup 0|7~ < sup [[0@)]1162()I| S 1+ 6.

te[0,T te[0,T]

KUz 0 T MUz

: U

4
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Apply Cauchy’s inequality to the last inequality to obtain (2.62). We then derive
(2.63) by plugging (2.62) into (2.31).
Insert (2.62) into (2.58) and (2.72) to give

st + [ [ [Me e <o (2.73)

v

In view of (2.63) and (2.8), we can obtain (2.64) from (2.2), (2.34), (2.57), and
(2.73). The proof of the lemma is finished. |

We present a local-in-time lower bound for the temperature 6(¢,z) in the fol-
lowing lemma.

Lemma 2.8. Assume that the conditions listed in Lemma 2.2 hold. Then there
exist positive constant Cy depending only on Iy, Vo, and H(Vy) such that

. infR 9(3, )
- >
WOt ) = i ats, )t =) + 1
Proof. Multiply (2.5) by =2 to have

()= 6).. -1,

In view of (2.8) and (2.63), we deduce that

HOBHOIR

for some positive constant Cy, depending only on Ily, Vy, and H(Vp).
Let s € [0,T] be fixed and define

forall0<s<t<T. (2.74)

N A R
02 [T 2u dpv’

1
H . _s).
(t,z) 80t ) Cy(t —s)
Then we derive that H satisfies
cpHy < (EHm) for (t,x) € (s,T] x R,
v xr
1 1
H(s,z) = < for z € R.

O(s,z) — infgrO(s,-)

Employing the maximum principle (see Ref. 9), we infer that

H(t,z) < L

S (s for all (t,x) € [s,T] x R,

which implies (2.74). The proof is complete. O
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2.3. FEstimates of second-order derivatives

In Secs. 2.3 and 2.4, to simplify the presentation, we introduce A <, Bif A < CyB
holds uniformly for some constant C},, depending only on Iy, V), and H(C2) with
(5 given in Lemma 2.7. The letter C'(m2) will be employed to denote some positive
constant which depends only on mg, Iy, Vp, and H(C3). We note from (1.11) and
(2.63) that

sup  |(h(v(t,z)),h (v(t,x)), h" (v(t,x)),h" (v(t,x)))| < H(Cs).  (2.75)
(t,z)e€[0,T]xR

We estimate the second-order derivatives of (u(t, z), (¢, x)) in the next lemma.

Lemma 2.9. Assume that the conditions listed in Lemma 2.2 hold. Then

T
sup ||(um,9m)(t)||2+/ H(ummmvemm)(t)||2dt
t€[0,T] 0

T
S Clma)+ [ on®Pde+ swp Jon®lf. (@70
0 t€[0,T7]

Proof. The proof is divided into the following steps:

Step 1. Differentiating (1.1)2 with respect to x, and multiplying the resulting iden-
tity by uges give

1 ; TxT T
|:_uim:| - [uwtuww]z + Ml = Pralgze + {& - (uu ) ] Ugz-
2 ¢ v [ (% Tx

Integrate the above identity over [0,¢] x R, and use (2.63), (2.8), and Cauchy’s
inequality to obtain
> 2

t t .
u

||um$(t)H2+/ /UiII51+/ /‘Pzz‘2+/ /‘M TTT _(
0o Jr o Jr o Jul v

We next make the estimates for the terms on the right-hand side of (2.77). In
light of (2.63), we deduce for general smooth function f(v) that

[f(©)e| S 1 (0)]]vz],
[f(@)azl SIS ) @) (1Vra] +03), (2.78)
[f(Wzaz| SIS 7 ) O (Vzaz| + [vzalvF + [va]?)-

Hence by using (2.62) and

Oz 1 1
Py = 2% 499, (—) +6 (—) , (2.79)

HUg
2.
: (2.77)

we infer

|PM‘2 N |(Um’0m)‘2 + ‘(Umvem)rl‘
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From (2.64) and (2.1), we have

T
| el < ),
0

which combined with (2.64) implies

t t
//|(vm,um,em>|45/ 1 (Was thams Bra )| Vst 62)]2
0 R 0

t
SwNWmMﬂJW/H@mMﬁMﬁ
(0,7 0

t
5cmw+/uwm% (2.80)
0

Consequently, we have

t t
//|Pm|25/ [0aa2 + Cm). (2.81)
0 R 0

To estimate the last term in (2.77), we first make some estimate of 6. It follows
from (2.8) that

[(0%)z] S 102],
[(0%)aa| S 10za| + 62, (2.82)
which combined with (2.78) yields

[(F(©)0%) | S I, ) ()] (v, 02)];
(F@)0) g0l SN S SO Wrs Oza)| + [(ve, 02) ],
[(F()0) gl S S 175 SO (V2225 Oz )|

+1(Vsa, 020l (Va, 02)1 + | (ve, 02)]%].

