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Abstract. We study the initial and initial-boundary value problems for the

p-th power Newtonian fluid in one space dimension with general large initial

data. The existence and uniqueness of globally smooth non-vacuum solutions
are established when the thermal conductivity is some non-negative power of

the temperature. Our analysis is based on some detailed estimates on the

bounds of both density and temperature.

1. Introduction.

1.1. The Eulerian description. The motion of one dimensional compressible flow
of a p-th power Newtonian fluid can be described by the system

ρt + (ρu)y = 0,

(ρu)t + (ρu2 + P)y = (µuy)y,

(ρE)t + (ρuE + uP)y = (κθy + µuuy)y,

(1)

where t > 0 is the time variable, y ∈ Ω ⊂ R is the spatial variable, and the primary
dependent variables are the density ρ, fluid velocity u and temperature θ. The
specific total energy E = e + 1

2 |u|
2 with e being the specific internal energy. The

transport coefficients µ (viscosity) and κ (thermal conductivity) are prescribed by
means of constitutive relations as functions of ρ and θ. The pressure P and specific
internal energy e are given by

P = ρpθ, e = cvθ (2)

with the pressure exponent p ≥ 1 and constant specific heat cv > 0. The thermo-
dynamic variables p, ρ and e are related by Gibbs equation θds = de+Pdv, where
v = 1/ρ is the specific volume and s the specific entropy. As a function of (v, s),
the internal energy e can be explicitly given by

e(v, s) =


C exp

(
s

cv
+
p− 1

cv
v1−p

)
, p > 1,

Cv−cv exp

(
s

cv

)
, p = 1,

where C is some positive constant.
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The system (1)-(2) is supplemented with the initial conditions

(ρ, u, θ)|t=0 = (ρ0, u0, θ0) in Ω, (3)

and one type of the following far-field and boundary conditions:

lim
y→±∞

(ρ0(y), u0(y), θ0(y)) = (1, 0, 1), if Ω = R; (4)

(u, θy) |y=0 = 0, lim
y→∞

(ρ0(y), u0(y), θ0(y)) = (1, 0, 1), if Ω = (0,∞); (5)

(u, θy) |∂Ω = 0, if Ω = (0, 1). (6)

The initial data is assumed to satisfy certain compatibility conditions as usual.
The aim of this article is to show the existence and uniqueness of the globally

smooth non-vacuum solutions to the initial value problem (1)-(4) and the initial-
boundary value problems (1)-(3) and (5), and (1)-(3) and (6) for general large initial
data. Our main interest lies in the case when the thermal conductivity κ depends
on temperature θ in power law. This choice of thermal conductivity is motivated
by the kinetic theory of gases. In fact, for ideal polytropic gases (i.e. pressure
P and specific internal energy e satisfy (2) with p = 1), according to the first
order approximation in the Chapman-Enskog expansion, the viscosity µ and thermal
conductivity κ depend solely on the temperature (cf. [2]). If the intermolecular
potential is proportional to r−α with α > 1 and r being the intermolecular distance,
then µ and κ satisfy

µ = µ̄θ
α+4
2α , κ = κ̄θ

α+4
2α , (7)

where µ̄ and κ̄ are positive constants. Apart from small and sufficiently smooth
data [7] and Nishida-Smoller type global solvability result [12], there is no global
solvability result currently available for (1) with constitutive relations (2) and (7).

Let us first recall some previous results related. For the case of ideal polytropic
gases, global existence and uniqueness of smooth solutions are established in [9] for
the initial-boundary value problem (1)-(3) and (6) and in [8] for the initial value
problem (1)-(4) with constant transport coefficients, respectively. There are also
many works on the construction of non-vacuum solutions for the ideal polytropic
gases when the viscosity depends only on density and the thermal conductivity may
depend on both density and temperature in various forms, cf. [5, 13, 16] and the
references therein.

In our case, the form of pressure P and specific internal energy e in (2) can
be seen as a generalization of the constitutive relations for the ideal polytropic
gas. In this direction, Lewicka and Watson [11] showed exponential convergence of
solutions to equilibria for initial-boundary value problems involving fixed endpoints
held at a fixed temperature or insulated. Qin and Huang [15] proved the regularity
and exponential stability of solutions in Hi(i = 2, 4) for (1)-(3) and (6). Recently
Cui and Yao [4] established the large time behavior of the global spherically or
cylindrically symmetric solutions in H1 for the p-th power Newtonian fluid in multi-
dimension. For the reactive p-th power gas confined between two parallel plates,
see [10] for the large-time behavior of the solutions and [14] for the global existence
and exponential stability of solutions in Hi(i = 2, 4).

We note that the papers [4, 10, 11, 14, 15] are all concerned with constant
transport coefficients. Thus it is natural to investigate the global solvability for
the p-th Newtonian fluid (1)-(2) with non-constant transport coefficients and gen-
eral pressure exponent p ≥ 1. Our study is motivated by the recent work [16]
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which is concentrated on the construction of globally smooth solutions to the one-
dimensional compressible Navier-Stokes-Poisson equations with degenerate trans-
port coefficients. We introduce the Lagrangian variables and reduce the initial
value problem (1)-(4) and the initial-boundary value problems (1)-(3) and (5), and
(1)-(3) and (6) into corresponding problems in the Lagrangian variables. The local
existence and uniqueness of solutions can be proved by using the Banach theorem
and the constructivity of the operator defined by the linearization of the problems
on a small time-interval (cf. Antontsev et al. [1, Section 2.5]). The global solvability
is showed by applying the continuation argument to extend the local solution step
by step to the global one based on certain global a priori estimates of the solution.
The key ingredient to the global a priori estimates with large data is to obtain
the desired positive lower and upper bounds for both density and temperature as
showed in [8, 9]. For technical reasons we will assume that the viscosity coefficient
depends only on the density.

