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Abstract We study the large-time behavior toward viscous shock waves to the Cauchy

problem of the one-dimensional compressible isentropic Navier-Stokes equations with density-

dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain

class of large initial perturbation with integral zero which can allow the initial density to

have large oscillation. Our analysis relies upon the technique developed by Kanel′ and the

continuation argument.
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1 Introduction

We consider the large time behavior of global solutions to Cauchy problem of the one-

dimensional compressible isentropic Navier-Stokes equations with density-dependent viscosity

in Lagrangian coordinates










vt − ux = 0,

ut + p(v)x =
(

µ(v)
ux

v

)

x

(1.1)

with prescribed initial conditions

(v, u)|t=0 = (v0, u0) , lim
x→±∞

(v0, u0)(x) = (v±, u±) , (1.2)

here t > 0 is the time variable, x ∈ R is the Lagrangian spatial variable, and v± > 0, u± are

given constants. The primary dependent variables are the specific volume v and the velocity u.

Throughout this manuscript, the pressure p and the viscosity coefficient µ are given by

p(v) = av−γ , µ(v) = bv−κ, (1.3)
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where γ > 1 represents the adiabatic exponent, a > 0, b > 0 and κ are the gas constants.

Without loss of generality, we can assume that a = b = 1 in the rest of this manuscript.

Before stating the main problem studied in this manuscript, we first explain our motiva-

tion to study the one-dimensional compressible Navier-Stokes equations (1.1) satisfying rela-

tions (1.3). According to the study on the kinetic theory of dilute gases, if one derives the

one-dimensional compressible Navier-Stokes equations from the Boltzmann equation with slab

symmetry through the Chapman-Enskog expansion (see Chapman-Cowling [1]), one can de-

duce that the five thermodynamical variables, i.e., the density ρ = v−1, the temperature θ, the

internal energy e, the entropy s, and the pressure p, satisfy the equations of the state of the

ideal polytropic gases

p =
Rθ

v
= b̃v−les/cv , e = cvθ (1.4)

for some positive constants l > 1, R > 0, b̃ > 0, cv > 0 and the viscosity coefficient µ together

with the heat conductivity coefficient κ are no longer positive constants but depend on the

temperature. In fact for the cutoff inverse power force model (cf. [14]), the interacting potential

between molecules is proportional to r1−s where r denotes the distance between molecules and

s > 5 is a constant and in such a case, one can deduce by employing the properties of the

Burnett functions that the viscosity coefficient µ and the heat conductivity coefficient κ satisfy

µ(θ) ∝ θ
1
2
+ 2

s−1 , κ(θ) ∝ θ
1
2
+ 2

s−1 . (1.5)

Note that as s→ +∞, the cutoff inverse power force model is then reduced to the hard sphere

model, while the Maxwell molecule model corresponds to the case of s = 5.

For isentropic polytropic flows, the pressure p satisfies p = ãργ for some positive constants

ã > 0, γ ≥ 1. Such a fact together with (1.4) imply

θ =
ã

R
ργ−1. (1.6)

Thus for isentropic polytropic flows, one can get from (1.5) and (1.6) that the dependence of

the viscosity coefficient µ on θ can be transferred into the dependence of µ on the density as

µ(ρ) ∝ ρ
(s+3)(γ−1)

2(s−1) , γ > 1, s > 5, (1.7)

which is nothing but (1.3) with κ = (s+3)(γ−1)
2(s−1) . It is worth to pointing out that although the

fact that s > 5 from physical consideration implies that γ−1
2 < κ ≤ γ − 1, to illustrate the

range of the parameters γ and κ to which our argument can be applied, we will deal with the

case when (1.3) hold with the constant κ being independent of γ in the rest of the paper.

The problem we want to study is on the time-asymptotically nonlinear stability of viscous

shock waves for the Cauchy problem (1.1)–(1.2). Recall that a viscous shock wave of (1.1)

connecting (v−, u−) and (v+, u+) is a traveling wave solution (v, u)(t, x) ≡ (V, U)(x − st) of

(1.1) satisfying

(V, U)(−∞) = (vl, ul) , (V, U)(+∞) = (vr, ur) , (1.8)

where s is the shock speed and (vl, ul) and (vr, ur) are the given far-field states satisfying

(v+, u+) ∈ S1S2(v−, u−), where

S1S2(v−, u−) := {(v, u) : u < u− − (v − v−)si(v, v−), i = 1, 2}

with the speed si(v, v−) = (−1)i
√

(p(v) − p(vl))/(vl − v).
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Under the above assumptions imposed on the far-fields (v±, u±) of the initial data, following

the standard arguments in [16], we can find a unique (v̄, ū) ∈ S1(v−, u−) such that (v+, u+) ∈

S2(v̄, ū), where

Si(vl, ul) := {(v, u); u = ul − (v − v−)si(v, vl), u < ul}

is the i-shock curve passing through (vl, ul). It is easy to show that the system (1.1) admits

a 1-viscous shock wave (V1, U1) (x− s1t) connecting (v−, u−) with (v̄, ū) and a 2-viscous shock

wave (V2, U2) (x − s2t) connecting (v̄, ū) with (v+, u+), and both of them are unique up to

a shift, where s1 = s1(v−, v̄) < 0 and s2 = s2(v+, v̄) > 0. It is expected that the large-time

behavior of global solutions of the Cauchy problem (1.1)–(1.2) is described by the superposition

of the shifted 1-viscous shock wave (V1, U1) (x− s1t+α1) and the shifted 2-viscous shock wave

(V2, U2) (x− s2t+ α2):

(V, U)(t, x;α1, α2) := (V1, U1)(x − s1t+ α1) + (V2, U2)(x − s2t+ α2) − (v̄, ū), (1.9)

where the shifts α1 and α2 are given by

α1 =
s2A+B

δ1(s1 − s2)
, α2 =

s1A+B

δ2(s1 − s2)
(1.10)

with

A =

∫

R

[v0(x) − V1(x) − V2(x) + v̄] dx < +∞, (1.11)

