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Abstract. We establish an initial-boundary value problem for the compressible magnetohydrodynamic equations in one space
dimension with large initial data when the heat conductivity is some positive power of the temperature. We prove that
as the shear viscosity vanishes, global weak solutions convergence to a solution of the original equations with zero shear
viscosity.
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1. Introduction

Magnetohydrodynamics (MHD) is concerned with the study of the dynamics of electrically conducting
fluids. The applications of magnetohydrodynamics cover a very wide range of physical objects, from
cosmic plasmas to liquid metals. The plane magnetohydrodynamic flows are described by the following
equations (see, e.g., [12,13]):

ρt + (ρu)x = 0, (1.1)

(ρu)t + (ρu2 + P )x = (λux)x, (1.2)

(ρw)t + (ρuw − b1b)x = (μwx)x, (1.3)

bt + (ub − b1w)x = (νbx)x, (1.4)

Et + (u(E + P ) − b1b · w)x = (λuux + μw · wx + νb · bx + κθx)x, (1.5)

where t > 0 is the time variable, x ∈ Ω = (0, 1) is the spatial variable, and the primary dependent variables
are the density ρ, the longitudinal velocity u ∈ R, the transverse velocity w ∈ R

2, the transverse magnetic
field b ∈ R

2 and the temperature θ. The full pressure P = p+ 1
2 |b|2 with p = p(ρ, θ) being the pressure of

the fluid; the longitudinal magnetic field b1 is a constant; the total energy E = ρ
(
e + 1

2u2 + 1
2 |w|2)+ 1

2 |b|2
with e = e(ρ, θ) being the specific internal energy. The bulk viscosity λ, the shear viscosity μ, the magnetic
diffusivity ν and the heat conductivity κ may depend on ρ and θ generally.

In this article, we focus on the ideal, polytropic gas with the following constitutive relations:

p = Rρθ, e = cvθ, (1.6)

where R is the gas constant and cv is the specific heat at constant volume. For boundary conditions, we
take

(u,w, b, θx) |∂Ω = 0, (1.7)
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while the initial conditions are given by

(ρ, u,w, b, θ) |t=0 = (ρ0, u0,w0, b0, θ0). (1.8)

Here the initial data (1.8) are assumed to satisfy certain compatibility conditions as usual.
We assume that the coefficients λ, μ and ν are positive constants and the heat conductivity κ is given

by
κ = θα (1.9)

for some positive constant α. This choice of degenerate heat conductivity is motivated by the kinetic
theory of gases, cf., for instance, [1,22].

The aim of this article is to show the convergence of weak solutions to the initial-boundary value
problem (1.1)–(1.8) in the domain QT := (0, T ) × Ω with the initial data satisfying

ρ−1
0 , ρ0 ∈ L∞(Ω), u0,w0, b0 ∈ L2(Ω), θ0 ∈ L1(Ω), inf

Ω
θ0 > 0 (1.10)

under the assumption (1.9) as the shear viscosity μ tends to zero.
We first recall some previous results related. For small initial data, the existence of global smooth

solutions was proved in [10] and the large-time behavior of solutions was investigated in [14,15]. For large
initial data, Chen and Wang [3] showed the existence, uniqueness and Lipschitz continuous dependence
of global strong solutions to the initial-boundary value problem (1.1)–(1.8) with the coefficients λ, μ and
ν being positive constants and the heat conductivity κ satisfying

C−1(1 + θr) ≤ κ ≡ κ(θ) ≤ C(1 + θr) (1.11)

for some positive constants C and r ≥ 2. Similar results are obtained in [2,20] when the pressure and
internal energy have certain nonlinear dependence on temperature. Fan et al. [4] established the global
existence and uniqueness of strong solutions with vacuum under the assumption (1.11) with r > 0,
while Hu and Ju [8] proved the existence and uniqueness of global strong non-vacuum solutions with the
heat conductivity κ satisfying (1.9) for some α > 0. Very recently, Qin–Yang–Yao–Zhou in [16] study
the thickness of the boundary layer for the planar MHD system with the same assumption on the heat
conductivity. We also note that it is still an open problem to obtain the global strong or smooth solutions
of the problem (1.1)–(1.8) with large initial data and constant heat conductivity, while it is a well-known
result for the one-dimensional compressible Navier–Stokes equations (see [11]).