1.2. Reformulation and main results. We transform the initial value problem
(1)-(4) and the initial-boundary value problems (1)-(3) and (5), and (1)-(3) and (6)
into Lagrangian coordinates. Introduce the Lagrangian variables (t, x) with

x =

∫ y

y(t)

ρ(t, z)dz,

where y(t) is the particle path satisfying y′(t) = u(t, y(t)) and y(0) = 0. Using this
transformation, we obtain the Lagrangian version of the system (1) as

vt − ux = 0,

ut + Px =
(
µ
ux
v

)
x
,

et + Pux =
µu2

x

v
+

(
κ
θx
v

)
x

,

(8)

where v = 1/ρ is the specific volume, P = θ/vp (p ≥ 1) and e = cvθ. For the
initial-boundary value problem (1)-(3) and (6) in bounded domain (0, 1), we may

assume
∫ 1

0
ρ0(y)dy = 1 without loss of generality. Then the initial and boundary

conditions (3)-(6) can be translated into similar conditions:

(v, u, θ)|t=0 = (v0, u0, θ0) in Ω, (9)

and

lim
x→±∞

(v0(x), u0(x), θ0(x)) = (1, 0, 1), if Ω = R; (10)

(u, θx)|x=0 = 0, lim
x→∞

(v0(x), u0(x), θ0(x)) = (1, 0, 1), if Ω = (0,∞); (11)

(u, θx)|∂Ω = 0, if Ω = (0, 1). (12)

Our first result is on the case when the viscosity µ is a positive constant.

Theorem 1.1. Suppose that µ is a positive constant and

(v0 − 1, u0, θ0 − 1) ∈ H1(Ω), inf
x∈Ω
{v0(x), θ0(x)} > 0. (13)

If the thermal conductivity κ = κ(θ) is a smooth function on [0,∞) and satisfies

lim
θ→∞

κ(θ) ≤ ∞ and inf
θ≥θ

κ(θ) > 0 for all θ > 0, (14)
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then there exists a unique global-in-time solution (v, u, θ) to the initial value problem
(8)-(10), the initial-boundary value problem (8)-(9) and (11), or (8)-(9) and (12)
such that

(v − 1, u, θ − 1) ∈ C([0, T ];H1(Ω)), (ux, θx) ∈ L2(0, T ;H1(Ω)),

inf
(t,x)∈[0,T ]×Ω

{v(t, x), θ(t, x)} > 0 for each positive constant T. (15)

Remark 1. The case of p-th power Newtonian fluids with temperature-dependent
thermal conductivity κ = θb (b ≥ 0 is a constant) is included in the class of fluids
investigated in Theorem 1.1.

The second result is concerned with the case when the transport coefficients µ
and κ satisfy

µ = v−a, κ = θb (16)

with some positive parameters a and b. For such a case, we have the following
result.

Theorem 1.2. Suppose that

• (v0, u0, θ0), µ and κ satisfy (13) and (16);

• a satisfies p
3 < a < 1

2 , 1 ≤ p ≤ 3a+1
2 ;

• b satisfies one of the following conditions:

(i) 1 ≤ b < 2a+p−1
2p−1−a ,

(ii) 
0 < b < 1,

a+ 3− 2a2 + 6(p− 1)(1− a)

(3a− p)(1− 2a)
(1− b) < 1,

2− b
2

+
4− 2a+ 2a2 + (p− 1)(9− 11a− 2p)

2(3a− p)(1− 2a)
(1− b) < 1.

(17)

Then there is a unique global solution (v, u, θ) satisfying (15) to the initial value
problem (8)-(10), the initial-boundary value problem (8)-(9) and (11), or (8)-(9)
and (12).

Remark 2. Since the assumptions on a imply 1 < a + p < 2p − a < 2a + p, it
follows that 2a+p−1

2p−1−a > 1 and hence the conditions stated in Theorem 1.2 are not
vacuous.

Remark 3. The results in Theorems 1.1 and 1.2 show that neither shock waves
nor vacuum and concentration will be developed in finite time. Also the above
results in Lagrangian coordinates can easily be converted to equivalent statements
for corresponding problems in Eulerian coordinates (cf. Chen [3]).

We outline the main ideas used to deduce our main results. Our analysis relies
on the continuation argument. For general large initial data, the main difficulty
is to control the possible growth of the solutions to the system (8) caused by the
dependence on v or θ of the transport coefficients and the strong nonlinearities of
the system itself. For the case when the viscosity µ is a positive constant while
the thermal conductivity κ may be degenerate in θ, we cannot hope to derive the
desired bounds on v and θ as in [8, 9]. However, motivated by the analysis in [8, 9],
we can deduce an explicit formula for v an then use this formula to deduce the
desired lower bound on v which enables us to get a positive lower bound for θ and
an upper bound for v. The upper bound on θ follows from the argument used in
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[16]. When µ is a power function of the density, we first get an lower bound on θ in
terms of the bounds on v as in (27), then we control the lower and upper bounds on
v in terms of ‖θ1−b‖L∞([0,T ]×Ω) as in (70) and (71) by applying Kanel’s argument
(cf. [6]). These estimates along with the estimate on the upper bound of θ can yield
the desired lower and upper bounds of both v and θ provided that the parameters
a and b satisfy certain relations as stated in Theorem 1.2.

The layout of this paper is as follows. In Section 2 we state the local existence
theorem and deduce some a priori estimates while we give the proofs of Theorem
1.1 and 1.2 in Section 3 and 4, respectively.

2. A priori estimates. To prove Theorem 1 and Theorem 2, we first define the set
for which we seek the solution of the problem (8)-(10), (8)-(9) and (11), or (8)-(9)
and (12) as follows

X(0, T ;m,M) :=

(v, u, θ)

∣∣∣∣∣∣∣∣
(v − 1, u, θ − 1) ∈ C([0, T ];H1(Ω)),

(ux, θx) ∈ L2(0, T ;L2(Ω)),

inf{v(t, x), θ(t, x)} ≥ m ∀ (t, x) ∈ [0, T ]× Ω,

‖(v − 1, u, θ − 1)(t)‖H1(Ω) ≤M ∀ t ∈ [0, T ]

 .

Here the viscosity coefficients µ may depend on v and the thermal conductivity κ
may be a function of both v and θ.

We first present the local solvability of solutions to the problem (8)-(10), (8)-(9)
and (11), or (8)-(9) and (12) in the following lemma, which can be proved by the
standard iteration method (see [1, Section 2.5]).

Proposition 1. If positive constants m and M exist such that

inf
x∈Ω
{v0(x), θ0(x)} ≥ m and ‖(v0 − 1, u0, θ0 − 1)‖H1(Ω) ≤M,

then there exists a constant T0 = T0(m,M) > 0 depending only on m and M such
that the the problem (8)-(10), (8)-(9) and (11), or (8)-(9) and (12) has a unique
smooth solution (v, u, θ) ∈ X(0, T0;m/2, 2M).

