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Asymptotic behavior for the one-dimensional
pth power Newtonian fluid in
unbounded domains

Ling Wan and Tao Wang*†

Communicated by M. Renardy

We consider the initial and initial-boundary value problems for a one-dimensional pth power Newtonian fluid in
unbounded domains with general large initial data. We show that the specific volume and the temperature are bounded
from below and above uniformly in time and space and that the global solution is asymptotically stable as the time tends
to infinity. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

The one-dimensional motion of a pth power Newtonian fluid can be described by the Navier–Stokes system for compressible flow in
Lagrangian coordinates: 8̂̂
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(1.1)

where t > 0 is the time variable, x 2 � � R is the Lagrangian space variable, and the primary dependent variables are the specific
volume v, fluid velocity u, and temperature � . The pressure P and the specific internal energy e are given by

P D �

vp
, e D cv� (1.2)

with the pressure exponent p � 1 and constant-specific heat cv > 0. The viscosity coefficient � and the heat conductivity � are
assumed to be positive constants.

The systems (1.1) and (1.2) are supplemented with the initial conditions

.v, u, �/jtD0 D .v0, u0, �0/ on�, (1.3)

and one type of the following far-field and boundary conditions:

lim
x!˙1

.v0.x/, u0.x/, �0.x// D .1, 0, 1/, if� D R; (1.4)

.u, �x/jxD0 D 0, lim
x!1

.v0.x/, u0.x/, �0.x// D .1, 0, 1/, if� D .0,1/; (1.5)
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.u, �/jxD0 D .0, 1/, lim
x!1

.v0.x/, u0.x/, �0.x// D .1, 0, 1/, if� D .0,1/. (1.6)

The aim of this article is to show the large-time behavior of solutions to the initial value problems (1.1)–(1.4) and the initial-boundary
value problems (1.1)–(1.3) and (1.5), and (1.1)–(1.3) and (1.6) for general large initial data.

Now let us first recall some previous results in this direction. Lewicka and Watson [1] showed exponential convergence of solutions
to equilibria for initial-boundary value problems involving fixed endpoints held at a fixed temperature or insulated. Qin and Huang [2]
proved the regularity and exponential stability of solutions in Hi.i D 2, 4/ for (1.1) and (1.2) in bounded domains. Recently, Cui and Yao
[3] established the large-time behavior of the global spherically or cylindrically symmetric solutions in H1 for the pth power Newtonian
fluid in multi-dimension.

We note that the papers [1–3] are all concerned with the asymptotic behavior of solutions for the pth power Newtonian fluid in
bounded domains. Thus, it is natural to investigate the large-time behavior of solutions to (1.1) and (1.2) in unbounded domains. Our
study is motivated by the previous works [4–6] on the large-time behavior of solutions for the ideal polytropic gases (1.1) and (1.2) with
p D 1.

Our first result is as follows.

Theorem 1
If the initial data .v0, u0, �0/ satisfy

.v0 � 1, u0, �0 � 1/ 2 H1.�/, inf
x2�

v0.x/ > 0, inf
x2�

�0.x/ > 0, (1.7)

and are compatible with (1.5) or (1.6) when � D .0,1/, then there exists a unique global solution .v, u, �/ with positive � to the
problems (1.1)–(1.4) or (1.1)–(1.3) and (1.5), or (1.1)–(1.3) and (1.6) such that for each T > 0,

.v � 1, u, � � 1/ 2 L1
�
0, T ; H1.�/

�
, vt 2 L1

�
0, T ; L2.�/

�
,

.ut , �t , vxt , uxx , �xx/ 2 L2
�
0, T ; L2.�/

�
.

(1.8)

Moreover, there exists a positive constant C0, depending only on k.v0 � 1, u0, �0 � 1/kH1.�/, infx2� v0.x/, and infx2� �0.x/, such that

C�1
0 � v.t, x/ � C0 for all .t, x/ 2 Œ0,1/ ��. (1.9)

By the same calculations as those in [6], we can prove Theorem 2.