Taking f(v) = h(v)/v, we can combine the identity

Uu
(12) = (), 422, B
v Tx V/ xx v/x v

and (2.75) to conclude

’ (uw)  Hlgee
v T v

(2.83)

Sl (Vs g, 02)1 + [V [ua] + [(taz, Oze) || (Ve s )]

2 t t
Sh/ /|(Uzauma0z)‘6+/ /Uizui
0 R 0 R

t
—|—/ /|(um,Hm)|2|(vm,u$,ﬁx)|2. (2.84)
o Jr

From this estimate, we derive

/t/ ‘Numzz B <uuz>
0o JR v v TT
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Employ Sobolev’s inequality and (2.64) to get

t t
/ / |(Umuwvem)‘6 5/ H(vx»um@m)\ﬁwH(vx»um»@x)HQ
0 R 0

t
< / (Vs s B |2 (0 1, )|
t
<1+ / sl (2.85)

[ [z <o [l < s ol s

t t
/ / (tns Ou) 2l (v, 11, 00) 2 < / |t B2l (0 116
0 R 0

t

t
<O0)+6 / I (tta0 B2 (2.87)
0

We plug (2.81) and (2.84) into (2.77), and use (2.85)—(2.87) to have

t
Sh C(m2)+/ ||Uw2+?(;lgllvm2+5/ I(tazz, Ouza) . (2.88)
0 )t 0

Step 2. Next, we differentiate (2.5) with respect to  and multiply the result by
00 to find

{%GQL — [co02t0z], + %ﬁm

2
v z U v o

Integrating this last identity over [0,¢] x R, we obtain from Cauchy’s inequality,
(2.63) and (2.8) that
(%),

sttt [ [ zas [ [irnes [
We estimate the terms on the right-hand side of (2.89) below. First it follows

/ / Kszz </10 )
from (2.62) and (2.63) that

|(Pus)z| S [Prtie| + [Puge| S |(Uﬂ?aura0$)‘2 + [uazl,

2

2
(2.89)
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which along with (2.64) and (2.80) implies

//|(Pu“ // 0t 02)|* + 2,] S Cm) /van. (2.90)
0 R

We deduce from (2.83) with f(v) = h(v)/v that

puy
v x

In light of (2.85) and (2.87), we have

2 2
Uy
(/J“ ) Nh / / UI7UI7 |6 +umumw]

<) C(0) + / aall? + 6 / (oo O (2.91)

For the last term in (2.89), we deduce by applying the argument in Step 1 that

[P ().

t
<) O(6) + / vaall® + sup [vasl? + & / (o Oa) - (2.92)
0 [0,t] 0

T S,h |(vw7um70m)‘3 + ‘umumm‘

2 TYrx
:‘@) W2 4 2Htalian
v/ x v

2

Plug (2.90)—(2.92) into (2.89) to get

102a ()] + / / 0.,

t
Sh C(m2)+/ ||vm2+?uIT||vm2+5/ I(uaza, Ozaa) 1. (2.93)
0 0,t 0

Combining (2.88) and (2.93), we take § small enough to prove (2.76). This completes
the proof. 0O

We next obtain a mo-dependent bound for the second-order derivatives with
respect to z of the solution (v(t, z),u(t, x), 0(t, x)).

Lemma 2.10. Assume that the conditions listed in Lemma 2.2 hold. Then

T
sup ”(vwwauww,emm)(t)”z +/ ||(Umm7um,9mz)(t)||2dt < C(mQ)' (2‘94)
te[0,T] 0

Proof. Differentiate (2.10) with respect to x and multiply the result by (

find
3] e () ]+ T (59,
= (52),+ (7) (5, + (59), [t o]

), to
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We integrate the above identity over [0, ¢] x R and use Cauchy’s inequality to derive

() 0l e [ fone (5), = [ L5 (5,

o[ 5, T ]

It follows from (2.22), (2.8), and

T v 9 T T
<ﬂ> _ v - o, o+ 00
v t [ v [

that

v
(), | o el + N o] +

We then deduce from Cauchy’s inequality and (2.64) that

/Ot/Rum </1'Zw>t < C(ma).