The rest of this section is devoted to deriving some a priori estimates on the
solutions (v, u, θ) to the problem (8)-(10), (8)-(9) and (11), or (8)-(9) and (12)
defined on [0, T ] × Ω for any fixed positive constant T . To prove Theorem 1.1 or
Theorem 1.2, it suffices to deduce that there exist positive constants CT and cT ,
which depend only on T , infx∈Ω {v0(x), θ0(x)} and ‖(v0 − 1, u0, θ0 − 1)‖H1(Ω), such
that

inf
(t,x)∈[0,T ]×Ω

{v(t, x), θ(t, x)} ≥ cT , sup
t∈[0,T ]

‖(v − 1, u, θ − 1)(t)‖H1(Ω) ≤ CT . (18)

In fact, if the maximum interval of existence of the solution (v(t, x), u(t, x), θ(t, x))
is supposed to be [0, T ) with T ∈ (0,∞), by setting

t1 := T − 1

2
T0(cT , CT )

and choosing (v, u, θ)(t1, ·) as the initial data, we can use (18) and Proposition
1 to extend the unique solution (v, u, θ) to the time interval [0, t1 + T0(cT , CT )].
This contradicts the assumption that [0, T ) is the maxinum interval of existence.
Therefore, we can prove the uniqueness and existence of the global-in-time solutions
by combining proposition 1 and the a priori estimates (18).

We introduce some notations used in the rest of this manuscript. We denote C
the generic positive constant which may depend on T and may vary from line to
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line. We will use A . B (B & A) if A ≤ CB for some positive constant C. The
notation A ∼ B means that both A . B and B . A. Moreover, ‖ · ‖q and |||·|||
stand for the standard norms of the Lebesgue spaces Lq(Ω) and L∞([0, T ]× Ω),
respectively.

We begin with the fundamental entropy-type energy estimate for the general case
p ≥ 1.

Lemma 2.1. We have

sup
0≤t≤T

∫
Ω

η(v, u, θ)dx+

∫ T

0

∫
Ω

[
µu2

x

vθ
+
κθ2
x

vθ2

]
. 1, (19)

where

η(v, u, θ) = ψ(v) +
1

2
u2 + cvφ(θ) (20)

with

φ(z) = z − ln z − 1 (21)

and

ψ(z) =

φ(z), p = 1,

z − 1

p− 1

(
1− z1−p)− 1, p > 1.

(22)

Proof. It follows from (8) that the temperature θ satisfies

cvθt +
θux
vp

=

(
κθx
v

)
x

+
µu2

x

v
. (23)

Multiplying (8)1 by (1− v−p), (8)2 by u and (23) by (1− θ−1), we find

η(v, u, θ)t +
µu2

x

vθ
+
κθ2
x

vθ2
=

[
µuux
v

+

(
1− 1

θ

)
κθx
v
− u

(
θ

vp
− 1

)]
x

.

We integrate this last identity over [0, T ] × Ω to deduce (19) by using the far-field
and boundary conditions (10), (11) or (12).

We have the following lemma from the estimate (19) by applying the argument
in [8, 9].

Lemma 2.2. A positive constant C0 exists such that for all i ∈ Z and t ∈ [0, T ],

C−1
0 ≤

∫
Ωi

v(t, x)dx ≤ C0, C−1
0 ≤

∫
Ωi

θ(t, x)dx ≤ C0, (24)

where Ωi := Ω ∩ [i, i + 1]. Moreover, for each integer i and t ∈ [0, T ], there are
ai(t), bi(t) ∈ Ωi such that

C−1
0 ≤ v(t, ai(t)) ≤ C0, C−1

0 ≤ θ(t, bi(t)) ≤ C0. (25)

Proof. From Lemma 2.1, we find a positive constant e0 such that∫
Ωi

ψ(v),

∫
Ωi

φ(θ) ≤ e0 (26)

for all integer i. If we use (26) and apply Jensen’s inequality to the convex functions
ψ(z) and φ(z), we deduce

ψ

(∫
Ωi

v

)
, φ

(∫
Ωi

θ

)
≤ e0,
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which yields

α1 ≤
∫

Ωi

v ≤ α2, β1 ≤
∫

Ωi

θ ≤ β2,

where α1 and α2 are two positive roots of equation ψ(z) = e0, and β1 and β2 are
two positive roots of equation φ(z) = e0. Moreover, in virtue of the mean value
theorem, for each t ≥ 0, there are ai(t), bi(t) ∈ Ωi such that

α1 ≤ v(t, ai(t)) ≤ α2, β1 ≤ θ(t, bi(t)) ≤ β2.

The proof of the lemma is completed.

The next lemma is concerned with the lower bound estimate on the temperature
θ.

Lemma 2.3. For all x ∈ Ω and t ∈ [0, T ],

1

θ(t, x)
. 1 +

∣∣∣∣∣∣∣∣∣∣∣∣ 1

µv2p−1

∣∣∣∣∣∣∣∣∣∣∣∣ . (27)

Proof. Let q > 1. We multiply (23) by 2qθ−2q−1 to find[
cvθ
−2q
]
t

+ 2q(2q + 1)
κθ2
x

vθ2q+2
≤− 2q

[
κθx

vθ2q+1

]
x

+ 2qθ−2q+1

(
ux
vpθ
− µu2

x

vθ2

)
≤− 2q

[
κθx

vθ2q+1

]
x

+
q

2
θ−2q+1 1

µv2p−1
.

Integrating this identity over Ω, we have

d

dt

∥∥θ−1(t)
∥∥2q

2q
. q

∫
Ω

θ−2q+1 1

µv2p−1
. q

∥∥θ−1(t)
∥∥2q−1

2q

∥∥∥∥ 1

µv2p−1
(t)

∥∥∥∥
2q

,

which gives ∥∥θ−1(t)
∥∥

2q
. 1 +

∫ t

0

∥∥∥∥ 1

µv2p−1
(s)

∥∥∥∥
2q

ds.

Letting q go to infinity, we can derive (27). This lemma follows.

Lemma 2.4. For each t ∈ [0, T ],∫ t

0

∫
Ω

µu2
x

v
.