The vanishing shear viscosity limit of the weak solutions to the problem (1.1)–(1.8) was investigated
by Fan et al. [5] under a restrictive assumption on the heat conductivity: κ ≡ κ(ρ) ≥ C/ρ or κ satisfies
(1.11) with r ≥ 1. When (b1, b) ≡ 0, the system (1.1)–(1.5) reduces to the compressible Navier–Stokes
equations. In this case, Shelukhin [18] showed the zero shear viscosity limit of global strong solutions for
the flow with constant heat conductivity between two parallel plates. See [19] for the extension to a free
boundary problem of describing a joint motion of two compressible fluids with different viscosity. In the
case of cylindric symmetry, the vanishing shear viscosity of global strong solutions was proved in [5,6,21]
for isentropic flows and in [7,9,17] for non-isentropic flows.

We are now in a position to state our main result.

Theorem 1. If the initial data and the heat conductivity κ satisfy (1.10) and (1.9) for some positive con-
stant α, then the initial-boundary value problem (1.1)–(1.8) admits at least one weak solution (ρ, u,w, b, θ)
satisfying for each 0 ≤ β ≤ 1 and 0 < r < α+3

2 ,

C−1 ≤ ρ ≤ C, θ ≥ C−1,

T∫

0

∫

Ω

[
βκ(θ)θ2

x

θ1+β
+

u2
x + μ|wx|2 + |bx|2

θβ

]
dxdt ≤ C,

‖θ‖L2r(QT ) + ‖θx‖Lr(QT ) ≤ C,

(1.12)
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where the positive constant C is independent of μ. Moreover, there exist functions ρ̄, ū, b̄, w̄, θ̄ solving
(1.1)–(1.8) with μ = 0 in the sense of distributions, such that, as the shear viscosity μ tends to zero,

ρ → ρ̄ strongly in Lq(QT ) and weakly star in L∞(QT ) for each q ∈ [1,∞),
(u, b) → (ū, b̄) strongly in L2(0, T ;H1

0 (Ω)),
w → w̄ strongly in L2(QT ),
θ → θ̄ strongly in Lm(QT ) for each m ∈ [1, 3),
θx → θ̄x weakly in Ln(QT ) for each n < 3/2.

Remark 1.1. We note that the proofs in Section 2 for Theorem 1 can be applied to the case when the
heat conductivity κ satisfies (1.11) for some r > 0. Hence, we generalize the earlier results of [5] where
the authors considered the case when the heat conductivity κ satisfies (1.11) for some r ≥ 1.

Since this article concerns the more general heat conductivity κ given in (1.9), the approach in [5]
cannot be applied. To overcome this difficulty, we first obtain a uniform upper bound on the density
from the standard energy estimates and then a uniform lower bound of the temperature by applying the
comparison theorem to the equation for the temperature. With the upper bound for the density and the
lower bound for the temperature in hand, we prove a higher-order integrability of the temperature as
in (2.21) and the dissipative effect of the heat conductivity as in (2.17) and (2.18). Then, the proof of
Theorem 1 can be completed in standard argument.

2. Proof of Theorem 1

This section is devoted to obtaining some a priori estimates of the solution (ρ, u,w, b, θ) to the problem
(1.1)–(1.8) defined on QT . We will show that the a priori bounds are independent of the shear viscosity
μ, which are essential to justify the vanishing shear viscosity limit.

To simplify the presentation, we denote C the various positive constant which is independent of μ. We
will use A � B (or B � A) if A ≤ CB for some positive constant C. And ‖ · ‖Lq stands for the standard
norm of the Lebesgue space Lq(Ω).

Firstly, we prove the basic a priori estimates of conservation of mass and energy along with the
dissipation rate related to heat conductivity.

Lemma 2.1. It holds for each t ∈ [0, T ] that
∫

Ω

ρ(t, x)dx =
∫

Ω

ρ0(x)dx > 0, (2.1)

∫

Ω

E(t, x)dx =
∫

Ω

E(0, x)dx, (2.2)

t∫

0

∫

Ω

[
κ(θ)θ2

x

θ2
+

u2
x + μ|wx|2 + |bx|2

θ

]
dxdt � 1. (2.3)

Proof. Integrating (1.1) and (1.5) over (0, t) × Ω yields the estimates (2.1) and (2.2).
We define s := cv ln θ − R ln ρ and compute

(ρs)t + (ρus)x −
(

κθx

θ

)

x

=
κ(θ)θ2

x

θ2
+

λu2
x + μ|wx|2 + ν|bx|2

θ
.