B =

∫

R

[u0(x) − U1(x) − U2(x) + ū] dx < +∞. (1.12)

Before stating our main result, we first recall some previous results closely related. For the

case when the viscosity coefficient µ(v) is a constant, stability of viscous shock wave for small

initial perturbation with “zero mass” condition was proved in Kawashima-Matsumura [8] for

small-amplitude profile and in Matsumura-Nishihara [13] where the corresponding assumption

imposed on the amplitude of the viscous shock profile is relaxed to the assumption that

2(γ − 1)

(

1 +
v−γr − v

−γ
l

γ(vr − vl)v
−γ−1
l

)

< (γ − 1) +

[

v
−γ
l − v−γr

γ(vr − vl)v
−γ−1
l

]2

. (1.13)

Notice that
v−γr − v

−γ
l

γ(vr − vl)v
−γ−1
l

= −1 +
γ + 1

2vl
(vr − vl) +O(1)|vr − vl|

2,

although for general γ > 1, especially for the case when γ is sufficiently large, assumption (1.13)

holds only when the strength of the viscous shock profile is sufficiently small, it does hold for

any vl and vr if γ → 1. Later, there appeared many works treating the case when the initial

perturbation is not of zero mass. In particular, the asymptotic stability for small-amplitude

viscous shock wave of (1.1) and related physical systems was studied in Mascia-Zumbrun [10]

and Liu-Zeng [9] with small initial perturbation. As for the asymptotic stability of viscous

shock wave with large initial perturbation, it was a long-standing challenging open problem,

except for the partial result obtained in [17] where viscous shock waves were shown to be

time-asymptotically stable for a certain class of large initial perturbation.

For the case when the viscosity coefficient µ(v) is assumed to satisfy (1.3), there is a huge

literature on mathematical studies of the compressible Navier-Stokes equations with density-

dependent viscosity with various initial and boundary conditions. We here just mention some
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works on the large-time behavior of the solutions. Jiu-Wang-Xin [5, 6] proved the time-

asymptotic stability of rarefaction waves to the one-dimensional compressible Navier-Stokes

equations with density-dependent viscosity for general initial data which may contain the vac-

uum. As for the stability of viscous shock wave, Matsumura-Wang [14] showed that any viscous

shock wave of the system (1.1)–(1.3) with κ ≥ (γ − 1)/2 is asymptotically stable for small ini-

tial perturbations with “zero mass” condition. For the corresponding result with large initial

perturbation, to the best of our knowledge, no result was obtained. The main purpose of this

manuscript is devoted to this problem and what we want to show in this paper is that the

viscous shock wave of the compressible Navier-Stokes equations (1.1) is still nonlinear stable

for certain class of large initial perturbation which satisfies the “zero mass” condition but can

allow the initial density to have large oscillation.

Now we turn to state our main result. To do so, we need first to introduce some notations

as in the following: the strengths of the 1-viscous shock wave and the 2-viscous shock wave are

denoted by δ1 := |v− − v̄| and δ2 := |v̄ − v+|, respectively. We also set δ := |u+ − u−|, and

(φ0, ψ0)(x) :=

∫ x

−∞

(v0(y) − V (0, y;α1, α2), u0(y) − U(0, y;α1, α2)) dy. (1.14)

Second, we list some assumptions on the initial data (v0, u0), the strengths of the viscous

shock waves δ1, δ2, and the shifts α1, α2 as follows:

(H0) there exist δ-independent constants ℓ ≥ 0 and C0 > 0 such that for each x ∈ R,

C−1
0 δℓ ≤ v0(x) ≤ C0(1 + δ−ℓ); (1.15)

(H1) (v+, u+) ∈ S1S2(v−, u−) and (v̄, ū) ∈ S1(v−, u−) such that (v+, u+) ∈ S2(v̄, ū);

(H2) the strengths of the viscous shock waves δ1, δ2, the shifts α1, α2 defined by (1.10)

and the initial data (v0, u0) are assumed to satisfy

(v0 − V (0, ·;α1, α2), u0 − U(0, ·;α1, α2)) ∈ H1(R) ∩ L1(R), (1.16)

(φ0, ψ0) ∈ L2(R), (1.17)

and for some positive constant C1 independent of δ,

C−1
1 δ2 ≤ δ1 ≤ C1δ2, α2 − α1 ≤ C1δ

−1, as δ → 0+; (1.18)

(H3) v− and v+ are positive constants independent of δ.

With the above preparations in hand, we are now ready to state our main result.

Theorem 1.1 Under assumptions (H0)–(H3), we assume further that 0 ≤ κ < 1
2 , γ > 1

and

‖(φ0, ψ0)‖H1(R) ≤ C2δ
α, ‖φ0xx‖L2(R) ≤ C2(1 + δ−β) (1.19)

hold for some δ-independent positive constants C2, α and β. If the parameters ℓ, α and β are

assumed to satisfy






























(3γ + 5κ+ 5)ℓ < min{2, α},

min

{

α−
γ + 1

2
ℓ,

1

4

}

≤ ℓ(1 + κ) + β,

β + ℓ(1 + κ) <
4γ2 + 3γ(1 + 2κ) + (1 + 4κ)(1 − 2κ)

4γ2 + 2γ(1 + 4κ) + 2(1 + κ)(1 − 2κ)
min

{

α−
γ + 1

2
ℓ,

1

4

}

,

(1.20)
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then there exists a suitably small δ0 > 0 such that if 0 < δ ≤ δ0, the Cauchy problem (1.1)–(1.2)

has a unique solution (v, u) satisfying

(v(t, x) − V (t, x;α1, α2), u(t, x) − U(t, x;α1, α2)) ∈ C
(

[0,∞);H1(R)
)

,

v(t, x) − V (t, x;α1, α2) ∈ L2
(

0,∞;H1(R)
)