[
1 +

∣∣∣∣∣∣∣∣∣∣∣∣ 1

µv2p−1

∣∣∣∣∣∣∣∣∣∣∣∣] [1 +

∫ t

0

‖θ(s)‖∞ ds

]
. (28)

Proof. Multiply (8)2 by u to find(
1

2
u2

)
t

+
µu2

x

v
=

[
µ
uux
v

+

(
1− θ

vp

)
u

]
x

+

(
θ

vp
− 1

)
ux.

We integrate this last identity over [0, t]× Ω to obtain∫ t

0

∫
Ω

µu2
x

v

. 1 +

∣∣∣∣∫ t

0

∫
Ω

(
1

vp
− 1

)
ux

∣∣∣∣+

∣∣∣∣∫ t

0

∫
Ω

θ − 1

vp
ux

∣∣∣∣
. 1 +

∣∣∣∣∫ t

0

∫
Ω

ψ(v)t

∣∣∣∣+ ε

∫ t

0

∫
Ω

µu2
x

v
+ C(ε)

∣∣∣∣∣∣∣∣∣∣∣∣ 1

µv2p−1

∣∣∣∣∣∣∣∣∣∣∣∣ ∫ t

0

∫
Ω

(θ − 1)2

. 1 + ε

∫ t

0

∫
Ω

µu2
x

v
+ C(ε)

∣∣∣∣∣∣∣∣∣∣∣∣ 1

µv2p−1

∣∣∣∣∣∣∣∣∣∣∣∣ ∫ t

0

∫
Ω

(θ − 1)2.

(29)
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To complete the proof of this lemma, it remains to show∫ t

0

∫
Ω

(θ − 1)2 . 1 +

∫ t

0

‖θ(s)‖∞ds.

For this, we notice that φ, which is defined by (21), satisfies{
φ(z) ≥ 1

2 (z − 1), ∀ z ≥ C,
φ(z) ≥ C−1(z − 1)2, ∀ 0 < z ≤ C,

for some sufficiently large constant C > 1. Hence we use (19) to deduce∫ t

0

∫
Ω

(θ − 1)2 .
∫ t

0

∫
Ω

(1 + |θ − 1|)φ(θ) . 1 +

∫ t

0

‖θ(s)‖∞ ds.

We complete the proof of this lemma.

We will employ Kanel’s technique [6] to estimate positive lower and upper bounds
on v in the proof of Theorem 1.2. For this, we first make an estimate on

∥∥µ
v vx(t)

∥∥
2

in the following lemma.

Lemma 2.5. For each t ∈ [0, T ],∥∥∥∥µ(v)vx
v

(t)

∥∥∥∥2

2

+

∫ t

0

∫
Ω

µ(v)θv2
x

vp+2
. 1 +

∫ t

0

∫
Ω

µ(v)u2
x

v
+

∫ t

0

∫
Ω

µ(v)θ2
x

vpθ
. (30)

Proof. We utilize (8) to derive(
µ(v)

v
vx

)
t

=

(
µ(v)

v
vt

)
x

= ut +
θx
vp
− p θvx

vp+1
.

Multiplying the above identity by µ(v)
v vx, we infer[

1

2

(µ
v
vx

)2
]
t

+ p
µ(v)θv2

x

vp+2
+
[µuux

v

]
x

=
[µvxu

v

]
t

+
µu2

x

v
+
µvxθx
vp+1

.

Integrate this last identity over [0, T ]× Ω and use (19) to find∥∥∥µvx
v

(t)
∥∥∥2

2
+

∫ t

0

∫
Ω

µθv2
x

vp+2

. 1 +

∫ t

0

∫
Ω

µu2
x

v
+

∫ t

0

∫
Ω

µ|vxθx|
vp+1

. 1 +

∫ t

0

∫
Ω

µu2
x

v
+ ε

∫ t

0

∫
Ω

µθv2
x

vp+2
+ C(ε)

∫ t

0

∫
Ω

µθ2
x

vpθ
.

(31)

We can achieve (30) by taking ε > 0 suitable small.

We next make an estimate of the upper bound on θ.

Lemma 2.6. It holds for all t ∈ [0, T ] that

‖θ(t)‖∞ . 1 +

∫ t

0

‖θ(s)‖2∞ ds+

[∣∣∣∣∣∣∣∣∣µ
v

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣∣∣∣ 1

v2p

∣∣∣∣∣∣∣∣∣∣∣∣] ∫ t

0

‖ux(s)‖2∞ ds. (32)
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Proof. We multiply (23) by 2q(θ − 1)2q−1 to find

cv
[
(θ − 1)2q

]
t

+ 2q(2q − 1)
κθ2
x

v
−
[
2q(θ − 1)2q−1κθx

v

]
x

= 2q(θ − 1)2q−1

(
µu2

x

v
− θux

vp

)
.

(33)

Integrating (33) over Ω, we obtain

d

dt
‖(θ − 1)(t)‖2q2q . ‖(θ − 1)(t)‖2q−1

2q

∥∥v−1µu2
x + v−pθ|ux|

∥∥
2q
,

which implies

‖(θ − 1)(t)‖2q . 1 +

∫ t

0

∥∥v−1µu2
x + v−pθ|ux|

∥∥
2q

ds.

We then derive (32) by taking q →∞ and applying Cauchy’s inequality.

Lemma 2.7. For each t ∈ [0, T ],

‖ux(t)‖22 +

∫ t

0

∫
Ω

µu2
xx

v

. 1 +

∫ t

0

∫
Ω

θ2
x

µv2p−1
+

∫ t

0

∫
Ω

θ2v2
x

µv2p+1
+

∫ t

0

∫
Ω

v

µ

(µ
v

)2

x
u2
x.

(34)

Proof. Multiply (8) by uxx to find(
1

2
u2
x

)
t

+
µu2

xx

v
= [uxut]x + Pxuxx −

(µ
v

)
x
uxuxx,

which along with Cauchy’s inequality gives

‖ux(t)‖22 +

∫ t

0

∫
Ω

µu2
xx

v
. 1 +

∫ t

0

∫
Ω

v

µ

(µ
v

)2

x
u2
x +

∫ t

0

∫
Ω

|Pxuxx|. (35)

The last term on the right hand side of (35) is estimated as∫ t

0

∫
Ω

|Pxuxx| . ε

∫ t

0

∫
Ω

µu2
xx

v
+ C(ε)

∫ t

0

∫
Ω

v

µ
P2
x

. ε

∫ t

0

∫
Ω

µu2
xx

v
+ C(ε)

∫ t

0

∫
Ω

v

µ

(
θ2
x

v2p
+

θ2v2
x

v2p+2

)
.

