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This paper is concerned with nonlinear stability of strong planar
rarefaction waves for the Jin–Xin relaxation approximation of scalar
conservation laws in several dimensions. For such a problem, local
stability of weak or strong planar rarefaction waves have been
obtained in Luo (1997) [20] and Zhao (2000) [43] respectively.
For the global stability results, to the best of our knowledge,
the only result available now is on the one-dimensional case,
cf. Zhao (2000) [43], which is based on the maximum principle
established in Natalini (1996) [30]. The main purpose of this
paper is try to deduce some nonlinear stability results with large
initial perturbation. Our analysis is based on the elementary energy
method and the continuation argument.
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1. Introduction

Systems of hyperbolic conservation laws in several space dimensions take the form

ut +
N∑

j=1

F j(u)x j = 0, u ∈ Rn, (t,x) = (t, x1, . . . , xN ) ∈ R+ × RN . (1.1)

To approximate this system from numerical point of view, S. Jin and Z.-P. Xin [14] proposed the
following relaxation system⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut +
N∑

j=1

v jx j = 0, u ∈ Rn, v j ∈ Rn,

v jt + A jux j = −v j − F j(u)

ε
, j = 1,2, . . . , N,

(1.2)

where A j = a jI with I being the n × n identity matrix, a j > 0 ( j = 1,2, . . . , N) and ε are some pos-
itive constants. A numerical scheme to solve (1.2) is also designed in [14] which yields satisfactory
numerical solutions to hyperbolic conservation laws (1.1). The main features of this scheme are its
generality and simplicity.

For scalar conservation laws in two dimensions

ut + f (u)x + g(u)y = 0, u ∈ R, (1.3)

its Jin–Xin relaxation approximation becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut + v1x + v2y = 0,

v1t + a1ux = − v1 − f (u)

ε
, u, v1, v2 ∈ R,

v2t + a2u y = − v2 − g(u)

ε
.

(1.4)

Here a1 and a2 are two positive constants satisfying the following sub-characteristic condition

sup
u∈M

{ | f ′(u)|2
a1

+ |g′(u)|2
a2

}
< 1, (1.5)

where M⊂ R is the state space whose precise definition will be specified later.
This paper is concerned with time-asymptotic behavior of global solutions to the Cauchy prob-

lem (1.4) with prescribed initial data⎧⎨⎩
u(0, x, y) = u0(x, y),

v1(0, x, y) = v10(x, y),

v2(0, x, y) = v20(x, y),

(1.6)

which satisfy ⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim

x→±∞
∥∥u0(x, y) − u±∥∥

L∞(Ry)
= 0,

lim
x→±∞

∥∥v10(x, y) − f
(
u±)∥∥

L∞(Ry)
= 0,

lim
∥∥v20(x, y) − g

(
u±)∥∥

L∞(Ry)
= 0.

(1.7)
x→±∞
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Here u− and u+ are two constants satisfying u− < u+ . Since our main concern is on the asymptotics
of the global solutions (u(t, x, y), v1(t, x, y), v2(t, x, y)) to the Cauchy problem (1.4), (1.6), we can
assume without loss of generality that ε = 1 in the rest of this manuscript.

The flux functions f (u) and g(u) are assumed to be sufficiently smooth and the scalar conservation
laws (1.3) is assumed to be genuinely nonlinear in the x-direction, i.e.

f ′′(u) > 0, ∀u ∈ M. (1.8)

For such a flux function f (u) and the two constant states u− and u+ given above, a pla-
nar rarefaction wave is the unique global entropy solution r(t, x) of the following Riemann prob-
lem ⎧⎨⎩

rt + f (r)x = 0,

r(0, x) = rR
0 (x) =

{
u−, x < 0,

u+, x > 0.

(1.9)

It is well known that r(t, x) can be given explicitly by

r(t, x) =

⎧⎪⎨⎪⎩
u−, x

t < f ′(u−),

( f ′)−1( x
t ), f ′(u−) � x

t � f ′(u+),

u+, x
t > f ′(u+).

(1.10)

Our main purpose in this paper is to discuss the global solvability of Cauchy problem (1.4), (1.6)
and to use the functions (r(t, x), f (r(t, x)), g(r(t, x))) to describe the large time behavior of such a
global solution (u(t, x, y), v1(t, x, y), v2(t, x, y)). That is, we will discuss the nonlinear stability of the
planar rarefaction wave r(t, x) for the Jin–Xin relaxation approximation of scalar conservation laws in
two dimensions.