Theorem 2
Let .v0, u0, �0/ satisfy (1.7) and be compatible with (1.5) or (1.6) when� D .0,1/, and let .v, u, �/ be the (unique) solution to (1.1)–(1.4)
or (1.1)–(1.3) and (1.5), or (1.1)–(1.3) and (1.6). Then there exists a positive constant C1, depending solely on k.v0 � 1, u0, �0 � 1/kH1.�/,
infx2� v0.x/ and infx2� �0.x/, such that

C�1
1 � �.t, x/ � C1 for all .t, x/ 2 Œ0,1/ ��, (1.10)

sup
0�t<1

k.v � 1, u, � � 1/.t/k2
H1.�/

C

Z 1
0

h
kvy.t/k

2
L2.�/

C k.ux , �x/.t/k
2
H1.�/

i
dt � C1, (1.11)

lim
t!1

�
k.v � 1, u, � � 1/.t/kLp.�/ C k.vx , ux , �x/.t/kL2.�/

�
D 0 (1.12)

for each p 2 .2,1�.

We omit the proof, because it is almost identical to that in [6] with the help of (1.9).

Remark 1.1
Theorems 1 and 2 generalize the results of [4–6] that are concerned with the large-time behavior of solutions for the case p D 1.
Theorem 2 also extends the results of [1] where the authors investigated systems (1.1) and (1.2) in bounded domains.

2. Proof of Theorem 1

This section is devoted to proving Theorem 1. We first deduce certain a priori estimates on the solutions .v.t, x/, u.t, x/, �.t, x// for
x 2 � and t 2 Œ0, T� with T being a positive fixed constant. Letter C will be employed to denote the generic positive constant, which is
independent of T and may vary from line to line. We will use A . B (B & A) if A � CB for some positive constant C. The notation A Ï B
means that A . B and B . A.

We begin with the fundamental entropy-type energy estimate for the general exponent p � 1.

Lemma 2.1
The following estimate holds:

sup
0�t�T

Z
�

�.v, u, �/dx C

Z T

0

Z
�

�
�u2

x

v�
C
��2

x

v�2

	
dxdt . 1, (2.1)
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where �.v, u, �/ D  .v/C 1
2 u2 C cv�.�/with �.z/ D z � ln z � 1 and

 .z/ D

(
�.z/, p D 1,

z � 1
p�1

�
1 � z1�p

�
� 1, p > 1.

(2.2)

Proof
We have from (1.1) that the temperature � satisfies

cv�t C
�ux

vp
D

�
��x

v

�
x

C
�u2

x

v
. (2.3)

By multiplying (1.1)1 by .1 � v�p/, (1.1)2 by u, and (2.3) by .1 � ��1/, we conclude

�.v, u, �/t C
�u2

x

v�
C
��2

x

v�2
D

�
�uux

v
C

�
1 �

1

�

�
��x

v
� u

�
�

vp
� 1

�	
x

.

We integrate this last identity over Œ0, T� �� to deduce (2.1) by recalling the far-field and boundary conditions (1.4)–(1.6).

If we follow the argument in [7, 8] and apply the Jensen inequality to convex functions � and , we can deduce the following lemma
from the estimate (2.1).

Lemma 2.2
For all integer i and t 2 Œ0, T�, there are ai.t/, bi.t/ 2 �i :D � \ Œi, iC 1� such that

Z
�i

v.t, x/dx � 1,

Z
�i

�.t, x/dx � 1, v.t, ai.t// � 1, �.t, bi.t// � 1. (2.4)

We next derive a representation of the specific volume v for the general case p � 1 in order to obtain a positive lower bound for v.

Lemma 2.3
For all .t, x/ 2 Œ0, T� ��, it holds that v.t, x/ & e�Ct .

Proof
Let x 2 �i for some fixed integer i. Because � is a positive constant, we integrate (1.1)2 over Œ0, t� � Œai.t/, x� to obtain

Z x

ai.t/
Œu.t, z/ � u0.z/�dzC

Z t

0

�
�.s, x/

vp.s, x/
�
�.s, ai.t//

vp.s, ai.t//

	
ds D

�

p
ln

vp.t, x/vp
0.ai.t//

vp
0.x/v

p.t, ai.t//
,

which yields

1

vp.t, x/
exp

�
p

�

Z t

0

�.s, x/

vp.s, x/
ds

�
D

1

Bi.t, x/Yi.t/
, (2.5)

where

Bi.t, x/ D
vp

0.x/v
p.t, ai.t//

vp
0.ai.t//

exp

�
p

�

Z x

ai.t/
.u.t, z/ � u0.z//dz

�
,

Yi.t/ D exp

�
�

p

�

Z t

0

�.s, ai.t//

vp.s, ai.t//
ds

�
.