LU
<l—$> = vam + (E> Vg,
[ T v v/ x

LLEG)LE.
_Aﬁfgy+cm2//’ o+ 10,021,

Apply Sobolev’s inequality to get

AﬁQ%mWsAW@%MH%%m

t
SCwﬂﬁAM%%meﬁ

In view of (2.79) and

we have

Inserting the last inequality and (2.64) into (2.98), we infer

[ L),

0
//V%uCWHcm/n%mme

203

For the last term in (2.95), we use (2.97),

|:M0 (vmgt 9 um):| M@ (vwmet + vmemt gmmuw - 0mumm)
v v

x

N |:,U0091 + fovVe  HoVs

- :l (Uatet - eru$)a

v v2

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)
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and (2.8) to derive
Huz\ | < 2
[(52) | Shloael + (02, 8212,
o
|[E8 (0t = 0)| | Snlal(60vas ]+ 10atlle] + 10 lial + 102 zc])

+ ‘a‘|(vw79w)‘(|vw0t| + |0Ium‘)
It follows from the identity

2
= (), (7).~ ()

and, (2.62) and (2.63) that

|0tw‘ < |0mm‘ + |(Uw79w)‘|exx| +(1+ |uw|)‘um‘
10 |[v2] + (1 + | (e, 02) )| (V2 e, 0) -

Hence applying Cauchy’s inequality yields

[0 [0
S e+ C©a? (01, 8.02)1%) // 02, + O vl //0
0 / [ @102, 82)Pl(esbr. 6.0 + €0 / JACLE

2 ‘ 4 n2 2 6
o / /n(vmum,ei)\ 02, + (14 |(tg, 02) )| (0 1, 02|

Sh e/ /vim + C(e,m2). (2.100)
0 JR

Here we have used (2.8) and

Plug (2.96), (2.99), and (2.100) into (2.95) to deduce

t
lvma (£)]1% + / lvmall? Sh Clma) + / 16 02) | 02 1
0

We apply Gronwall’s inequality to the above estimate to obtain

t
lvma ()% + / lvasll? < Cma),

which combined with (2.76) implies (2.94). The proof is complete. m|
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2.4. FEstimates of third-order derivatives

Estimates on the third-order derivatives of (v(t,x),u(t,x),0(t,z)) with respect to
2 will be proved in this subsection. The notation A <, B is employed to denote
that A < Cp, B holds uniformly for some constant C},, depending only on Ily, Vj,
and H(Cy) with Cy given in Lemma 2.7. And we denote by C(mz) some positive
constant which depends only on maq, Iy, Vo, and H(Cs).

We first give an estimate on the third-order derivatives of u and 6.

Lemma 2.11. Assume that the conditions listed in Lemma 2.2 hold. Then

T
sup |[|(vzze, Hmcr)(t)HQ +/ [[Cmm— omzzz)(t)Hth
t€[0,T] 0

T
<n C(mg)—i-/ [Voaa(®)]|2dt + SUp [|vaas(®)]|?. (2.101)
0 te[0,7)

Proof. The proof is divided into the following steps:

Step 1. Differentiating (1.1) with respect to « twice and multiplying the resulting
identity by ugpe. yield

1 u?
2 HU% 2z
_(uwwm)t - (urxtu$$z)z + —
2 v
HUzzzx Hug
= ProgaUggaa + |: - Urrrx-
v [ X

Integrate the above identity over [0,¢] x R to have

t
ltaaa (DI + / / .
0 R
<1+/d/UD 2+/ﬁ/vmmm_<uw> 2
~ 0 R e 0 R v v TrT

We compute from (2.79) that

(2.102)

2 3

Orae 02aVs 02V 0,05 Ovpae V2V Ov;,

mew: _3 ) —3 D) +6 3 - D) +6 3 - —4
v v v v v v v

Hence
‘Pmmw‘Q ,S |(vmwm70mmm)‘2 + ‘(vm79m)|6 + |(vw70m)|2|(vww79ww)|2~

It follows from (2.85)—(2.87) and (2.94) that

t t
/ /IPml2 5C(m2)+/ /vim. (2.103)
0 R 0 R

From (2.83) with f(v) = 22 and

Uu
v T V/ zxx V/zx v/ x v
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we have