Such a problem was originally considered by T.-P. Liu in [18] in the one-dimensional case, yet
for the general 2 × 2 hyperbolic systems of conservation laws with relaxation and later by T. Luo
in [20] and H.-J. Zhao [43] for the Cauchy problem (1.4), (1.6). Before stating these results precisely,
we first outline the strategy to deal with this problem. Firstly, since the planar rarefaction wave r(t, x)
has singularity at t = 0, as in [25], we need to construct its smooth approximation φ(t, x) which
is the unique global smooth solution of the Cauchy problem of the following generalized Burgers
equation {

φt + f (φ)x = 0,

φ(0, x) = φ0(x).
(1.11)

Here φ0(x) is a smooth, monotonic increasing function satisfying

lim
x→±∞φ0(x) = u±. (1.12)

With the above smooth approximation in hand, the stability analysis is then divided into two steps:
The first step is to deduce the corresponding one-dimensional stability result. That is, one needs
to show that the unique global solution (u(t, x), v1(t, x)) to the following related one-dimensional
Cauchy problem ⎧⎪⎨⎪⎩

ut + v1x = 0,

v1t + a1ux = −v1 + f (u),(
u(0, x), v1(0, x)

)= (
u0(x), v10(x)

) (1.13)
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satisfies

lim
t→∞ sup

x∈R

∣∣(u(t, x) − φ(t, x), v1(t, x) − f
(
φ(t, x)

))∣∣= 0 (1.14)

if (u0(x), v10(x)) is a suitable perturbation of (u0(x), f (φ0(x))).
Now let (ū(t, x), v̄1(t, x)) denote the unique global solution to the Cauchy problem (1.13) with

the specially chosen initial data (u0(x), v10(x)) = (φ0(x), f (φ0(x))), then the second step is to show
that one can use (ū(t, x), v̄1(t, x), g(ū(t, x))) to describe the large time behavior of the global solution
(u(t, x, y), v1(t, x, y), v2(t, x, y)) of the Cauchy problem (1.4), (1.6). More precisely, let⎧⎨⎩

U (t, x, y) = u(t, x, y) − ū(t, x),

V 1(t, x, y) = v1(t, x, y) − v̄1(t, x),

V 2(t, x, y) = v2(t, x, y) − g
(
ū(t, x)

)
,

(1.15)

it is easy to check that (U (t, x, y), V 1(t, x, y), V 2(t, x, y)) solves⎧⎨⎩
Ut + V 1x + V 2y = 0,

V 1t + a1Ux = f (ū + U ) − f (ū) − V 1,

V 2t + a2U y = g(ū + U ) − g(ū) − V 2 − g(ū)t

(1.16)

with initial data ⎧⎨⎩
U (0, x, y) = U0(x, y) = u0(x, y) − φ0(x),

V 1(0, x, y) = V 10(x, y) = v10(x, y) − f
(
φ0(x)

)
,

V 2(0, x, y) = V 20(x, y) = v20(x, y) − g
(
φ0(x)

)
.

(1.17)

Then the problem is reduced to show that the Cauchy problem (1.16), (1.17) admits a unique global
solution (U (t, x, y), V 1(t, x, y), V 2(t, x, y)) which tends to zero uniformly with respect to (x, y) ∈ R2

as t → ∞. As is well known, the key point to deduce the above result is how to get the uniform en-
ergy type estimate on (U (t, x, y), V 1(t, x, y), V 2(t, x, y)) and the main difficulty lies in how to control
the possible growth of the solution (U (t, x, y), V 1(t, x, y), V 2(t, x, y)) caused by the nonlinearity of
Eq. (1.16).

Recall that according to whether the H2(R2)-norm of the initial perturbation (U0(x, y), V 10(x, y),

V 20(x, y)) is small or not and δ = |u+ − u−|, the strength of the planar rarefaction wave r(t, x),
is small or not, the corresponding nonlinear stability results are classified into local (or global)
stability of weak (or strong) rarefaction waves respectively. Here we must emphasis that in the
one-dimensional case, the terminology “global stability” can be defined independent of the way to
construct the smooth approximation of the rarefaction wave r(t, x), i.e. does not depend on the
way to construct φ0(x) satisfying (1.12), by considering whether the norm ‖(u0(x) − u−, v10(x) −
f (u−))‖L2(R−) + ‖(u0(x) − u+, v10(x) − f (u+))‖L2(R+) + ‖(u0x(x), v10x(x))‖L2(R) is small or not. But for
the two-dimensional case, since the initial data (u0(x, y), v10(x, y), v20(x, y)) is a two-dimensional
perturbation of the one-dimensional profile (φ0(x), f (φ0(x)), g(φ0(x))), we do not know how to for-
mulate a definition on the terminology “global stability” independent of the way to construct the
smooth approximation of the planar rarefaction wave r(t, x).