Integrating this last identity over (0, t) × Ω, we deduce
∫

Ω

[Rρ ln ρ − cvρ ln θ] dx +

t∫

0

∫

Ω

[
κ(θ)θ2

x

θ2
+

λu2
x + μ|wx|2 + ν|bx|2

θ

]
dxdt � 1,
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which combined with (2.1) and (2.2) gives

∫

Ω

[
Rρφ

(
1
ρ

)
+ cvρφ(θ)

]
dx +

t∫

0

∫

Ω

[
κ(θ)θ2

x

θ2
+

λu2
x + μ|wx|2 + ν|bx|2

θ

]
dxdt � 1,

where φ(z) := z − ln z − 1 ≥ 0 for z > 0. The estimate (2.3) then follows. �

The following lemma gives us the uniform upper bound of the density ρ, which can be proved as in
[5]. We omit its proof for brevity.

Lemma 2.2. It holds for each (t, x) ∈ [0, T ] × Ω that

ρ(t, x) � 1. (2.4)

The next lemma is devoted to obtaining the lower bound of the temperature θ.

Lemma 2.3. For each (t, x) ∈ [0, T ] × Ω, it holds that

θ(t, x) � 1. (2.5)

Proof. It follows from (1.5) that the temperature θ satisfies

cvρ(θt + uθx) + pux = (κθx)x + λu2
x + μ|wx|2 + ν|bx|2, (2.6)

which implies

θt + uθx − 1
cvρ

(κθx)x ≥ λu2
x

cvρ
− pux

cvρ

≥ λ

cvρ

(
ux − p

2λ

)2

− R2ρθ2

4λcv
.

By Lemma 2.2, we have

θt + uθx − 1
cvρ

(κθx)x + C1θ
2 ≥ 0,

where C1 is a positive constant independent of μ. If we set θ := minΩ θ0
C2t+1 with C2 = C1 minΩ θ0, and

Θ := θ − θ, then we derive

Θt + uΘx − 1
cvρ

(κΘx)x + C1(θ + θ)Θ

= θt + C2
minΩ θ0

(C2t + 1)2
+ uθx − 1

cvρ
(κθx)x + C1θ

2 − C1θ
2

≥ C2
minΩ θ0

(C2t + 1)2
− C1θ

2 ≥ 0,

and
Θx|∂Ω = 0, Θ|t=0 ≥ 0.

It follows from the comparison theorem and Lemma 2.2 that Θ ≥ 0 on QT . This completes the proof of
the lemma. �

Lemma 2.4. Assume that (1.9) holds for some α > 0 and assume 0 ≤ β ≤ 1. Then

T∫

0

∫

Ω

[
βκ(θ)θ2

x

θ1+β
+

u2
x + μ|wx|2 + |bx|2

θβ

]
dxdt +

T∫

0

‖θ(t)‖1−β
L∞ dt � 1. (2.7)
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Proof. By the estimate (2.3), it suffices to prove the case of 0 ≤ β < 1.
Let 0 ≤ β < 1 and multiply (2.6) by θ−β to find

[
κθx

θ1+β

]

x

+
βκ(θ)θ2

x

θ1+β
+

λu2
x + μ|wx|2 + ν|bx|2

θβ
=

[
cvρθ1−β

1 − β

]

t

+
[
cvρuθ1−β

1 − β

]

x

+ Rρθ1−βux.

Integrating this last identity over [0, T ] × Ω, we have
T∫

0

∫

Ω

[
βκ(θ)θ2

x

θ1+β
+

u2
x + μ|wx|2 + |bx|2

θβ

]
dxdt � 1 +

∫

Ω

ρθ1−βdx +

∣
∣
∣
∣
∣
∣

T∫

0

∫

Ω

ρθ1−βuxdxdt

∣
∣
∣
∣
∣
∣
. (2.8)

By Young’s inequality and the estimates (2.1)–(2.2), we have
∫

Ω

ρθ1−βdx �
∫

Ω

ρ(1 + θ)dx � 1. (2.9)

Apply Cauchy’s inequality and utilize (2.2) and (2.4) to deduce
∣
∣
∣
∣
∣
∣

T∫

0

∫

Ω

ρθ1−βuxdxdt

∣
∣
∣
∣
∣
∣

≤ ε

T∫

0

∫

Ω

θ−β |ux|2dxdt + C(ε)

T∫

0

∫

Ω

ρ2θ2−βdxdt

≤ ε

T∫

0

∫

Ω

θ−β |ux|2dxdt + C(ε)

T∫

0

‖θ(t)‖1−β
L∞ dt.