‘ (/jfuw ) o HUgzzzx
v TTT [

,Sh |(vm7um7 aw)‘4 + ‘(vm7um7 aw)‘2‘(vmmauwwaemm)‘

In view of (2.64) and (2.94), we deduce

/ /'uumm uw)

t
<, C’(6,m2)+?u1])vmm||2—|—5/ (tamnes Ornea) |2 (2104)
0,t 0

2

Plugging (2.103) and (2.104) into (2.102), we get

t
ltzaa DI + / / W

t t
Sk C(0,ma) + / / Uﬁm + sup vam”2 +9 | (uzzzas gmm)HQ‘ (2.105)
o Jr [0,t] 0

Step 2. We differentiate (2.5) with respect to = twice and multiply the resulting
identity by 6,,., to obtain

c 62
- ammw - v gww ammw T —
5 (Oaza)t = Co(Oratlona)e + K57
2
v T v v TTT

Integrate the above identity over [0,¢] x R to have

2

JACHH

2

exrrr 9I
+/ / Wozea (” ) (2.106)
0 JR v v TITT
Similar to the derivation of (2.104), we can obtain
/f / 60\ Kees |
0 JR v TTT v

t
Sk C(8,ma) + sup [|[vaga||® + 0 [[Crmm———1I (2.107)

[0,¢] 0

The identity
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implies

2 2 2,2 2, 2 2,2 22 2, 2n2 4,2

Hence

/t/ (P a2 < C(ma). (2.108)
0 R

On the other hand, from

(ﬂui> _ Mrui + 20Uy Uy _ ﬂuivz
xT

v v v v2
and
pu? Haoat?  ApatpUps 2002, 20UpUpey
— ) = + + +
v v v v v
2 2 2,2
_ 20U Vg _ AU 3 U g0V U Ve n 2puiv;
v2 v2 v2 v3
we have
pug 4
x 2
‘( ) i (st O + 2 + kgt
v Trxr
2
+‘(vm»uw»0m)| |(vmm7umm79ww)|~
Thus,

< C(m2). (2.109)

INACN

Plug (2.107)-(2.109) into (2.106) to deduce

t
1B (1)]? + / / 6,
0 R

t t
<h C(6,ms) + / / 02y + 5D [[vraa | 4 8 / |(trnns. brea) |- (2.110)
o JR [0,t] 0

Combining (2.105) and (2.110), we take 0 suitably small to derive (2.101). O

By using (2.8) and Gronwall’s inequality, we can deduce the ms-dependent
bounds for the third-order derivatives of (v(t, z), u(t, x), 0(t, x)). The proof is similar
to that of Lemma 2.10 and hence we omit the details for brevity.

Lemma 2.12. Assume that the conditions listed in Lemma 2.2 hold. Then for all
t € 10,7, we have

T
H(vxxmumxm»emxx)(t)”z +/0 H(vmmm7ummmm»emmmm)(s)nzds < C(m2) (2111)

By virtue of Lemmas 2.1-2.12, we can get the following corollary.
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Corollary 2.1. Assume that the conditions listed in Lemma 2.2 hold. Then there
exists C'(mz) > 0, which depends only on ms, Iy, Vi, and H(Cy) with Cy being
given in Lemma 2.7, such that for all t € [0,T],

T
(v —1,u,0 = 1)()]3 +/0 s ()13 + [[(ua, 02)(s)l[5]ds < C(ma).  (2.112)

3. Proof of Theorem 1.1

In this section we will prove our main result, Theorem 1.1. For this purpose, we
first present the local solvability result to the Cauchy problem (1.1)—(1.4), (1.9)
and (1.10) in the following lemma, which can be proved by the standard iteration
method (see Ref. 26).

Lemma 3.1. If positive constants M and \; (i = 1,2) exist such that ||(vo — 1,
ug, 0o — D|ls < M, vo(z) > A1, and Op(x) > Ao for all x € R, then there exists
To = To(A1, Ao, M) > 0, depending only on A1, A2 and M, such that the Cauchy
problem (1.1) and (1.4), (1.9) and (1.10) has a unique solution (v,u,0) € X (0, Tp;
31, 322, 2M).

We prove Theorem 1.1 in the following six steps by employing the continuation
argument.

Step 1. Set Ty = 128C%, where (5 is exactly the same constant as in (2.64).
Recalling (1.12) and (1.13) and applying Lemma 3.1, we can find a positive constant
t1 = min{T1,To(Vo, Vo, o)} such that there exists a unique solution (v,u,d) €
X(0,t1; Vo, 3Vo, 2I1p) to the Cauchy problem (1.1)—(1.4), (1.9) and (1.10).