Following the strategy outlined above, local stability of the weak or strong planar rarefaction waves
r(t, x) defined in (1.10) have been studied in [20] and [43] respectively. For the corresponding result
with large initial perturbation, to the best of our knowledge, no results are available now and the
main purpose of our present manuscript is devoted to this problem.

Now we turn to state our main results. Before doing so, since, as pointed out before, the termi-
nology “global stability” depends on the way to construct the smooth approximation of the planar
rarefaction wave r(t, x), we consider the general way to construct the smooth approximation φ(t, x)
of the planar rarefaction wave r(t, x), which is the unique global smooth solution φ(t, x) of the Cauchy
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problem (1.11) with general φ0(x) given by

φ0(x) = u+ + u−

2
+ u+ − u−

2
m0(εx). (1.18)

Here m0(x) is assumed to satisfy the following properties:

(H1) m0(x) ∈ C∞(R), m′
0(x) � 0, and for each p ∈ [1,∞], k ∈ Z+ , ‖ ∂km0(x)

∂xk ‖Lp(R) � C(p,k) < +∞;
(H2) m0(x) has finite inflection points;
(H3) limx→±∞ m0(x) = ±1.

Remark 1.1. It is worth to pointing out that the ways to construct the smooth approximation of the
planar rarefaction wave r(t, x) employed in [15,25,26,28] satisfy the assumptions (H1)–(H3).

Next, define (ū(t, x), v̄1(t, x)), (U (t, x, y), V 1(t, x, y), V 2(t, x, y)), and (U0(x, y), V 10(x, y), V 20(x, y))

as above, we will pay our attention to the Cauchy problem (1.16), (1.17) in the rest of this manuscript.
Similar to that of [20], we can get from (1.16) and (1.17) that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V 1(t, x, y) = e−t V 10(x, y) +
t∫

0

es−t( f (ū + U ) − f (ū) − a1Ux
)
(s, x, y)ds,

V 2(t, x, y) = e−t V 20(x, y) +
t∫

0

es−t(g(ū + U ) − g(ū) − a2U y − g(ū)t
)
(s, x, y)ds.

(1.19)

Here U (t, x, y) satisfies

Utt + Ut − a1Uxx − a2U yy + [
f (ū + U ) − f (ū)

]
x + g(ū + U )y = 0, (x, y) ∈ R2, t > 0 (1.20)

with initial data {
U (0, x, y) = U0(x, y),

Ut(0, x, y) = V 0(x, y) ≡ −V 10x(x, y) − V 20y(x, y).
(1.21)

Set � = εδ, δ = |u+ − u−|, and⎧⎨⎩N1(0) = ∥∥(U0(x, y),∇U0(x, y), V 0(x, y)
)∥∥2

L2(R2)
,

N2(0) = ∥∥(∇U0x(x, y),∇U0y(x, y),∇V 0(x, y)
)∥∥2

L2(R2)
,

then for general smooth nonlinear flux functions f (u) and g(u), our first result can be stated as
follows:

Theorem 1.1. Assume that

• (U0(x, y), V 10(x, y), V 20(x, y)) ∈ H2(R2);
• there exist two positive constants D1 and D2 , which are independent of the parameter �, and two non-

negative constants α � β � 0 such that{
N1(0) � D1�

α,

N2(0) � D2
(
1 + �−β

)
.

(1.22)
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Then there exist positive constants �0 > 0 and M1 > 0 with M1 depending only on N1(0) and N2(0) such that
if 0 < � < �0 and the sub-characteristic condition

sup
u∈M

{ | f ′(u)|2
a1

+ |g′(u)|2
a2

}
� k0 < 1 (1.23)

holds for some �-independent constant k0 , M= [−B(N0) − M1, B(N0) + M1] with B(N0) being defined by⎧⎪⎪⎨⎪⎪⎩
N0 = max

{∣∣u−∣∣, ∣∣u+∣∣,∥∥ f
(
φ0(x)

)∥∥
L∞(R)