,

u(t, x) − U(t, x;α1, α2) ∈ L2
(

0,∞;H2(R)
)

and

C−1
3 δ

2
1−2κ−γ [min{α− γ+1

2
ℓ, 1

4}−(β+ℓ(1+κ))] ≤ v(t, x) ≤ C3δ
2

1−2κ [min{α− γ+1

2
ℓ, 1

4}−(β+ℓ(1+κ))] (1.21)

for some positive constant C3 independent of δ. Furthermore, it holds that

lim
t→∞

sup
x∈R

|(v, u)(t, x) − (V, U)(t, x;α1, α2)| = 0. (1.22)

Remark 1.2 It is easy to see that the set of the parameters α > 0, β > 0, ℓ ≥ 0 which

satisfy assumption (1.20) is not empty. In fact, since 0 ≤ κ < 1
2 implies that

4γ2 + 3γ(1 + 2κ) + (1 + 4κ)(1 − 2κ)

4γ2 + 2γ(1 + 4κ) + 2(1 + κ)(1 − 2κ)
> 1,

we can choose ℓ = 0, 0 < α ≤ 1
4 , and

α ≤ β <
4γ2 + 3γ(1 + 2κ) + (1 + 4κ)(1 − 2κ)

4γ2 + 2γ(1 + 4κ) + 2(1 + κ)(1 − 2κ)
α,

such that (1.20) holds.

Remark 1.3 If the parameter α, β, ℓ satisfy min {2α− (γ + 1)ℓ, 1/2} < 2(β + ℓ(1 +

κ)), then for δ > 0 sufficiently small, we can deduce from (1.21) that for each fixed t ≥

0, Osc v(t) := sup
x∈R

v(t, x) − inf
x∈R

v(t, x), the oscillation of v(t, x), can be large in our result.

We must point out, however, that the H1-norm of the initial perturbation together with the

strength of the viscous shock wave are assumed to be sufficiently small in our analysis. It

would be a very interesting problem to show that the viscous shock wave to the compressible

Navier-Stokes equations (1.1) is nonlinear stable under general large initial perturbation or even

the time-asymptotically nonlinear stable of large-amplitude viscous shock waves for a certain

class of large initial perturbation like this manuscript. Note that the nonlinear stability of

large-amplitude viscous shock waves to the compressible Navier-Stokes equations with constant

viscosity coefficients under small initial perturbations is treated in [19].

Before concluding this section, we outline the main idea used in this paper. For general

γ > 1, the argument employed in [8, 13] relies heavily on the smallness of both δi (i = 1, 2)

and the H2(R)-norm of the initial perturbation. One of the key points in such an argument is

that, based on the a priori assumption that the H2(R)-norm of the perturbation is sufficiently

small, one can deduce a uniform lower and upper positive bounds on the specific volume v(t, x).

With such a bound on v(t, x) in hand, one can thus deduce certain a priori H2(R) energy-type

estimates on the perturbations in terms of the initial perturbation (φ0, ψ0) provided that the

strengths of the viscous shock waves are suitably small. The combination of the above analysis

with the standard continuation argument yields the local stability of weak viscous shock waves

for the one-dimensional compressible Navier-Stokes equations with constant viscosity.
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As in [3, 11, 15] where the global stability of rarefaction waves for the one-dimensional

compressible Navier-Stokes equations with constant viscosity was investigated, the main diffi-

culty for deriving the global stability of viscous shock waves is to deduce the uniform lower and

upper bounds on the specific volume v under large initial perturbation. In this paper, we use

the smallness of the strengths of viscous shock waves and the H1(R)-norm of the initial pertur-

bation to control the possible growth of the solutions caused by the nonlinearity of the system

itself, and then to derive the desired uniform lower and upper bounds on the specific volume v.

It is worth pointing out that the argument developed by Kanel′ in [7] plays an essential role in

our analysis.

The layout of this paper is as follows. After listing some notations in the rest of this section,

we will state some properties of the viscous shock waves and reformulate the problem in Section

2, while Section 3 is devoted to the proof of Theorem 1.1.

Notations Throughout this paper, c and C are used to denote various generic positive

constants which are independent of δ, the strength of the viscous shock wave. We will use

A . B (B & A) if A ≤ CB for some positive constant C. The notation A ∼ B means that

both A . B and B . A. For function spaces, Lq(Ω) (1 ≤ q ≤ ∞) denotes the usual Lebesgue

space on Ω ⊂ R with norm ‖ · ‖Lq(Ω), while Hq(Ω) denotes the usual Sobolev space in the L2

sense with norm ‖·‖Hq(Ω). To simplify the presentation, we use ‖·‖ and ‖·‖q to denote ‖·‖L2(R)

and ‖·‖Hq(R), respectively. The notation (V, U)(t, x) will be used to denote (V, U)(t, x;α1, α2)

in the rest of this manuscript.

2 Preliminaries

We collect some basic properties of the viscous shock waves (Vi, Ui)(t, x) (i = 1, 2) and their

superposition (V, U)(t, x).

We first state the existence of the viscous shock waves (Vi(x − sit), Ui(x − sit)) (i = 1, 2)

together with their decay estimates as x− sit→ ±∞. By using the assumption (H3), a similar

proof used in [4] leads to the following lemma. We omit its proof here.

Lemma 2.1 Assume that assumptions (H0)–(H3) hold, then (1.1) admits a viscous shock

wave (V1, U1)(x − s2t) of the first family connecting (v−, u−) with (v̄, ū) with speed s1 and a

viscous shock wave (V2, U2)(x − s2t) of the second family connecting (v̄, ū) with (v+, u+) with

speed s2, and both of them are unique up to a shift. Moreover, there exist positive constants c

which depends only on v− and v+, such that, for i = 1, 2,

|(V1(ξ) − v̄, U1(ξ) − ū)| . δ1e
−cδ1|ξ|, ∀ ξ > 0,

|(V2(ξ) − v̄, U2(ξ) − ū)| . δ2e
−cδ2|ξ|, ∀ ξ < 0,

|V ′
1(ξ)| . |V1(ξ) − v−| |V1(ξ) − v̄| , ∀ ξ ∈ R,

|V ′
2(ξ)| . |V2(ξ) − v̄| |V2(ξ) − v+| , ∀ ξ ∈ R,

U ′
i(ξ) < 0, ∀ ξ ∈ R,

|(U ′
i(ξ), V

′′
i (ξ), U ′′

i (ξ))| . |V ′
i (ξ)| . δ2i e

−cδi|ξ|, ∀ ξ ∈ R.