(2.10)

Plugging (2.9) and (2.10) into (2.8), and taking ε suitable small, we have for 0 ≤ β < 1 that
T∫

0

∫

Ω

[
βκ(θ)θ2

x

θ1+β
+

u2
x + μ|wx|2 + |bx|2

θβ

]
dxdt � 1 +

T∫

0

‖θ(t)‖1−β
L∞ dt. (2.11)

Since

θ1−β(t, x) −

∫

Ω

ρθ1−βdx

∫

Ω

ρdx
�

∣
∣
∣
∣
∣
∣

∫

Ω

θ−βθxdx

∣
∣
∣
∣
∣
∣
, (2.12)

we infer for 0 < β < 1 that

‖θ(t)‖1−β
L∞ � 1 + ε

∫

Ω

βκ(θ)θ2
x

θ1+β
dx + C(ε)

∫

Ω

θ1−β−αdx

� 1 + ε

∫

Ω

βκ(θ)θ2
x

θ1+β
dx + C(ε)

∥
∥θ1−β−α(t)

∥
∥

L∞ .

Applying Young’s inequality and Lemma 2.3, we have

‖θ(t)‖1−β
L∞ � C(ε) + ε

∫

Ω

βκ(θ)θ2
x

θ1+β
dx. (2.13)

If we plug (2.13) into (2.11) and take ε suitable small, then we obtain (2.7) for 0 < β < 1.
For β = 0, we choose 0 < γ < min{1, α} and deduce from (2.12) that

‖θ(t)‖L∞ � 1 +
∫

Ω

γκ(θ)θ2
x

θ1+γ
dx +

∥
∥θ1+γ−α(t)

∥
∥

L∞ ,
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which implies from Young’s inequality and Lemma 2.3 that

‖θ(t)‖L∞ � 1 +
∫

Ω

γκ(θ)θ2
x

θ1+γ
dx.

We have proved (2.7) for each 0 < β < 1 and hence
T∫

0

‖θ(t)‖L∞dt � 1. (2.14)

Plugging (2.14) into (2.11) yields (2.7) with β = 0. This completes the proof of the lemma. �

The following lemma concerns the uniform lower bound of the density.

Lemma 2.5. Under the assumptions of Theorem 1, we have for each (t, x) ∈ [0, T ] × Ω that

ρ(t, x) � 1. (2.15)

Proof. First it follows from (1.7), Lemma 2.1 and Hölder’s inequality that

|b|2 = 2

x∫

0

b · bx

≤ 2
∥
∥
∥
√

θ
∥
∥
∥

L∞
‖b‖L2

∥
∥
∥
∥
bx√

θ

∥
∥
∥
∥

L∞

�
∥
∥
∥
√

θ
∥
∥
∥

L∞

∥
∥
∥
∥
bx√

θ

∥
∥
∥
∥

L∞
.

Using (2.3) and (2.7), we have
T∫

0

‖b(t)‖2
L∞ dt �

T∫

0

∫

Ω

|bx|2
θ

dxdt +

T∫

0

‖θ(t)‖L∞dt � 1. (2.16)

We set G = exp (−ψ/λ) with ψ defined by

ψ(t, x) :=

t∫

0

[
λux − ρu2 − p − 1

2
|b|2

]
ds +

x∫

0

ρ0u0dy.

It is easily shown that G is positive and bounded by using Lemma 2.2 in [5]. The elementary calculation
gives

Dt

(
G

ρ

)
:=(∂t + u∂x)

(
G

ρ

)

=
G

ρ
(∂t + u∂x)

(
−ψ

λ

)
− G

ρ2
(∂t + u∂x)ρ

=
G

λρ
(−ψt − uψx − λux)

=
G

λρ

(
p +

1
2
|b|2

)
,

which implies

Dt

(
G

ρ

)
≤ G

ρ

|b|2
2λ

+ C‖θ‖L∞ ,
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or equivalently,
∥
∥
∥
∥

1
ρ

∥
∥
∥
∥

L∞
� 1 +

t∫

0

‖θ(s)‖L∞ds +

t∫

0

∥
∥
∥
∥

1
ρ

∥
∥
∥
∥

L∞
‖b‖2

L∞ds.