Multiplying (2.5) by p
�
�.t, x/ gives

@

@t
exp

�
p

�

Z t

0

�.s, x/

vp.s, x/
ds

�
D

p

�

�.t, x/

Bi.t, x/Yi.t/
,

which when combined with (2.5) yields

v.t, x/ D

�
Bi.t, x/Yi.t/C

p

�

Z t

0

Bi.t, x/Yi.t/

Bi.s, x/Yi.s/
�.s, x/ds

	 1
p

. (2.6)

Because (2.1) implies ˇ̌̌
ˇ
Z x

ai.t/
.u.t, z/ � u0.z//dz

ˇ̌̌
ˇ �

Z
�i

�
u2.t, z/C u2

0.z/
�

dz . 1,

we have from (2.4) that
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Bi.t, x/ Ï 1. (2.7)

If we apply the Jensen inequality to the convex function zp .z > 0/ and use (2.4), we infer

Z
�i

vp.t, z/dz �

�Z
�i

v.t, z/dz

�p

& 1. (2.8)

Hence,

Y�1
i .t/ . Y�1

i .t/

Z
�i

vp.t, z/dz . 1C

Z t

0
Y�1

i .s/

Z
�i

�.s, z/dzds . 1C

Z t

0
Y�1

i .s/ds.

Apply the Gronwall inequality to derive Y�1
i .t/ . eCt . Combining this last inequality with (2.6) and (2.7) completes the proof of

this lemma.

Next, we extend the argument in [4, 5] and derive a local representation of v for p � 1 to obtain positive lower and upper bounds on
v.t, x/ independently of both t and x.

Lemma 2.4
For all .t, z/ 2 Œ0, T� ��, it holds that v.t, z/ � 1.

Proof
Let z 2 � be arbitrary but fixed. We divide the proof into three steps.

Step 1
Let ' 2 W1,1.R/ be defined by

'.x/ D

8̂<
:̂

1, x < Œz�C 1,

Œz�C 2 � x, Œz�C 1 � x < Œz�C 2,

0, x � Œz�C 2,

(2.9)

where Œx� denotes the largest integer that is less or equal to x.
Set y 2 I :D .Œz� � 1, Œz�C 1/ \�. Multiply (1.1)2 by ' and integrate the resulting identity over .y,1/ to find

�

Z 1
y

.'u/t.t, x/dx D
�

p
.ln vp/t .t, y/ �

�

vp
.t, y/C

Z Œz�C2

Œz�C1

�
P � �ux

v

�
.t, x/dx. (2.10)

We integrate (2.10) over Œ0, t� to deduce that

1

vp.t, y/
exp

�
p

�

Z t

0

�.s, y/

vp.s, y/
ds

�
D

1

B.t, y/Y.t/
(2.11)

with

B.t, y/ D vp
0.y/ exp

�
p

�

Z 1
y

.u0.x/ � u.t, x// '.x/dx

�
, (2.12)

Y.t/ D exp

 
p

�

Z t

0

Z Œz�C2

Œz�C1

��ux

v
� P

�
dxds

!
. (2.13)

Multiply (2.11) by p�.t, y/=� to obtain

exp

�
p

�

Z t

0

�.s, y/

vp.s, y/
ds

�
D 1C

p

�

Z t

0

�.s, y/

B.s, y/Y.s/
ds,

which when combined with (2.11) yields

v.t, y/ D

�
B.t, y/Y.t/C

p

�

Z t

0

B.t, y/Y.t/

B.s, y/Y.s/
�.s, y/ds

	 1
p

(2.14)

for y 2 I, where B and Y are given by (2.12) and (2.13).