(2.1)



40 ACTA MATHEMATICA SCIENTIA Vol.36 Ser.B

Note that (Vi, Ui)(x − sit + αi) (i = 1, 2) are exact solutions of the compressible Navier-

Stokes equation (1.1), while their superposition (V, U)(t, x) satisfies










Vt − Ux = 0,

Ut + p(V )x =

(

µ(V )
Ux

V

)

x

− gx,
t > 0, x ∈ R, (2.2)

where

g = µ(V )
Ux

V
− µ(V1)

U1x

V1
− µ (V2)

U2x

V2
− p(V ) + p(V1) + p(V2) − p(v̄). (2.3)

The following lemma is concerned with some estimates on g(t, x), which will play an im-

portant role in performing the energy estimates. It follows essentially from the argument in

[17]. Again, we omit its proof for brevity.

Lemma 2.2 Under assumption (1.18), we have
∫ ∞

0

‖g(t)‖dt . δ
1
2 ,

∫ ∞

0

(‖gx(t)‖ + ‖gxx(t)‖) dt . δ
3
2 . (2.4)

We define (φ, ψ)(t, x) by

(φ, ψ)(t, x) :=

∫ x

−∞

(v(t, y) − V (t, y;α1, α2), u(t, y) − U(t, y;α1, α2)) dy, (2.5)

and reformulate the original problem from (1.1) and (2.2) as


























φt − ψx = 0,

ψt + p(v) − p(V ) =

(

µ(v)
ux

v
− µ(V )

Ux

V

)

+ g,

(φ, ψ)|t=0 = (φ0, ψ0).

(2.6)

We then define the set of functions in which we find the solutions

Xm,M (0, T ) =



































(φ(t, x), ψ(t, x))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(φ(t, x), ψ(t, x)) ∈ C
(

[0, T ];H2(R)
)

,

φx(t, x) ∈ L2
(

0, T ;H1(R)
)

,

ψx(t, x) ∈ L2
(

0, T ;H2(R)
)

,

m ≤ V (t, x) + φx(t, x) ≤M



































,

and the local solvability of the Cauchy problem (2.6) in such a set can be stated as in the

following proposition.

Proposition 2.3 Let (φ0, ψ0) be in H2(R) satisfying ‖(φ0, ψ0)‖2 ≤M0 and assume that

m ≤ V (0, x)+φ0x(x) ≤M holds for each x ∈ R, then there exists t0 > 0 depending only on m,

M and M0 such that (2.6) has a unique solution (φ, ψ)(t, x) ∈ Xm/2,2M (0, t0) which satisfies

for each 0 ≤ t ≤ t0 that

‖ψ(t)‖ ≤ 2‖ψ0‖, ‖ψx(t)‖ ≤ 2‖ψ0x‖, ‖(φ, ψ)(t)‖2 ≤ 2M0. (2.7)

3 Proof of Theorem 1.1

In this section we first deduce some a priori estimates on the solution (φ, ψ) ∈ X1/m,M (0, T )

to the problem (2.6), and then prove Theorem 1.1 by using the continuation argument. We will
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use c and C to denote some generic positive constants independent of T , m, M and δ. Besides,

we will often use the notation (v, u) = (V + φx, U + ψx), though the unknown functions are φ

and ψ. Moreover, we denote here Nψ(T ) := sup[0,T ] ‖ψ(t)‖L∞ , or by Nψ for simplicity. Without

loss of generality, we can assume that m ≥ 1 and M ≥ 1.

Our first lemma is concerned with the basic energy estimate, which is stated in the following

lemma.

Lemma 3.1 Under the assumptions in Theorem 1.1, there exists a sufficiently small

positive constant δ1 independent of δ such that if 0 < δ ≤ δ1, then it holds for each 0 ≤ t ≤ T

that

‖(φ, ψ)(t)‖2 +

∫ t

0

∫

R

(

|Vt|ψ
2 + ψ2

x

)

dxdτ

. ‖(φ0, ψ0)‖
2 + δ

1
2 +

∫ t

0

∫

R

ψ2
xx

vκ+1
dxdτ + C1(m,M, δ,Nψ)

∫ t

0

‖φx(τ)‖
2dτ, (3.1)

where

C1(m,M, δ,Nψ) = Nψm
γ+2 +N2

ψM
2κmκ+1 +M2κm2(κ+1)δ2. (3.2)

Proof First, (2.6)2 (second equation of (2.6)) can be rewritten as

ψt + p′(V )φx − µ(V )
ψxx

V
+ (p(v) − p(V ) − p′(V )φx)

=

[

µ(v)

v
−
µ(V )

V

]

ψxx +

[

µ(v)

v
−
µ(V )

V

]

Ux + g. (3.3)

Multiply (2.6)1 by φ and (3.3) by −p′(V )−1ψ to find
[

1

2
φ2 −

ψ2

2p′(V )

]

t

−
p′′(V )Vtψ

2

2p′(V )2
−
µ(V )ψ2

x

V p′(V )
−

[

φψ −
µ(V )ψxψ

V p
′(V )

]

x

=

(

µ(V )

V p
′(V )

)′

Vxψψx + (p(v) − p(V ) − p′(V )φx)
ψ

p′(V )

−
ψ

p′(V )

[

µ(v)

v
−
µ(V )

V

]

ψxx −
ψ

p′(V )

[

µ(v)

v
−
µ(V )

V

]

Ux −
gψ

p′(V )
.