(36)

We plug (36) into (35) and take ε > 0 suitable small to achieve (34).

3. Proof of Theorem 1.1. In this section we prove Theorem 1.1 by extending
the argument in [8, 9] for constant transport coefficients to the case when µ is a
positive constant and κ may depend on temperature θ.

We recall that Kazhikhov and Shelukhin in [9] and Kazhikhov in [8] have dis-
covered a representation of specific volume for the ideal polytropic gases. Thus we
first derive a similar representation of the specific volume v for the p-th Newtonian
fluid (8) with pressure P = θ/vp (p ≥ 1), and use it to deduce the lower and upper
bounds of v, which is a key point to the global solvability result.

Lemma 3.1. Under the assumptions in Theorem 1.1, we have for all (t, x) ∈
[0, T ]× Ω that

v(t, x) ∼ 1, θ(t, x) & 1. (37)
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Proof. Let x ∈ Ωi := Ω ∩ [i, i+ 1] for any fixed integer i. We divide the proof into
three steps.

Step 1. Since µ is assumed to be a positive constant, we integrate (8)2 over
[0, t]× [ai(t), x] to infer∫ x

ai(t)

(u(t, z)− u0(z)) dz +

∫ t

0

(
θ(s, x)

vp(s, x)
− θ(s, ai(t))

vp(s, ai(t))

)
ds

=
µ

p
ln
vp(t, x)vp0(ai(t))

vp0(x)vp(t, ai(t))
,

which implies

1

vp(t, x)
exp

(
p

µ

∫ t

0

θ(s, x)

vp(s, x)
ds

)
=

1

Bi(t, x)Yi(t)
, (38)

where

Bi(t, x) =
vp0(x)vp(t, ai(t))

vp0(ai(t))
exp

(
p

µ

∫ x

ai(t)

(u(t, z)− u0(z)) dz

)
, (39)

Yi(t) = exp

(
− p
µ

∫ t

0

θ(s, ai(t))

vp(s, ai(t))
ds

)
. (40)

We multiply (38) by p
µθ(t, x) to find

∂

∂t
exp

(
p

µ

∫ t

0

θ(s, x)

vp(s, x)
ds

)
=
p

µ

θ(t, x)

Bi(t, x)Yi(t)
,

which yields

exp

(
p

µ

∫ t

0

θ(s, x)

vp(s, x)
ds

)
= 1 +

p

µ

∫ t

0

θ(s, x)

Bi(s, x)Yi(s)
ds. (41)

Plugging (41) into (38), we deduce

v(t, x) =

[
Bi(t, x)Yi(t) +

p

µ

∫ t

0

θ(s, x)
Bi(t, x)Yi(t)

Bi(s, x)Yi(s)
ds

] 1
p

. (42)

Step 2. We obtain from (19) that∣∣∣∣∣
∫ x

ai(t)

(u(t, z)− u0(z)) dz

∣∣∣∣∣ ≤
∫

Ωi

(
u2(t, z) + u2

0(z)
)

dz . 1,

which combined with (25) yields

Bi(t, x) ∼ 1. (43)

To estimate Yi(t), we first apply Jensen’s inequality to h(z) = zp (p ≥ 1) and use
(24) to obtain ∫

Ωi

vp ≥
(∫

Ωi

v

)p
& 1,

which combined with (42) and (43) gives

1

Yi(t)
.

1

Yi(t)

∫
Ωi

vp . 1 +

∫ t

0

1

Yi(s)

∫
Ωi

θ(s, z)dzds . 1 +

∫ t

0

1

Yi(s)
ds.

Applying Gronwall’s inequality, we deduce

Yi(t) & 1. (44)
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We plug (43)-(44) into (42) to obtain v(t, x) & 1. And we get a lower bound for the
specific volume v. Then we can derive that θ(t, x) & 1 for all (t, x) ∈ [0, T ]× Ω by
using Lemma 2.3.

Step 3. We first note from (14) that κ = κ(θ) & 1. Since Yi(t) . 1, we use
(42)-(44) to find

v(t, x) . 1 +

∫ t

0

θ(s, x)ds. (45)

To control the last term on the right hand side of (45), we utilize (24) and (25) to
derive

θ(t, x) . θ(t, bi(t)) +
∣∣∣θ 1

2 (t, x)− θ 1
2 (t, bi(t))

∣∣∣2
. 1 +

[∫
Ωi

|θx|√
θ

(t, z)dz

]2

. 1 + sup
z∈Ωi

v(t, z)

∫
Ωi

θ

∫
Ωi

κθ2
x

vθ2

. 1 + sup
z∈Ωi

v(t, z)

∫
Ωi

κθ2
x

vθ2
.

(46)

Then we derive

v(t, x) . 1 +

∫ t

0

sup
z∈Ωi

v(t, z)

∫
Ωi

κθ2
x

vθ2
dzds. (47)

Applying Gronwall’s inequality to (46), we deduce sup
x∈Ωi

v(t, x) . 1 from (19). This

completes the proof.

We can easily deduce the following corollary by plugging (37) into (46).

Corollary 1. Under the assumptions in Theorem 1.1, for each t ∈ [0, T ],∫ t

0

‖θ(s)‖∞ ds . 1. (48)

With (37) and (48) in hand, we can recheck lemmas 2.4-2.7 to obtain the following
corollary.

Corollary 2. Under the assumptions in Theorem 1.1, for each t ∈ [0, T ],∫ t

0

∫
Ω

u2
x . 1, (49)

‖vx(t)‖22 +

∫ t

0

∫
Ω

θv2
x . 1 +

∫ t

0

∫
Ω

θ2
x

θ
, (50)

‖ux(t)‖22 +

∫ t

0

∫
Ω

u2
xx . 1 +

∫ t

0

∫
Ω

θ2
x +

∫ t

0

∫
Ω

θ2v2
x + sup

t∈[0,T ]

‖vx(t)‖42 , (51)

‖θ(t)‖∞ . 1 +

[∫ t

0

∫
Ω

u2
xx

] 1
2

. (52)

Proof. We plug (37) and (48) into (28) to derive (49).
Plugging (37) and (49) into (30) gives (50).
Estimate (51) can be proved by applying (37), (49) and Cauchy’s inequality to

(34).
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If we use (37) and (48) and apply Gronwall’s inequality to (32), we deduce

‖θ(t)‖∞ . 1 +

∫ t

0

‖ux(s)‖2∞ds,

which implies (52) by using the Sobolev’s inequality.