Applying Gronwall’s inequality, (2.7) and (2.16), we have
∥
∥
∥
∥

1
ρ

∥
∥
∥
∥

L∞
� 1.

The proof of the lemma is then completed. �

Lemma 2.6. Under the assumptions of Theorem 1, we have

‖θ‖L2r(QT ) � 1, ∀ 0 < r <
α + 3

2
, (2.17)

‖θx‖Lr(QT ) � 1, ∀ 0 < r <
α + 3

2
, (2.18)

‖κ(θ)θx‖Lr(QT ) � 1, ∀ 1 ≤ r <
α + 3
α + 2

. (2.19)

Proof. 1. We have from (2.2) and (2.15) that
∫

Ω

θ(t, x)dx � 1, (2.20)

which enables us to find a(t) ∈ Ω such that θ(t, a(t)) � 1. If 0 < β ≤ 1, then we have

θ
2+α−β

2 (t, x) ≤ θ
2+α−β

2 (t, a(t)) +
∫

Ω

θ
α−β

2 |θx|dx

� 1 +
∫

Ω

θ
α−β

2 |θx|dx,

which combined with (2.7) and (2.20) implies

T∫

0

‖θ(t)‖2+α−β
L∞ dt � 1 +

T∫

0

∫

Ω

βθαθ2
x

θ1+β
dx

∫

Ω

θdxdt

� 1 +

T∫

0

∫

Ω

βθαθ2
x

θ1+β
dxdt � 1.

(2.21)

The combination of (2.20) and (2.21) implies

T∫

0

∫

Ω

θ3+α−βdxdt � 1 (2.22)

for all 0 < β ≤ 1. Then (2.17) follows.



3306 T. Wang ZAMP

2. If 0 < r < α+3
2 , then there exists β ∈ (0, 1) such that r ≤ 3+α−β

2 . Applying Young’s inequality, we
have from (2.7), (2.22) and (2.5) that

T∫

0

∫

Ω

θr
xdxdt ≤

T∫

0

∫

Ω

θαθ2
x

θ1+β
dxdt +

T∫

0

∫

Ω

θ
r(1+β−α)

2−r dxdt

� 1 +

T∫

0

∫

Ω

θ3+α−βdxdt � 1.

We obtain (2.18).
3. If 1 ≤ r < α+3

α+2 , then there exist r1, r2 ≥ 1 such that

1
r1

+
1
r2

=
1
r
, αr1 < 3 + α, r2 <

3 + α

2
.

Applying Hölder’s inequality, we have from (2.17)–(2.18) that

‖κ(θ)θx‖Lr(QT ) ≤ ‖κ(θ)‖Lr1 (QT )‖θx‖Lr2 (QT ) � 1.

This completes the proof of the lemma. �

With Lemmas 2.1–2.6 in hand, we can apply the Poincaré inequality, the Sobolev imbedding theorem,
and (2.16), (2.21) to the equations (1.2)–(1.5) in order to get the a priori estimates on the time derivatives
of the solution (ρ, u,w, b, θ), which are stated in the following lemma.

Lemma 2.7. Under the assumptions of Theorem 1, we have

‖ρt‖L∞(0,T ;H−1(Ω)) + ‖((ρu)t, (ρw)t, bt)‖L2(0,T ;H−1(Ω)) � 1, (2.23)

‖(ρθ)t‖L1(0,T ;W −1,r(Ω)) � 1, ∀ 1 ≤ r <
3 + α

2 + α
. (2.24)

In order to prove the existence of global weak solutions to (1.1)–(1.8) with the heat conductivity κ
satisfying (1.9) for some β > 0, we first mollify the initial data, such that the global strong solution exists
by [8], and then take the limit to obtain the global weak solution. With the above a priori estimates on
(ρ, u,w, b, θ) given in Lemmas 2.1–2.7, following the argument in [5], we can justify the passage of the
vanishing viscosity. This completes the proof of Theorem 1.
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