Since v− and v+ are independent of δ and δ is assumed to be sufficiently small, we can deduce

that V (t, x) can be bounded from both below and above by some positive constants independent

of δ. Integrating the above identity with respect to t and x over [0, t] × R yields

‖(φ, ψ) (t)‖
2
+

∫ t

0

∫

R

[

|Vt|ψ
2 + ψ2

x

]

. ‖(φ0, ψ0)‖
2
+

∫ t

0

∫

R

|Vxψψx|

︸ ︷︷ ︸

I1

+

∫ t

0

∫

R

|(p(v) − p(V ) − p′(V )φx)ψ|

︸ ︷︷ ︸

I2

+

∫ t

0

∫

R

∣

∣

∣

∣

[

µ(v)

v
−
µ(V )

V

]

ψψxx

∣

∣

∣

∣

︸ ︷︷ ︸

I3

+

∫ t

0

∫

R

∣

∣

∣

∣

[

µ(v)

v
−
µ(V )

V

]

ψUx

∣

∣

∣

∣

︸ ︷︷ ︸

I4

+

∫ t

0

∫

R

|ψg|

︸ ︷︷ ︸

I5

. (3.4)

Straightforward calculation leads to

|p(v) − p(V ) − p′(V )φx| . mγ+2φ2
x,

∣

∣

∣

∣

µ(v)

v
−
µ(V )

V

∣

∣

∣

∣

.
Mκ|φx|

vκ+1V κ+1
. (3.5)
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Noting that Cδ2 ≥ −Vt = −Ux > 0 and using Cauchy’s and Hölder’s inequalities, we derive

from (3.5) and (2.4) that for each ǫ > 0,

I1 ≤ ǫ

∫ t

0

∫

R

ψ2
xdxdτ + C(ǫ)

∫ t

0

∫

R

V 2
x ψ

2dxdτ,

I2 . Nψm
γ+2

∫ t

0

∫

R

φ2
xdxdτ,

I3 .

∫ t

0

∫

R

ψ2
xx

vκ+1
dxdτ +N2

ψM
2κmκ+1

∫ t

0

∫

R

φ2
xdxdτ,

I4 . ǫ

∫ t

0

∫

R

|Ux|ψ
2dxdτ +M2κδ2m2κ+2

∫ t

0

∫

R

ψ2
xdxdτ,

I5 .

∫ t

0

‖ψ(τ)‖ ‖g(τ)‖dτ . δ
1
2 +

∫ t

0

‖ψ(τ)‖
2
‖g(τ)‖dτ.

Estimate (3.1) can be proved by substituting the above estimates on Ij (j = 1, · · · , 5) into (3.4)

and employing the Gronwall inequality. This completes the proof of Lemma 3.1. �

Lemma 3.2 Under the assumptions in Theorem 1.1, if δ is suitably small, then it holds

for each 0 ≤ t ≤ T that
∥

∥

∥

(

φ, ψ, ψx,
√

Φ,M−
γ+1

2 φx

)

(t)
∥

∥

∥

2

+

∫ t

0

∫

R

[

ψ2
x +

ψ2
xx

vκ+1

]

dxdτ

.

∥

∥

∥

(

φ0, ψ0,
√

Φ0, ψ0x

)
∥

∥

∥

2

+ δ
1
2 + C2(m,M, δ,Nψ)

∫ t

0

‖φx(τ)‖
2dτ, (3.6)

where Φ0 = Φ|t=0, and

Φ = Φ(v, V ) = p(V )(v − V ) −

∫ v

V

p(η)dη, (3.7)

C2(m,M, δ,Nψ) = Nψm
γ+2 +N2

ψM
2κmκ+1 +M2κm2(κ+1)δ2 +mγ+2δ2 +M2κmκ+1δ4. (3.8)

Proof Multiplying ∂x(2.6)1 by p(V ) − p(v) and ∂x(2.6)2 by ψx, we obtain the following

identity
[

Φ +
1

2
ψ2
x

]

t

+ µ(v)
ψ2
xx

v
+

[

ψx

(

p(v) − p(V ) − µ(v)
ψxx

v
−

(

µ(v)

v
−
µ(V )

V

)

Ux

)]

x

= −

[

µ(v)

v
−
µ(V )

V

]

Uxψxx + ψxgx − Vt (p(v) − p(V ) − p′(V )φx) .

Integrating this last identity over [0, t] × R yields

∥

∥

∥

(√
Φ, ψx

)

(t)
∥

∥

∥

2

+

∫ t

0

∫

R

ψ2
xx

vκ+1
dxdτ

.

∥

∥

∥

(

√

Φ0, ψ0x

)
∥

∥

∥

2

+

∫ t

0

∫

R

∣

∣

∣

∣

[

µ(v)

v
−
µ(V )

V

]

Uxψxx

∣

∣

∣

∣

dxdτ

︸ ︷︷ ︸

I6

+

∫ t

0

∫

R

|ψx||gx|dxdτ

︸ ︷︷ ︸

I7

+

∫ t

0

∫

R

|Vt (p(v) − p(V ) − p′(V )φx) |dxdτ. (3.9)

Since

vκ+1 − V κ+1 = (κ+ 1)

∫ 1

0

(θv + (1 − θ)V )κ dθφx . Mκ|φx|,
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we apply Cauchy’s inequality to I6 to find

I6 =

∫ t

0

∫

R

∣

∣

∣

∣

∣

(

V κ+1 − vκ+1
)

vκ+1V κ+1
Uxψxx

∣

∣

∣

∣

∣

≤ ǫ

∫ t

0

∫

R

ψ2
xx

vκ+1
+ C(ǫ)M2κmκ+1δ4

∫ t

0

∫

R

φ2
x. (3.10)

If we apply Hölder’s inequality to I7 and use (2.4), we can deduce

I7 ≤

∫ t

0

‖gx(τ)‖‖ψx(τ)‖
2dτ +

∫ t

0

‖gx(τ)‖dτ .