Take |a| < a1, where ay is some positive constant such that

1 Tt 1 1
(5‘/0> <2, (2)* <2, E <§‘/0a §V0,2Ho) a1 <€, (3.1)

where the value of €; is chosen in Lemma 2.2. Then we can apply Lemmas 2.7
and 2.8 with T' = ¢; to deduce that for each ¢ € [0,¢;], the local solution (v, u, )
constructed above satisfies:

Vo
> = .
0(t,z) > GVl T 1 Cs forall z € R, (3.2)

O(t,z) < Cy, Cy<w(t,r) <Cy' forallz R, (3.3)

0= L0 = O + [ VB + b)) ds < B (3

Combining Corollary 2.1 and (3.2), we can find a positive constant Cg, which
depends on Cs, Iy, Vo, and H(C?), such that for each ¢ € [0, 1],

(v = 1,u,0 = 1)(®)II3 +/0 [llva ()13 + Nl (e, 02)(s)13)ds < CF. (3-5)
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Step 2. If we take (v(t1, ), u(t1,),0(t1,-)) as the initial data and apply Lemma 3.1
again, we can extend the local solution (v,u,6) to the time interval [0,¢; + t2] with

tg = min{T1 — tl,To(CQ,C5,Cﬁ)}.

Moreover, for all (t,z) € [t1,t1 + to

x R, we have

v(t,z) > =Cy, O(t,x) > %C%,

and

0= 10,6 = @13+ [ [leal + [ 6)(6)Jds <462 (30

ty

which combined with (3.5) implies that for all ¢ € [0,¢1 + t2],

(v —1,u,6 = )O3 + / (102 ()13 + (e 02)(s) 3] ds < 53 (3.7)

Take |a| < min{ay, s}, where a; > 0 is determined by (3.1) and «ay is some
positive constant satisfying

(%Cg)) <2, (2\/5_)06)a2 <2 = (%Cg, %C%, \/506) ag < €1, (3.8)

where the value of €; is chosen in Lemma 2.2. Then we can employ Lemma 2.7,
Lemma 2.8, and Corollary 2.1 with T' = ¢; + t2 to infer that the local solution
(v,u,0) satisfies (3.2)—(3.5) for each ¢ € [0, + to].

Step 3. We repeat the argument in Step 2, to extend our solution (v,u,#) to the
time interval [0,t; + t2 + 3], where

t3 = min{Tl — (t1 + tg),To(CQ_17C57CG)}.

Assume that || < min{aq, as} with constants «; and ag satisfying (3.1) and
(3.8). Continuing, after finitely many steps we construct the unique solution (v, u, 6)
existing on [0, 77] and satisfying (3.2)—(3.5) for each ¢t € [0,T1].

Step 4. Since Ty = 128C% and

Ty
sup ([0~ DO + [ 6.0l < ¢ (3.9)
0<t<Ty T /2
we can find a t, € [11/2,T1] such that
1 -
l6ty) ~ 1l < Cs, 0 (15)] < 5O

For if not, we have that [0, (¢)|| > 5" for each ¢ € [T} /2,T1] and hence

i 2 1 1 —1 : 2
6. (0)3de > 573 (G5t = Ch

T /2
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This contradicts (3.9). Then it follows from Sobolev’s inequality that
16~ D))o~ < VEIO ~ DI 10 E)1 < o,
from which we get
0t 2) > 1— [0 — 1)(t))] e > % for all € R. (3.10)
We notice that
(v —1,u,0 —1)(t5)|ls < Cs, v(ty,z) > Co forall x € R.

Now we apply Lemma 3.1 again by taking (v(ty, ), u(ty, ), 0(t),)) as the initial
data. Then we derive that the solution (v,u,#) exists on [t),t; + t}] with ¢t} =
min{71,To(Cy ', 3, Cs)}, and for all (t,z) € [t, t) + ] x R,

t

0= 10,6 = DO+ [ [Ioa(I + 0, 02)(5) s < 4G

’
tO

and

v(t,x) > %Cg, 0(t,z) >

|

Therefore, the solution (v, u,0) satisfies (3.7) for all ¢ € [0, ¢, + ¢}].
We take |a] < min{aq,as,as} with «; (i = 1,2,3) being positive constants
satisfying (3.1), (3.8) and