}
,

F (N0) = sup
|u|�N0

∣∣ f ′(u)
∣∣,

B(N0) = 2N0 + F (2N0),

(1.24)

the Cauchy problem (1.14), (1.15) admits a unique global solution (U (t, x, y), V 1(t, x, y), V 2(t, x, y)) satisfy-
ing

lim
t→∞ sup

(x,y)∈R2

∣∣(U (t, x, y), V 1(t, x, y), V 2(t, x, y)
)∣∣= 0. (1.25)

Consequently ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lim
t→∞ sup

(x,y)∈R2

∣∣u(t, x, y) − r(t, x)
∣∣= 0,

lim
t→∞ sup

(x,y)∈R2

∣∣v1(t, x, y) − f
(
r(t, x)

)∣∣= 0,

lim
t→∞ sup

(x,y)∈R2

∣∣v2(t, x, y) − g
(
r(t, x)

)∣∣= 0.

(1.26)

Remark 1.2. In Theorem 1.1, since the parameter � is assumed to be small, the assumption (1.22) does
imply that N1(0), the lower order energy norm of the initial perturbation, is small while N2(0) can
be sufficiently large. Note also that since α � β , the L∞(R2)-norm of the initial perturbation can be
large. It is worth pointing out that since � = δε, by choosing ε sufficiently small, δ, the strength of
the planar rarefaction wave, can indeed be large in our Theorem 1.1.

Remark 1.3. From the proof of Theorem 1.1, one can easily deduce that when f ′′(u) and g′′(u) satisfy
certain growth condition as |u| → ∞, similar result also holds even if α < β and in such a case,
lim�→0+ ‖U (t)‖L∞(R2) = +∞.

Although Theorem 1.1 holds for any smooth nonlinear flux functions f (u) and g(u), it does ask
the lower order energy norm of the initial perturbation N1(0) to be small. Thus a natural question
is how about the case if the initial perturbation is large even for some special class of nonlinear flux
functions f (u) and g(u)? For result in this direction, we can show that if both f ′′(u) and g′′(u) are
uniformly bounded, then we can indeed obtain the energy type estimate (3.35) without any small
smallness assumption on the parameter � and such an estimate is independent of the parameter M
appeared in the a priori assumption (3.4). This estimate together with the continuation argument yield
the following result:

Theorem 1.2. Assume that

• (U0(x, y), V 10(x, y), V 20(x, y)) ∈ H2(R2);
• f ′′(u) and g′′(u) are uniformly bounded. That is, there exists a positive constant D2 > 0 such that∣∣ f ′′(u)

∣∣+ ∣∣g′′(u)
∣∣� D3, ∀u ∈ R. (1.27)
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Then there exists a positive constant M2 > 0, which depends only on N1(0) and N2(0), such that if the sub-
characteristic condition (1.5) holds with M= [−B(N0)− M2, B(N0)+ M2], the Cauchy problem (1.14), (1.15)
has a unique global solution (U (t, x, y), V 1(t, x, y), V 2(t, x, y)) satisfying (1.26).

In Theorem 1.2, we do not use the smallness of either the lower order energy norm of the initial
perturbation N1(0) or the parameter � to control the possible growth of the solution U (t, x, y) caused
by the nonlinearity of the equation under our consideration and the stability result holds for any
H2(R2)-initial perturbation (U0(x, y), V 10(x, y), V 20(x, y)). Even so, it asks the second derivative of
the flux functions f (u) and g(u) with respect to u to be uniformly bounded. Our last result in this
paper is to show that such an assumption can be replaced by the assumption that the third derivative
of the flux functions f (u) and g(u) with respect to u is uniformly bounded while similar result also
holds.

Theorem 1.3. Assume that

• (U0(x, y), V 10(x, y), V 20(x, y)) ∈ H2(R2);
• f ′′′(u) and g′′′(u) are uniformly bounded. That is, there exists a positive constant D4 > 0 such that∣∣ f ′′′(u)

∣∣+ ∣∣g′′′(u)
∣∣� D4, ∀u ∈ R. (1.28)

Then there exists a positive constant M3 > 0, which depends only on N1(0) and N2(0), such that the sub-
characteristic condition (1.5) holds with M= [−B(N0)− M3, B(N0)+ M3], the Cauchy problem (1.14), (1.15)
has a unique global solution (U (t, x, y), V 1(t, x, y), V 2(t, x, y)) satisfying (1.26).

Remark 1.4. Several remarks concerning our main results are listed below:

(i) Our method in deducing Theorem 1.1 applies to higher space dimensional case and the results
obtained in Theorems 1.2 and 1.3 also hold in the three-dimensional case.