∫ t

0

‖gx(τ)‖‖ψx(τ)‖
2dτ + δ

3
2 . (3.11)

Plugging (3.10), (3.11) and (3.5) into (3.9) and noting that

Φ(v, V ) = −φ2
x

∫ 1

0

∫ 1

0

θ1p
′((1 − θ2θ1)V + θ2θ1v)dθ1dθ2 & M−γ−1φ2

x, (3.12)

we have
∥

∥

∥

(√
Φ, ψx,M

−
γ+1

2 φx

)

(t)
∥

∥

∥

2

+

∫ t

0

∫

R

ψ2
xx

vκ+1
dxdτ

.

∥

∥

∥

(

√

Φ0, ψ0x

)
∥

∥

∥

2

+
[

mγ+2δ2 +M2κmκ+1δ4
]

∫ t

0

‖φx(τ)‖
2dτ + δ

3
2 ,

which combined with (3.1) gives (3.6). The proof of the lemma is completed. �

We next make the estimate on the last term of (3.6), which is stated in the following lemma.

Lemma 3.3 Under the assumptions in Theorem 1.1, a δ-independent positive constant

δ2 exists such that if

mγ+3κ+3M2(γ+κ+1)
(

Nψ + δ2
)

≤ δ2, (3.13)

then we have for each 0 ≤ t ≤ T that
∫ t

0

‖φx(τ)‖
2dτ . mκ+1M2γ+2

[

∥

∥

∥

(

φ0, ψ0,
√

Φ0, ψ0x

)∥

∥

∥

2

+ δ
1
2

]

(3.14)

and
∥

∥

∥

(

φ, ψ, ψx,
√

Φ,M−γ+1

2 φx

)

(t)
∥

∥

∥

2

+

∫ t

0

∫

R

[

ψ2
x +

ψ2
xx

vκ+1

]

dxdτ

.

∥

∥

∥

(

φ0, ψ0,
√

Φ0, ψ0x

)∥

∥

∥

2

+ δ
1
2 . (3.15)

Proof Multiplying (2.6)2 with φx implies

(φxψ)t + ψ2
x − (ψφt)x −

µ(v)ψxxφx
v

− gφx

= − (p(v) − p(V ))φx +

(

µ(v)

v
−
µ(V )

V

)

Uxφx

≥ −

∫ 1

0

p′(V + θφx)dθφ
2
x & M−γ−1φ2

x, (3.16)

where we have used the fact that
(

µ(v)

v
−
µ(V )

V

)

Uxφx = −
(κ+ 1)

∫ 1

0 (θv + (1 − θ)V )
κ

dθφ2
x

vκ+1V κ+1
Ux ≥ 0.

Integrating (3.16) over [0, t] × R, we have from Cauchy’s and Hölder’s inequalities that

M−γ−1

∫ t

0

‖φx(τ)‖
2dτ . ‖φx(t)‖‖ψ(t)‖ + ‖φ0x‖‖ψ0‖ +

∫ t

0

‖ψx(τ)‖
2dτ



44 ACTA MATHEMATICA SCIENTIA Vol.36 Ser.B

+mκ+1Mγ+1

∫ t

0

∫

R

ψ2
xx

v
dxdτ + sup

0≤τ≤t
‖φx(τ)‖

∫ t

0

‖g(τ)‖dτ,

which combined with (2.4) and (3.6) implies
∫ t

0

‖φx(τ)‖
2dτ . mκ+1M2γ+2

[

∥

∥

∥

(

φ0, ψ0,
√

Φ0, ψ0x

)∥

∥

∥

2

+ δ
1
2

]

+mγ+3κ+3M2(γ+κ+1)
(

Nψ + δ2
)

∫ t

0

‖φx(τ)‖
2dτ. (3.17)

Noting the simple fact that

C2(m,M, δ,Nψ)mκ+1M2γ+2
. mγ+3κ+3M2(γ+κ+1)

(

Nψ + δ2
)

,

we can prove (3.14)–(3.15) and complete the proof of the lemma. �

To deduce a lower bound and an upper bound on v(t, x), as in [12], we set ṽ := v/V and

make the estimate on ṽx in the following lemma.

Lemma 3.4 Under the assumptions in Theorem 1.1, if δ is suitably small such that (3.13)

holds, then it follows that
∥

∥

∥

∥

µ(v)
ṽx

ṽ
(t)

∥

∥

∥

∥

2

+

∫ t

0

∫

R

ṽ2
x

vγ+κ+2
dxdτ .

∥

∥

∥

∥

(

φ0, ψ0,
√

Φ0, φ0x, µ(v0)
ṽ0x

ṽ0

)
∥

∥

∥

∥

2

+ δ
1
2 . (3.18)

Proof Since
[

µ(v)
ux

v
− µ(V )

Ux

V

]

x

=

(

µ(v)
ṽx

ṽ

)

t

+

[

(µ(v) − µ(V ))
Vx

V

]

t

, (3.19)

we differentiate (2.6)2 and have
[

µ(v)
ṽx

ṽ
− ψx

]

t

− (p(v) − p(V ))x = −

[

(µ(v) − µ(V ))
Vx

V

]

t

− gx. (3.20)

Multiplying (3.20) with µ(v)ṽx/ṽ leads to
[

1

2

(

µ(v)
ṽx

ṽ

)2

− µ(v)
ṽx

ṽ
ψx

]

t

− µ(v)
ṽx

ṽ
(p(v) − p(V ))x

= −

(

µ(v)
ṽx

ṽ

)

t

ψx − µ(v)
ṽx

ṽ

[

(µ(v) − µ(V ))
Vx

V

]

t

− µ(v)
ṽx

ṽ
gx,

which combined with (3.19) and the identity

−µ(v)
ṽx

ṽ
(p(v) − p(V ))x = −

p′(v)µ(v)V 2

v
ṽ2
x − µ(v)

Vxṽx

v
(p′(v)v − p′(V )V )

implies
[

1

2

(

µ(v)
ṽx

ṽ

)2

− µ(v)
ṽx

ṽ
ψx

]

t

−
p′(v)µ(v)V 2

v
ṽ2
x − µ(v)