G) <2, (2/5C)™ <2, = (%02, %7\/506) as<er,  (311)

where the value of €; is chosen in Lemma 2.2. Then we can deduce from Lemmas
2.7 and 2.8 with T' = t{ + ¢} that for each ¢t € [t},t[ + t}], the local solution
(v(t,x),u(t,x),0(t, z)) satisfies (3.3) and (3.4), and

inf er 0(t), ) 1
o(t,z) > > —C; forallzeR. (3.12
t2) 2 G s 0ty o) +1- CaTy +2 7 oraiee (3.12)

Here we have used the estimate (3.10). Combining (3.2) and (3.12) yields that for
each t € [0,t(, + t1],

O(t,z) > min{C5,C7} := Cs for all x € R. (3.13)

We deduce from (3.13) and Corollary 2.1 that there exists some positive constant
Cy, depending on Cs, Iy, Vo, and H(C>), such that for each ¢ € [0, ¢}, + t}],

(v —1,u,6 = )O3 + / (102 ()13 + (e 62)(s) 3] ds < C3. (3.14)

Step 5. Next if we take (v(ty + 7, ), u(ty + t4, ), 0(t; + t},+)) as the initial data,
we apply Lemma 3.1 to construct the solution (v, u, 6) existing on the time interval
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0,20 + t] + t5] with
tlz = min{T1 — t/17 T0(027 Cy, Cg)},
such that for all (t,z) € [t +t},t0 +t) + 5] X R,

u(t,z) > %Cg, o(t,x) > %C&

and

I = 10,0 - )@)IE + / e+ e 6) s < 4G5 (3.15)

0 1

Combine (3.14) and (3.15) to obtain that for all ¢ € [0, t(, + ¢} + t5],

I(w — 10,6 = )O3 + / [12()13 + | (2, 02)(s) 3] ds < 5C3. (3.16)

Take 0 < < min{ay, ag, as, as}, where o; (i = 1,2, 3) are positive constants
satisfying (3.1), (3.8), (3.11), and

(%Cg) <2, (2\/5—)09)044 <2, = <%Cg, %C& \/509) ay < €1, (3.17)

where the value of €; is chosen in Lemma 2.2. Then we infer from Lemma 2.7,
Lemma 2.8 and Corollary 2.1 with T = t{ + t} + t5 that the local solution
(v(t,x), u(t,z),0(t,z)) satisfies (3.13) and (3.14) for each t € [0,t, + t] + ¢5]. By
assuming |o| < min{ay, s, a3, a4}, we can repeatedly apply the argument above
to extend the local solution to the time interval [0, [+ T3]. Furthermore, we deduce
that (3.13) and (3.14) hold for each ¢ € [0, + T1]. In view of t{ + Ty > 3T} /2, we
have shown that the Cauchy problem (1.1)-(1.4), (1.9) and (1.10) admits a unique
solution (v, u,0) € X(0,3Ty;Cs,Cs,Cy) on the time interval [0, 371].

Step 6. We take |a| < min{as, a2, a3, a4}. As in Steps 4 and 5, we can find
ty € [ty +T1/2,t; + 11] such that the Cauchy problem (1.1)—(1.4), (1.9) and (1.10)
admits a unique solution (v, u,#) on [0,¢) + 71|, which satisfies (3.13) and (3.14)
for each ¢ € [0,t{ + T1]. Since t{j + 11 > ¢, + 3T1/2 > 213, we have extended the
local solution (v, u,6) to the time interval [0, 271]. Repeating the above procedure,
we can then extend the solution (v, u, 8) step-by-step to a global one provided that
la| < min{aq, a9, a3, ag}.
Choosing

€0 = min{ay, @z, a3, a4}, (3.18)

where «; (i =1,2,3,4) are given by (3.1), (3.8), (3.11), and (3.17), we then derive
that the Cauchy problem (1.1)-(1.4), (1.9) and (1.10) has a unique solution (v, u, 0)
satisfying (3.3), (3.13), and (3.14) for each ¢t € [0, 00). Thus we have

sup_[(v—1,u,6 = 1)(8)]3 + /Ooo[vx<t>§+<uz,ez><t>||§}dtsc§, (3.19)

0<t<o0

from which we derive that the solution (v,u,80) € X (0, 00; Ca, Cg, Cy).
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The large-time behavior (1.17) follows from (3.19) by using a standard argument
(see Ref. 26).

Recall that ¢1, C; (i = 1,2,3,4,5,7,8) depend only on Iy, Vo, and H(V}), while
Cs and Cy depend only on Iy, Vj, and H(C3). According to the definition (3.18)
of ¢y, we can conclude the proof of Theorem 1.1.
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