(ii) As pointed by T. Luo in [20], the choice of the x-direction in this paper involves no loss of gener-
ality, because we can reduce the general situation to this case by suitable change of coordinates.

(iii) Our assumptions on the sub-characteristic conditions listed in Theorems 1.1–1.3 are essentially
the same as those proposed by R. Natalini in [30]. The only difference lies in that our analysis is
based on an elementary energy method, while Natalini’s is based on the maximum principle.

(iv) In Theorem 1.2 and Theorem 1.3, we do not ask the strength of the planar rarefaction wave to
be small and the results hold for any H2(R2)-initial perturbation (U0(x, y), V 10(x, y), V 20(x, y)).
Thus we have shown the global stability of strong planar rarefaction waves for the Jin–Xin relax-
ation approximation of the two-dimensional scalar conservation laws, at least for the cases when
either ( f ′′(u), g′′(u)) or ( f ′′′(u), g′′′(u)) is uniformly bounded.

(v) In Theorem 1.2 and Theorem 1.3, we ask that the nonlinear flux functions f (u) and g(u) satisfy
certain growth conditions as |u| → ∞. Then a natural question is whether similar result holds
under less restrictions on the nonlinear flux functions f (u) and g(u). Such a problem is one of
the topics of our current research.

(vi) Our choice of the smooth approximation of the planar rarefaction wave r(t, x) is quite general.
In fact from the proofs of our main results, one can easily deduce that our results also hold
for any φ(t, x), the smooth approximation of the planar rarefaction wave r(t, x), satisfying the
estimates stated in Lemma 2.2 and Lemma 2.3.

Now we outline our main ideas to deduce the above results. Before doing so, we first point out
the main difficulties we encountered:

(i) Since the system (1.4) is semilinear hyperbolic, if the sub-characteristic condition (1.5) holds glob-
ally, i.e. (1.5) holds true for M= R, then a Gronwall type argument can guarantee that the Cauchy
problem (1.4), (1.6) is globally solvable for large initial data, cf. [22]. Even so, it seems that it is
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not an easy work to deduce the large time behavior (1.26), partially because the proof of (1.26)
is based on some estimates on (u(t, x, y), v1(t, x, y), v2(t, x, y)) which are uniformly with respect
to the time variable t .

(ii) For the case when M is just a subset of R, the problem is more subtle. In such a case, even if the
initial data lies in M, the nonlinearity of the system (1.4) will certainly lead to the growth of the
solution, which, if without suitably control, will eventually result in the escape of the solution
out of M. For the one-dimensional case, by exploiting the maximum principle, R. Natalini [30]
succeeded in finding such an M which is closely related to the L∞(R)-norm of the initial data.
We note, however, that since the analysis in [30] is based on the diagonalization of the system
by the Riemann invariants which seems impossible for the higher dimensional case, such an
argument seems not so easy, if not impossible, to be used to deal with the higher dimensional
case.

Our analysis is based on the elementary energy method together with the continuation argument
and, as mentioned before, the main difficulty lies in how to control the possible growth of the solu-
tions caused by the nonlinearity of the system (1.4). To overcome such a difficulty, the argument used
in [20] and [43] is to use the smallness of the initial perturbation and hence such an argument can
only yield the local stability of planar rarefaction waves. To deduce the nonlinear stability result with
large initial perturbation, our main tricks are the following:

(i) Our first trick is trying to use the smallness of the parameter � = εδ to control the possi-
ble growth of the solution caused by the nonlinearity of the system (1.4). To this end, we
first obtain certain estimates on φ(t, x), the smooth approximation of the planar rarefaction

wave r(t, x) and on ∂kū(t,x)
∂xk for k � 1. Based on these estimates and some careful energy type

estimates, we can show that U (t, x, y) satisfies the estimates (3.5) and (3.20) provided that
U (t, x, y) satisfies the a priori assumption (3.4), the sub-characteristic condition (1.5) holds with
M = [−B(N0) − M, B(N0) + M], and the assumption (3.19) is imposed. Although the right hand
side of (3.20) does depend on the constant M , if we assume that the lower order initial perturba-
tion N1(0) is suitably small, such a factor can be controlled suitably and this observation together
with the continuation argument yield the result stated in Theorem 1.1.