Step 2
Because ˇ̌̌

ˇ
Z 1

y
.u0.x/ � u.t, x// '.x/dx

ˇ̌̌
ˇ . 1C

Z Œz�C2

y

�
u2.t, x/C u2

0.x/
�

dx . 1,
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we have

B.t, y/ � 1. (2.15)

Applying the Hölder and Young inequalities and the Jensen inequality to the convex function z�p .z > 0/, and utilizing (2.1) and (2.4),
we discover Z t

�

Z Œz�C2

Œz�C1

��ux

v
� P

�
� C.	/

Z t

�

Z Œz�C2

Œz�C1

u2
x

v�
C 	

Z t

�

Z Œz�C2

Œz�C1

�

v
�

Z t

�

Z Œz�C2

Œz�C1

�

vp

� C.	/C 	

Z t

�

Z Œz�C2

Œz�C1
� �

1

2

Z t

�

Z Œz�C2

Œz�C1

�

vp

� C.	/C C	.t � 
/ �
1

2

Z t

�

inf
.Œz�C1,Œz�C2/

�.�, s/

 Z Œz�C2

Œz�C1
v

!�p

ds

� C.	/C C	.t � 
/ � C�1

Z t

�

inf
.Œz�C1,Œz�C2/

�.�, s/ds

(2.16)

for all 0 < 	 � 	0 and some sufficiently small constant 	0 > 0. As shown in [4], the last term on the right-hand side of (2.16) can be
controlled as

�

Z t

�

inf
.Œz�C1,Œz�C2/

�.�, s/ds � C � C�1.t � 
/. (2.17)

Plugging (2.17) into (2.16) and taking 	 > 0 suitable small, we derive

Z t

�

Z Œz�C2

Œz�C1

��ux

v
� P

�
� C � C�1.t � 
/ (2.18)

for t � 
 � 0. Recalling the definition (2.13) of Y.t/, we have from (2.18) that

0 � Y.t/ � Ce�t=C ,
Y.t/

Y.s/
� Ce�.t�s/=C for all t � s � 0. (2.19)

Step 3
Inserting (2.15) and (2.19) into (2.14), we obtain

vp.t, y/ . 1C

Z t

0
e�.t�s/=C�.s, y/ds. (2.20)

In view of (2.4), we apply the Hölder inequality to obtain

ˇ̌̌
�

1
2 .t, y/ � �

1
2 .t, bŒz�.t//

ˇ̌̌
.
Z

I
��

1
2 j�xj.t, x/dx . sup

I
v

1
2 .t, �/

�Z
I

�2
x

v�2
dx

	 1
2

,

which along with (2.4) implies

1 � C sup
I

v.t, �/

Z
I

�2
x

v�2
dx . �.t, y/ . 1C sup

I
v.t, �/

Z
I

�2
x

v�2
dx for all y 2 I. (2.21)

Plug the second inequality in (2.21) into (2.20) to

sup
I

vp.t, �/ . 1C

Z t

0
sup

I
v.s, �/

Z
I

�2
x

v�2
.s, x/dxds.

In light of (2.1), we apply the Young and Gronwall inequalities to this last estimate to derive

sup
I

v.t, �/ . 1 for all t 2 Œ0, T�. (2.22)

It follows from (2.4), (2.8), (2.14), (2.15), and (2.19) that

1 .
Z

I
vp.t, y/dy .

Z
I

Y.t/dy C

Z t

0

Y.t/

Y.s/

Z
I
�.s, y/dyds . e�t=C C

Z t

0

Y.t/

Y.s/
ds.

Consequently, we have
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Z t

0

Y.t/

Y.s/
ds & 1 � Ce�t=C . (2.23)

Then we have from (2.1), (2.14), and (2.19)–(2.23) that

vp.t, y/ &
Z t

0

Y.t/

Y.s/

�
1 � C

Z
I

�2
x

v�2
dx

�
ds

& 1 � C1e�t=C2 � C

 Z t=2

0
C

Z t

t=2

!
Y.t/

Y.s/

Z
I

�2
x

v�2
dxds

& 1 � C1e�t=C2 � C

Z t=2

0
e�.t�s/=C

Z
I

�2
x

v�2
dxds � C

Z t

t=2

Z
I

�2
x

v�2
dxds

& 1 � C1e�t=C2 � Ce�t=.2C/ � C

Z t

t=2

Z
I

�2
x

v�2
dxds

& 1 for all y 2 I, t � T0,

(2.24)

where T0 is a positive constant independent of t. In particular, the estimate (2.24) gives us

v.t, z/ & 1 for all z 2 �, t � T0. (2.25)

Therefore, we can complete the proof of this lemma by combining (2.22), (2.25), and Lemma 2.3.

We have thus proved that v.x, t/ is bounded from below and above independently of both t and x. From this point on, all the remain-
ing arguments that are needed to deduce a priori estimates are standard, which have been discussed in [8, 9]. Theorem 1 then follows
from the standard continuation argument.
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