We will deduce an upper bound on temperature θ in the following two lemmas.

Lemma 3.2. If the limit of κ(θ) at infinity is infinity, then

θ(t, x) . 1. (53)

Proof. Estimates (19), (37) and (50) yield

‖vx(t)‖22 +

∫ t

0

∫
Ω

θv2
x . 1 +

∣∣∣∣∣∣∣∣∣∣∣∣ θκ
∣∣∣∣∣∣∣∣∣∣∣∣ . (54)

We plug (19) and (54) into (51) to find

‖ux(t)‖22 +

∫ t

0

∫
Ω

u2
xx . 1 +

∣∣∣∣∣∣∣∣∣∣∣∣θ2

κ

∣∣∣∣∣∣∣∣∣∣∣∣+ |||θ|||
[
1 +

∣∣∣∣∣∣∣∣∣∣∣∣ θκ
∣∣∣∣∣∣∣∣∣∣∣∣]+

∣∣∣∣∣∣∣∣∣∣∣∣ θκ
∣∣∣∣∣∣∣∣∣∣∣∣2 ,

which along with (52) gives

|||θ||| . 1 +

∣∣∣∣∣∣∣∣∣∣∣∣ θ√κ
∣∣∣∣∣∣∣∣∣∣∣∣+ |||θ|||

1
2

[
1 +

∣∣∣∣∣∣∣∣∣∣∣∣ θκ
∣∣∣∣∣∣∣∣∣∣∣∣ 12
]

+

∣∣∣∣∣∣∣∣∣∣∣∣ θκ
∣∣∣∣∣∣∣∣∣∣∣∣ . (55)

Appplying Cauchy’s inequality to (55), we have

|||θ||| ≤ K +K

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ θ√

κ(θ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣+K

∣∣∣∣∣∣∣∣∣∣∣∣ θ

κ(θ)

∣∣∣∣∣∣∣∣∣∣∣∣ (56)

for some positive constant K depending solely on T .
Since the limit of κ(θ) at infinity is infinity, there exists a positive constant CK

such that κ(θ) ≥ max{4K, 16K2} for each θ ≥ CK . We derive from (37) and (14)
that κ(θ(t, x)) ≥ c for each (t, x) ∈ [0, T ]×Ω and some positive constant c. Hence,
we have

θ(t, x)√
κ(θ(t, x))

≤ CK√
c

+
θ(t, x)

4K
,

θ(t, x)

κ(θ(t, x))
≤ CK

c
+
θ(t, x)

4K
. (57)

Plugging (57) into (56) yields

|||θ||| ≤ K +
KCK√

c
+
KCK
c

+
|||θ|||
2
,

from which we complete the proof of the lemma.

Lemma 3.3. If the limit of κ(θ) at infinity is a constant, then

θ(t, x) . 1. (58)

Proof. We divide the proof into four steps.
Step 1. Since lim

θ→∞
κ(θ) <∞ and κ(θ) is smooth on [0,∞), there is some positive

constant K depending only on T such that κ(θ(t, x)) ≤ K for each (t, x) ∈ [0, T ]×Ω.
We set w := 1

2u
2 + cv(θ − 1) and deduce

wt =

[
µ
wx
v

+ (κ− µcv)
θx
v

]
x

− (Pu)x. (59)
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Multiplying (59) by w and integrating the resulting identity over [0, t]×Ω, we obtain

1

2
‖w(t)‖22 +

∫ t

0

∫
Ω

µw2
x

v
≤ C −

∫ t

0

∫
Ω

(κ− µcv)
θxwx
v

+

∫ t

0

∫
Ω

Puwx.

Plugging wx = uux + cvθx into the above inequality, we have

1

2
‖w(t)‖22 +

∫ t

0

∫
Ω

cvκθ
2
x

v
. 1+

∫ t

0

∫
Ω

|θxuux|
v

+

∫ t

0

∫
Ω

u2u2
x

v
+

∫ t

0

∫
Ω

|Puwx|. (60)

We note that κ = κ(θ) is bounded away from zero due to (37). If we use (37) and
apply Cauchy’s inequality to (60), we infer

‖w(t)‖22 +

∫ t

0

∫
Ω

θ2
x . 1 +

∫ t

0

∫
Ω

θ2u2 +

∫ t

0

∫
Ω

u2u2
x. (61)

Step 2. To estimate the last term on the right hand side of (61), we multiply
(8)2 by u3 to find

‖u(t)‖44 +

∫ t

0

∫
Ω

µu2u2
x

v
. 1 +

∫ t

0

∫
Ω

θxu
2|ux|
vp

,

which combined with (37) and Cauchy’s inequality yields

‖u(t)‖44 +

∫ t

0

∫
Ω

u2u2
x . 1 +

∫ t

0

∫
Ω

θ2u2. (62)

Plugging (62) into (61), we have

‖u(t)‖44 + ‖(θ − 1)(t)‖22 +

∫ t

0

∫
Ω

(
θ2
x + u2u2

x

)
. 1 +

∫ t

0

∫
Ω

θ2u2. (63)

Step 3. We have from (19) and Sobolev’s inequality that∫ t

0

∫
Ω

θ2u2 . 1 +

∫ t

0

‖(θ − 1)(s)‖2‖θx(s)‖2ds

. 1 + ε

∫ t

0

∫
Ω

θ2
x + C(ε)

∫ t

0

∫
Ω

(θ − 1)2.

(64)

Plugging (64) into (63) and employing Gronwall’s inequality, we can derive

‖u(t)‖44 + ‖(θ − 1)(t)‖22 +

∫ t

0

∫
Ω

(
θ2
x + u2u2

x

)
. 1, (65)

which along with (64) gives ∫ t

0

‖θ(s)‖2∞ . 1. (66)

Step 4. We use (37) and (65) to estimate the last term on the right hand side
of (50) and have

‖vx(t)‖22 +

∫ t

0

∫
Ω

θv2
x . 1. (67)

Plugging (65), (67) into (51), we derive

‖ux(t)‖22 +

∫ t

0

∫
Ω

u2
xx . 1 +

∫ t

0

‖vx(s)‖22‖θ(s)‖2∞ds . 1.

which along with (52) implies
‖θ(t)‖∞ . 1.