(ii) In the above result, although the H2(R2)-norm of the initial perturbation can be large, we do
ask that N1(0), the lower order energy norm of the initial perturbation, is sufficiently small. To
deduce the nonlinear stability of strong planar rarefaction wave r(t, x) for any H2(R2)-initial per-
turbation, we need to use the underlying structure of the system (1.4) fully. Our first observation
in this direction is that if f ′′(u) and g′′(u) are uniformly bounded, then the estimate (3.20) can
indeed be improved such that its right hand side does not depend on M even without the as-
sumption (3.19). This observation together with the continuation argument can lead to the global
stability result stated in Theorem 1.2. Motivated by the result obtained in Theorem 1.2 and some
careful energy type estimates, we can also show in Theorem 1.3 that if f ′′′(u) and g′′′(u) are
uniformly bounded, similar global stability result also holds.

Before concluding this section, we recall some former results concerning the nonlinear stability
of rarefaction waves for dissipative hyperbolic conservation laws and on the hyperbolic conservation
laws with relaxation as follows:

(i) The nonlinear stability of rarefaction waves of hyperbolic conservation laws with dissipative terms
has been the subject of numerous studies, cf. [5,19,34,32,41] for compressible Navier–Stokes equa-
tions, [6,9,8,10,12,13,27,36,38–40,42] for hyperbolic conservation laws with artificial viscosity,
[7] for the generalized KdV–Burgers equation, [20,43,24,44,33] for hyperbolic conservation laws
with relaxation, and the references therein.

(ii) The relaxation mechanism arise in many physical situations, for example, gases not in thermo-
dynamic equilibrium, kinetic theory, chromatography, river flow, traffic flows, and more general
waves, cf. [37,1]. The general 2 × 2 hyperbolic systems of conservation laws with relaxation in the
form
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⎧⎨⎩
ut + f (u, v)x = 0,

vt + g(u, v)x = h(u, v)

ε
,

(1.29)

was first analyzed by T.-P. Liu in [18] to justify some nonlinear stability criteria for diffusion
waves, expansion waves, and traveling waves. Since then, the stability of certain elementary
waves was studied by H.-L. Liu, C. Woo and T. Yang [17], T. Luo [20], T. Luo and Z.-P. Xin [21],
H.-J. Zhao [43], C. Mascia and R. Natalini [23], M. Mei and T. Yang [29], R.-H. Pan [35],
C.-J. Zhu [45] and P. Zingano [46], etc. The problem on the convergence to the diffusion waves was
given by I.-L. Chern [4]. Related results on the relaxation time limit can be found in G.-Q. Chen,
C.D. Levermore, and T.-P. Liu [2], G.-Q. Chen and T.-P. Liu [3], C. Lattanzio and P. Marcati [16],
R. Natalini [31], etc. For a more complete literature in this direction, we refer the interested
reader to the monograph [11] by L. Hsiao and the survey paper [31] by R. Natalini.

The rest of this paper is organized as follows. In Section 2, we will deduce certain estimates
on φ(t, x), the smooth approximation of the planar rarefaction wave r(t, x), and on the quantity
(w(t, x), z(t, x)) = (ū(t, x) − φ(t, x), v̄1(t, x) − f (φ(t, x))) which will be used in the subsequent sec-
tions. The energy type estimates are performed in Section 3 and the proofs of our main results are
given in Section 4.

Notations Throughout the rest of this paper, we use C , Ci , and Di (i ∈ Z+) to denote a generic positive
constant which are independent of t , x, y but may vary from line to line, and use ‖ · ‖s to denotes
the norm in Hs(R) or Hs(R2) with ‖ · ‖ = ‖ · ‖0. Finally, for z = (z1, . . . , zN ) ∈ RN , ∇ = ( ∂

∂z1
, . . . , ∂

∂zN
),

2 � k ∈ Z+ , |Dku(z)| =∑
α1+···+αN =k | ∂ku(z)

∂z
α1
1 ···∂z

αN
N

|.

2. Preliminaries

This section is devoted to citing some fundamental inequalities and to deducing some ba-
sic estimates on the smooth approximation of the planar rarefaction waves and on the quan-
tity (w(t, x), z(t, x)) = (ū(t, x) − φ(t, x), v̄1(t, x) − f (φ(t, x))). To do so, we first cite the Gagliardo–
Nirenberg inequality which will be used frequently later:

Lemma 2.1 (Gagliardo–Nirenberg inequality). Assume that u(z) ∈ Lq(RN ), Dmu(z) ∈ Lr(RN ) with 1 �
q, r � +∞. Then, for any integral j ∈ [0,m], we have

∥∥D ju(z)
∥∥

L p � C
∥∥Dmu(z)

∥∥α

Lr

∥∥u(z)
∥∥1−α

Lq .