Vxṽx

v
(p′(v)v − p′(V )V )

= −

[

ψx

(

µ(v)
ux

v
− µ(V )

Ux

V

)]

x

+ µ(v)
ψ2
xx

v
+ ψxx

[

µ(v)

v
−
µ(V )

V

]

Ux

+

[

ψx − µ(v)
ṽx

ṽ

] [

(µ(v) − µ(V ))
Vx

V

]

t

− µ(v)
ṽx

ṽ
gx. (3.21)

For each ǫ > 0,

µ(v)
Vxṽx

v
(p′(v)v − p′(V )V ) ≤ ǫ

|p′(v)|µ(v)

v
ṽ2
x + C(ǫ)

V 2
x µ(v)

v|p′(v)|
|p′(v)v − p′(V )V |

2
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≤ ǫ
|p′(v)|µ(v)

v
ṽ2
x + C(ǫ)V 2

xM
γ−κm2γ+2φ2

x. (3.22)

Estimates (3.5) and (2.1) give

ψxx

[

µ(v)

v
−
µ(V )

V

]

Ux . |ψxxUx|
Mκ|φx|

vκ+1
.

ψ2
xx

vκ+1
+ δ4M2κmκ+1φ2

x. (3.23)

Apply (2.1) to infer
∣

∣

∣

∣

[

(µ(v) − µ(V ))
Vx

V

]

t

∣

∣

∣

∣

=

∣

∣

∣

∣

(µ(v) − µ(V ))

(

Ux

V

)

x

+ (µ′(v)ψxx + (µ′(v) − µ′(V ))Ux)
Vx

V

∣

∣

∣

∣

. δ2mκ+1|φx| + δ2
|ψxx|

vκ+1
+ δ4mκ+2|φx|. (3.24)

Then we apply Cauchy’s inequality and (3.24) to have
∣

∣

∣

∣

ψx

[

(µ(v) − µ(V ))
Vx

V

]

t

∣

∣

∣

∣

. ψ2
x + δ4

[

m2κ+4φ2
x +mκ+1 ψ

2
xx

vκ+1

]

(3.25)

and
∣

∣

∣

∣

µ(v)
ṽx

ṽ

[

(µ(v) − µ(V ))
Vx

V

]

t

∣

∣

∣

∣

. ǫ
|p′(v)|µ(v)

v
ṽ2
x + C(ǫ)Mγ−κδ4

[

m2κ+4φ2
x +mκ+1 ψ

2
xx

vκ+1

]

. (3.26)

Integrating (3.21) over [0, t]×R and using (3.22)–(3.26), (3.14)–(3.15), and (3.13), we can obtain

(3.18) by employing Gronwall’s inequality and (2.4). This completes the proof of the lemma.

�

The following lemma concerns the positive lower and upper bounds on v in terms of the

initial perturbation.

Lemma 3.5 Under the assumptions in Theorem 1.1, if we assume that (3.13) holds, then

we have for each (t, x) ∈ [0, T ]× R that

B
2

1−γ−2κ

0 . v(t, x) . B
2

1−2κ

0 (3.27)

with

B0 =
[∥

∥

∥

(

φ0, ψ0,
√

Φ0, ψ0x

)∥

∥

∥
+ δ

1
4

]

[∥

∥

∥

∥

(

φ0, ψ0,
√

Φ0, ψ0x, µ(v0)
ṽ0x

ṽ0

)∥

∥

∥

∥

+ δ
1
4

]

. (3.28)

Proof Rewrite Φ(v, V ) as

Φ(v, V ) = V −γ+1Φ̃ (ṽ) , Φ̃(ṽ) = ṽ − 1 +
1

γ − 1

(

ṽ−γ+1 − 1
)

,

and note that

Φ̃(z) ∼







z, z → +∞,

z−γ+1, z → 0+.

In order to apply Kanel′s method [7], we construct Ψ(ṽ) as

Ψ(ṽ) :=

∫ ṽ

1

√

Φ̃(z)
µ(z)

z
dz.
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From the constitutive relations (1.3), we have

Ψ(ṽ) ∼







ṽ
1
2
−κ ṽ → +∞,

ṽ
1−γ

2
−κ ṽ → 0+,

which implies that

|Ψ(ṽ)| & ṽ
1
2
−κ + ṽ

1−γ

2
−κ − C (3.29)

holds for some uniform constant C > 0.

On the other hand, we have

|Ψ(ṽ(t, x))| =

∣

∣

∣

∣

∫ x

−∞

∂Ψ(ṽ)

∂y
(t, y)dy

∣

∣

∣

∣

≤

∫

R

√

Φ̃(ṽ)

∣

∣

∣

∣

µ(ṽ)
ṽx

ṽ

∣

∣

∣

∣

(t, x)dx

≤

∥

∥

∥

∥

√

Φ̃(ṽ)(t)

∥

∥

∥

∥

∥

∥

∥

∥

µ(ṽ)
ṽx

ṽ
(t)

∥

∥

∥

∥

. (3.30)

Noting that min{v−, v̄, v+} ≤ V (t, x) ≤ max{v−, v̄, v+}, and v±, u± are assumed to be inde-

pendent of δ, we can easily deduce (3.27) from (3.29), (3.30), (3.15) and (3.18). This completes

the proof of the lemma. �

For the estimates for the second order derivatives of (φ, ψ). since

ṽx

ṽ
=
φxx

v
−
Vxφx

V v
, (3.31)

we have from Lemmas 3.3–3.5 that

‖φ(t)‖2
2 + ‖ψ(t)‖2

1 +

∫ t

0

‖(φx, ψx)(τ)‖
2
1dτ ≤ C (δ, ‖(φ0, ψ0)‖2) . (3.32)

As for the estimate on ‖ψxx(t)‖, we multiply ∂x(2.6)2 by ψxxx, integrate the resulting identity

over [0, t] × R, and use the Sobolev’s, Young’s and Gronwall’s inequalities to discover

‖ψxx(t)‖
2 +

∫ t

0

‖ψxxx(τ)‖
2dτ ≤ C (δ, ‖(φ0, ψ0)‖2) , (3.33)

which combined with (3.32) yields the following lemma.