The proof of the lemma is completed.
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With the bounds (37), (53) and (58) for both v and θ in hand, Theorem 1.1
follows from the standard continuation argument.

4. Proof of Theorem 1.2. In this section we will apply Kanel’s technique [6] to
estimate the bounds for the specific volume v in terms of the bounds of θ and then
give the proof of Theorem 1.2.

Lemma 4.1. If κ = θb for some positive constant b, then we have∫ t

0

‖θ(s)‖b∞ ds . 1, (68)∫ t

0

‖θ(s)‖b+1
∞ ds . 1 + |||v||| . (69)

Proof. Let x ∈ Ωi for any integer i. Then it follows from (25) that

θ
b+1
2 (t, x) . θ

b+1
2 (t, bi(t)) +

∫
Ωi

θ
b−1
2 |θx|(t, z)dz . 1 +

[∫
Ωi

κθ2
x

vθ2

] 1
2
[∫

Ωi

vθ

] 1
2

and

θ
b
2 (t, x) . 1 +

∫
Ωi

θ
b−2
2 |θx|(t, z)dz . 1 +

[∫
Ωi

κθ2
x

vθ2

] 1
2
[∫

Ωi

v

] 1
2

,

which combined with (19) and (24) imply (68) and (69).

We now apply Kanel’s approach to deduce lower and upper bounds of v in terms
of
∣∣∣∣∣∣θ1−b

∣∣∣∣∣∣ for the general p-th power pressure P = θ/vp.

Lemma 4.2. Under the assumptions in Theorem 1.2, it holds that∣∣∣∣∣∣v−1
∣∣∣∣∣∣ . 1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣ 1
3a−p , (70)

|||v||| . 1 +
∣∣∣∣∣∣θ1−b∣∣∣∣∣∣ 2a+p−1

(3a−p)(1−2a) , (71)∥∥∥ vx
v1+a

(t)
∥∥∥2

2
+

∫ t

0

∫
Ω

[
u2
x

v1+a
+

θv2
x

vp+2+a

]
. 1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣ 2a+p−1
3a−p . (72)

Proof. The proof is divided into three steps.
Step 1. We have from (68) that∫ t

0

‖θ(s)‖∞ ds .
∣∣∣∣∣∣θ1−b∣∣∣∣∣∣ . (73)

Plugging (73) into (28) gives∫ t

0

∫
Ω

u2
x

v1+a
.
[
1 +

∣∣∣∣∣∣v1+a−2p
∣∣∣∣∣∣] [1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣] . (74)

We plug (74) into (30) to find∥∥∥ vx
v1+a

∥∥∥2

2
+

∫ t

0

∫
Ω

[
θv2
x

vp+2+a
+

u2
x

v1+a

]
. 1 +

∫ t

0

∫
Ω

u2
x

v1+a
+

∫ t

0

∫
Ω

κθ2
x

vθ2

∣∣∣∣∣∣∣∣∣∣∣∣ µθ

vp−1κ

∣∣∣∣∣∣∣∣∣∣∣∣
.
[
1 +

∣∣∣∣∣∣v1+a−2p
∣∣∣∣∣∣+

∣∣∣∣∣∣v1−a−p∣∣∣∣∣∣] [1 +
∣∣∣∣∣∣θ1−b∣∣∣∣∣∣]

.
[
1 +

∣∣∣∣∣∣v−1
∣∣∣∣∣∣2p−a−1

] [
1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣] .
(75)
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Here we have used the fact that 2p− a− 1 > a+ p− 1 > 0 under the assumptions
in Theorem 1.2.

Step 2. We assume
∫ 1

0
v0(z)dz = 1 without loss of generality and set

Ψ(v) :=

∫ v

1

√
ψ(z)

z1+a
dz.

Since we can easily deduce

Ψ(v) ∼

{
v

1
2−a, v →∞,

v−a+ 1−p
2 , v → 0+,

there are positive constants C1 and C2 such that

|Ψ(v)| ≥ C1

(
v−a+ 1−p

2 + v
1
2−a
)
− C2. (76)

Moreover, we have

|Ψ(v)(t, x)| .
∥∥∥√ψ(v)(t)

∥∥∥
2

∥∥∥ vx
v1+a

(t)
∥∥∥

2
. (77)

Indeed, we derive different representations for Ψ(v) in two cases in order to prove
(77).

• If Ω = R or Ω = (0,∞), then we have from (10) and (11) that

Ψ(v)(t, x) =

∫ x

∞
Ψ(v(t, z))zdz. (78)

• If Ω = (0, 1), then we integrate (8)1 over [0, t]× Ω to find∫ 1

0

v(t, z)dz =

∫ 1

0

v0(z)dz = 1.

Therefore, h(t) ∈ (0, 1) exists for all t ∈ [0, T ] such that v(t, h(t)) = 1 and

Ψ(v)(t, x) =

∫ x

h(t)

Ψ(v(t, z))zdz. (79)

We deduce (77) from the identities (78) and (79) and Hölder’s inequality.
Plugging (19) into (77) and using (76), we have∣∣∣∣∣∣v−1

∣∣∣∣∣∣a+ p−1
2 + |||v|||

1
2−a . sup

0≤t≤T

∥∥∥ vx
v1+a

(t)
∥∥∥

2
. (80)

Step 3. If we use (75) to control the right hand side of (80) and apply Young’s
inequality with p′ = 2a+p−1

2p−a−1 > 1 and q′ = 2a+p−1
3a−p , we deduce∣∣∣∣∣∣v−1

∣∣∣∣∣∣a+ p−1
2 + |||v|||

1
2−a . 1 + ε

∣∣∣∣∣∣v−1
∣∣∣∣∣∣(p− a+1

2 )p′

+ C(ε)
∣∣∣∣∣∣θ1−b∣∣∣∣∣∣ q′2 ,

which implies (70) and (71). Plugging (70) into (75) gives (72). The lemma follows.

To obtain an upper bound on θ, we have to make estimate on ‖ux(t)‖2.