Here

1

p
= j

N
+ α

(
1

r
− m

N

)
+ (1 − α)

1

q
,

j

m
� α � 1.

If we are concentrated on the two-dimensional case, we have from Lemma 2.1 that:

Corollary 2.1. For the case N = 2, we have

(i) ‖ f ‖L∞(R2) � D0
∥∥D2 f

∥∥ 1
2
L2(R2)

‖ f ‖
1
2
L2(R2)

,

(ii) ‖ f g‖2
2 2 � ‖ f ‖L2(R2)‖∇ f ‖L2(R2)‖g‖L2(R2)‖∇g‖L2(R2),
L (R )
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(iii)

⎧⎪⎪⎨⎪⎪⎩
‖ f ‖3

L3(R2)
� ‖ f ‖2

L2(R2)
‖∇ f ‖L2(R2),∥∥ f g2

∥∥
L1(R2)

� ‖ f ‖L2(R2)‖g‖L2(R2)‖∇g‖L2(R2),

‖ f gh‖L1(R2) � ‖ f ‖L2(R2)‖g‖L2(R2)‖∇g‖L2(R2)‖h‖L2(R2)‖∇h‖L2(R2),

(iv)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
R2

| f ||g|3 dx dy � ‖ f ‖
1
2
L2(R2)

‖∇ f ‖
1
2
L2(R2)

‖g‖
3
2
L2(R2)

‖∇g‖
3
2
L2(R2)

,

∫
R2

| f |2|g||h|dx dy � ‖ f ‖L2(R2)‖∇ f ‖L2(R2)‖g‖
1
2
L2(R2)

‖∇g‖
1
2
L2(R2)

‖h‖
1
2
L2(R2)

‖∇h‖
1
2
L2(R2)

.

Here D0 is some positive constant depending only on the dimension of the space.

Proof. (i) is a direct consequence of the Gagliardo–Nirenberg inequality with N = 2, j = 0, q = 2,
p = ∞, α = 1

2 . As to (ii), since⎧⎨⎩
∥∥ f (·, y)

∥∥2
L∞(Rx)

�
∥∥ f (·, y)

∥∥
L2(Rx)

∥∥ fx(·, y)
∥∥

L2(Rx)
,∥∥g(·, y)

∥∥2
L2(Rx)

� ‖g‖L2(R2)‖g y‖L2(R2),

we can deduce from the Hölder inequality that

‖ f g‖2
L2(R2)

�
∫
Rx

∥∥ f (·, y)
∥∥2

L∞(Rx)

∥∥g(·, y)
∥∥2

L2(Rx)
dy

� ‖g‖L2(R2)‖g y‖L2(R2)

∫
Rx

∥∥ f (·, y)
∥∥

L2(Rx)

∥∥ fx(·, y)
∥∥

L2(Rx)
dy

� ‖ f ‖L2(R2)‖∇ f ‖L2(R2)‖g‖L2(R2)‖∇g‖L2(R2),

which shows that (ii) holds.
Having obtained (ii), (iii) and (iv) are direct consequence of (ii) and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖ f ‖3
L3(R2)

� ‖ f ‖L2(R2)‖ f ‖2
L4(R2)

,∥∥ f g3
∥∥

L1(R2)
� ‖ f g‖L2(R2)‖g‖2

L4(R2)
,∥∥ f g2

∥∥
L1(R2)

� ‖ f ‖L2(R2)‖g‖2
L4(R2)

,

‖ f gh‖L1(R2) � ‖ f ‖L2(R2)‖gh‖L2(R2),∥∥ f 2 gh
∥∥

L1(R2)
� ‖ f ‖2

L4(R2)
‖gh‖L2(R2).

This completes the proof of Corollary 2.1. �
Now we turn to deduce certain properties of the global smooth solution φ(t, x) of the Cauchy

problem (1.11), (1.18). Notice that for some specially chosen φ0(x), the corresponding results have
been obtained in [28], etc.

Lemma 2.2. Under the assumptions (H1)–(H3) imposed on m0(x), the Cauchy problem (1.11), (1.18) admits
a unique global smooth solution φ(t, x) which satisfies:

(i) u− < φ(t, x) < u+ , ∂φ(t,x)
∂x > 0 holds for all (t, x) ∈ [0,+∞] × R;
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(ii) ‖ ∂φ(t,x)
∂x ‖Lp(R) � C p min{δε1− 1

p , δ
1
p t

1
p −1}. Here δ = |u+ − u−|, p ∈ [1,∞], and C p is a constant only

depends on p;

(iii) ‖ ∂2φ(t,x)
∂x2 ‖L1(R) � C min{δε, t−1}, where C is some positive constant;

(iv) limt→+∞ supx∈R |φ(t, x) − r(t, x)| = 0.