Lemma 3.6 If δ is suitably small such that (3.13) holds, then we have for each 0 ≤ t ≤ T

that

‖(φ, ψ)(t)‖2
2 +

∫ t

0

(

‖φx(τ)‖
2
1 + ‖ψx(τ)‖

2
2

)

dτ ≤ C (δ, ‖(φ0, ψ0)‖2) . (3.34)

Proof of Theorem 1.1 Since Φ0(x) .
(

|V (0, x)|−γ−1 + |v(0, x)|−γ−1
)

φ2
0x, we get from

(2.1) and the assumptions (H0), (H3) that

∥

∥

∥

√

Φ0

∥

∥

∥
. (1 + δ−(γ+1)ℓ/2)‖φ0x‖,

∥

∥

∥

∥

µ(v0)
ṽ0x

ṽ0

∥

∥

∥

∥

. δ−ℓ(κ+1)(‖φ0xx‖ + δ2‖φ0x‖).

Hence, if (1.19)and (1.20) hold, then we have for 0 < δ < 1,
∥

∥

∥

(

φ0, ψ0,
√

Φ0, ψ0x

)
∥

∥

∥
+ δ

1
4 . δmin{α− γ+1

2
ℓ, 1

4},

∥

∥

∥

∥

(

φ0, ψ0,
√

Φ0, ψ0x, µ(v0)
ṽ0x

ṽ0

)∥

∥

∥

∥

+ δ
1
4 . δ−ℓ(κ+1)−β.



No.1 L. He et al: VISCOUS SHOCK WAVES FOR 1-D NAVIER-STOKES EQUATIONS 47

According to Proposition 2.3, there is a positive constant t1, which depends only on δ and

‖(φ0, ψ0)‖2, such that the Cauchy problem (2.6) admits a unique solution (φ(t, x), ψ(t, x)) ∈

Xm0,M0
(0, t1) with m0 = 2−1C−1

1 δℓ and M0 = 2C1(1 + δ−ℓ), which satisfies (2.7) for each

0 ≤ t ≤ t1. Hence we have from (1.19) and Sobolev’s inequality that

Nψ(t1) = sup
[0,t1]

‖ψ(t)‖L∞(R) ≤ sup
[0,t1]

‖ψ(t)‖
1
2 ‖ψx(t)‖

1
2 ≤ 2C2δ

α.

Consequently,

m
−γ−3κ−3
0 M

2(γ+κ+1)
0

(

Nψ(t1) + δ2
)

≤ Cδmin{α,2}−(3γ+5κ+5)ℓ.

Thus if (1.20)1 holds, we can choose a sufficiently small constant δ1 < 1 such that if 0 < δ ≤ δ1,

the assumptions imposed in Lemmas 3.1–3.6 hold with T = t1, m = m−1
0 and M = M0. Thus

we have from (3.27) that for each 0 ≤ t ≤ t1,

C−1
4 δ

2
1−γ−2κ [min{α− γ+1

2
ℓ, 1

4}−(β+ℓ(κ+1))] ≤ v(t, x) ≤ C4δ
2

1−2κ [min{α− γ+1

2
ℓ, 1

4}−(β+ℓ(κ+1))]. (3.35)

From (3.15), we can have for each 0 ≤ t ≤ t1 that

‖ψ(t)‖1 ≤ C5δ
min{α− γ+1

2
ℓ, 1

4}. (3.36)

Next if we take (φ(t1, x), ψ(t1, x)) as the initial data, we can deduce by employing Proposition

2.3 again that the unique local solution (φ(t, x), ψ(t, x)) constructed above can be extended to

the time internal [0, t1 + t2] and satisfies

‖ψ(t)‖L∞(R) ≤ ‖ψ(t)‖1 ≤ 2‖ψ(t1)‖1 ≤ 2C5δ
min{α− γ+1

2
ℓ, 1

4}

and

2−1C−1
4 δ

2
1−γ−2κ [min{α− γ+1

2
ℓ, 1

4}−(β+ℓ(κ+1))] ≤ v(t, x) ≤ 2C4δ
2

1−2κ [min{α− γ+1

2
ℓ, 1

4}−(β+ℓ(κ+1))]

for each t1 ≤ t ≤ t1 + t2. Thus,

Nψ(t1 + t2) ≤ max
{

Nψ(t1), 2C5δ
min{α− γ+1

2
ℓ, 1

4}
}

≤ C6δ
min{α− γ+1

2
ℓ, 1

4}.

Set

m1 = 2−1C−1
4 δ

2
1−γ−2κ [min{α− γ+1

2
ℓ, 1

4}−(β+ℓ(κ+1))],

M1 = 2C4δ
2

1−2κ [min{α− γ+1

2
ℓ, 1

4}−(β+ℓ(κ+1))].

Then one can easily deduce that if the parameters α > 0, β and ℓ satisfy (1.20)3, then there

exists a sufficiently small δ2 > 0 such that if 0 < δ ≤ δ2, the assumptions listed in Lemmas

3.1–3.6 are satisfied with T = t1 + t2, m = m−1
1 and M = M1. Consequently, (3.35), (3.36)

and (3.34) hold for each 0 ≤ t ≤ t1 + t2. If we take (φ(t1 + t2, x), ψ(t1 + t2, x)) as the initial

data and employ Proposition 2.3 again, we can then extend the above solution (φ(t, x), ψ(t, x))

to the time step t = t1 + 2t2. Repeating the above procedure, we thus extend (φ(t, x), ψ(t, x))

step by step to the unique global solution and (3.35), (3.36) and (3.34) hold for all t ≥ 0. The

proof of Theorem 1.1 is completed. �
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