Lemma 4.3. Under the assumptions in Theorem 1.2, it holds that

‖ux(t)‖22 +

∫ t

0

∫
Ω

u2
xx

v1+a
. 1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a1 +
∣∣∣∣∣∣θ2−b∣∣∣∣∣∣ [1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a2] . (81)

with a1 = 4a−4a2+2+(p−1)(5−4a)
(3a−p)(1−2a) and a2 = (2a+p−1)(a+2−2p)

(3a−p)(1−2a) .
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Proof. Apply (16) to estimate (34) as

‖ux(t)‖22 +

∫ t

0

∫
Ω

u2
xx

v1+a
. 1+

∫ t

0

∫
Ω

θ2
x

v2p−1−a +

∫ t

0

∫
Ω

θ2v2
x

v2p+1−a +

∫ t

0

∫
Ω

v2
xu

2
x

v3+a
. (82)

Since we can deduce 2− 2p+ a > 3a+ 1− 2p ≥ 0 from the assumptions on a stated
in Theorem 1.2, we use (69)-(72) and (19) to estimate the terms on the right hand
side of (81) as ∫ t

0

∫
Ω

θ2
x

v2p−1−a . |||v|||2−2p+a ∣∣∣∣∣∣θ2−b∣∣∣∣∣∣ ∫ t

0

∫
Ω

κθ2
x

vθ2

.
∣∣∣∣∣∣θ2−b∣∣∣∣∣∣ [1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a2] , (83)

∫ t

0

∫
Ω

θ2v2
x

v2p+1−a . |||v|||3a+1−2p
sup

0≤s≤t

∥∥∥ vx
v1+a

(s)
∥∥∥2

2

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣ ∫ t

0

‖θ(s)‖b+1
∞ ds

. 1 +
∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a3 (84)

with a3 = 7a−4a2−1+(p−1)(2−2p−a)
(3a−p)(1−2a) and∫ t

0

∫
Ω

v2
xu

2
x

v3+a
.
∣∣∣∣∣∣v−1

∣∣∣∣∣∣1−a sup
0≤s≤t

∥∥∥ vx
v1+a

(s)
∥∥∥2

2

∫ t

0

‖ux(s)‖2∞ds

.

[
1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣ 4a−4a2+2+(p−1)(5−4a)
2(3a−p)(1−2a)

] [∫ t

0

∫
Ω

u2
xx

v1+a

] 1
2

.

(85)

Here we have used∫ t

0

‖ux(s)‖2∞ds . |||v|||1+a

[∫ t

0

∫
Ω

u2
x

v1+a

] 1
2
[∫ t

0

∫
Ω

u2
xx

v1+a

] 1
2

.
[
1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a4] [∫ t

0

∫
Ω

u2
xx

v1+a

] 1
2

(86)

with a4 = 3(2a+p−1)
2(3a−p)(1−2a) . Since a3 < a1 under the assumptions in Theorem 1.2,

we get (81) by plugging (83)-(85) into (82) and applying Cauchy’s inequality. The
lemma follows.

Proof of Theorem 1.2. To complete the proof of Theorem 1.2, it remains to
get the upper and lower bounds of both θ and v. To this end, we have from (32),
(69)-(72), (81) and (86) that

‖θ(t)‖∞

. 1 +

∫ t

0

‖θ(s)‖2∞ ds+
[
1 +

∣∣∣∣∣∣v−1
∣∣∣∣∣∣2p] [1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a4] [∫ t

0

∫
Ω

u2
xx

v1+a

] 1
2

. 1 +
∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a5 +

[
1 +

∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a6] [∫ t

0

∫
Ω

u2
xx

v1+a

] 1
2

. 1 +
∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a7 +

∣∣∣∣∣∣θ2−b∣∣∣∣∣∣ 12 [1 +
∣∣∣∣∣∣θ1−b∣∣∣∣∣∣a8]

(87)
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with 

a5 =
7a− 1− 6a2 + 2a(p− 1)

(3a− p)(1− 2a)
, a6 =

4− 2a+ (p− 1)(7− 8a)

2(3a− p)(1− 2a)
,

a7 = max
{
a5, a6 +

a1

2

}
=
a+ 3− 2a2 + 6(p− 1)(1− a)

(3a− p)(1− 2a)
,

a8 = a6 +
a2

2
=

4− 2a+ 2a2 + (p− 1)(9− 11a− 2p)

2(3a− p)(1− 2a)
.

We first consider the case b ≥ 1. In this case, we have from (27) and (70) that∣∣∣∣∣∣θ−1
∣∣∣∣∣∣ . 1 +

∣∣∣∣∣∣v−1
∣∣∣∣∣∣2p−1−a

. 1 +
∣∣∣∣∣∣θ−1

∣∣∣∣∣∣ (2p−1−a)(b−1)
3a−p ,

which along with the condition (17) implies∣∣∣∣∣∣θ−1
∣∣∣∣∣∣ . 1. (88)

Moreover, we plug (88) into (70) and (71) and get v(t, x) ∼ 1 for all (t, x) ∈ [0, T ]×Ω.
Since 1 ≤ b < 2a+p−1

2p−1−a < 2, we obtain from (87) and (88) that

|||θ||| . 1 +
∣∣∣∣∣∣θ2−b∣∣∣∣∣∣ 12 . 1 + |||θ|||

2−b
2 ,

which yields |||θ||| . 1 by applying Young’s inequality.
For the case b < 1, we have from (87) that

|||θ||| . 1 + |||θ|||(1−b)a7 + |||θ|||
2−b
2 +(1−b)a8 ,

which along with the conditions stated in Theorem 1.2, yields |||θ||| . 1. With this
upper bound on θ, the lower and upper bounds on v can be easily obtained from
(70) and (71). And then we obtain the lower bound on θ from (27).

Then integrating (23) multiplied with θxx over (0, t)× Ω, we have

‖θx(t)‖22 +

∫ t

0

∫
Ω

θ2
xx . 1,

which combined with (19), (72) and (81)

sup
0≤t≤T

‖(v − 1, u, θ − 1)(t)‖2H1(Ω) +

∫ T

0

(
‖vx(t)‖22 + ‖(ux, θx)(t)‖2H1(Ω)

)
dt . 1.

Theorem 1.2 follows from the standard continuation argument.
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