Proof. Let x(t; x0) be the characteristic line passing through (0, x0), we have from (1.11) that⎧⎨⎩
dx(t; x0)

dt
= f ′(φ(t, x(t; x0)

))
,

x(t; x0)|t=0 = x0

and ⎧⎨⎩
dφ(t, x(t; x0))

dt
= 0,

φ
(
t, x(t; x0)

)∣∣
t=0 = φ0(x0).

From which we can deduce that {
x(t; x0) = x0 + f ′(φ0(x0)

)
t,

φ
(
t, x(t; x0)

)= φ0(x0).
(2.1)

From (2.1), the assumption (H1), and the implicit function theorem, one easily deduce that the
Cauchy problem (1.11), (1.18) admits a unique global classical solution φ(t, x) satisfying (i).

Let x0(t, x) be function of t and x implicitly defined by (2.1), one easily deduce that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂x0(t, x)

∂x
= 1

1 + f ′′(φ0(x0))φ
′
0(x0)t

> 0,

∂2x0(t, x)

∂x2
= − ( f ′′(φ0(x0))φ

′′
0 (x0) + f ′′′(φ0(x0))|φ′

0(x0)|2)t
(1 + f ′′(φ0(x0))φ

′
0(x0)t)3

,

(2.2)

and consequently⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂φ(t, x)

∂x
= φ′

0(x0)

1 + f ′′(φ0(x0))φ
′
0(x0)t

,

∂2φ(t, x)

∂x2
= φ′′

0 (x0)

(1 + f ′′(φ0(x0))φ
′
0(x0)t)3

− f ′′′(φ0(x0))(φ
′
0(x0))

3

(1 + f ′′(φ0(x0))φ
′
0(x0)t)3

.

(2.3)

For each p ∈ [1,∞), we have from (2.3)1 and (1.18) that∥∥∥∥∂φ(t, x)

∂x

∥∥∥∥p

L p(R)

=
∫
R

|φ′
0(x0)|p

(1 + f ′′(φ0(x0))φ
′
0(x0)t)p

dx

=
∫
R

|φ′
0(x0)|p

(1 + f ′′(φ0(x0))φ
′
0(x0)t)p−1

dx0

=
(

εδ

2

)p ∫ |m′
0(εy)|p

(1 + 1
2εδ f ′′(φ0(x0))m′

0(εy)t)p
dy. (2.4)
R
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With (2.4) in hand, it is routine to prove that (ii) holds for p ∈ [1,∞), the case for p = ∞ is less
complicated and we omit the details for brevity.

Now we turn to prove (iii). For this purpose, we have from (2.3)2 and (i) that

∥∥∥∥∂2φ(t, x)

∂x2

∥∥∥∥
L1(R)

�
∫
R

|φ′′
0 (x0)|

(1 + f ′′(φ0(x0))φ
′
0(x0)t)2

dx0 +
∫
R

| f ′′′(φ0(x0))||φ′
0(x0)|3t

(1 + f ′′(φ0(x0))φ
′
0(x0)t)2

dx0

� O (1)ε2δ

∫
R

|m′′
0(εy)|

(1 + εδm′
0(εy)t)2

dy

︸ ︷︷ ︸
A1

+ O (1)ε3δ3
∫
R

|m′
0(εy)|3t

(1 + εδm′
0(εy)t)2

dy

︸ ︷︷ ︸
A2

. (2.5)

Now we turn to estimate A1 and A2 term by term. First for A2, we can deduce straightforward
that

A2 � O (1)ε2δ3
∫
R

|m′
0(z)|3t

(1 + εδm′
0(z)t)2

dz � O (1)min
{
εδ2, δt−1}. (2.6)

As to A1, unlike the cases studied in [25,28], since for general smooth function m0(x), we do not
know the relation between m′′

0(x) and m′
0(x), the arguments used there cannot be used any longer.

We note, however, that since the assumption (H2) tells us that m0(x) has only finite inflection points,
thus there exist z j ∈ R ( j = 0,1, . . . ,m + 1) with z0 = −∞, zm+1 = +∞ such that m′′

0(x) keeps sign
on the interval [z j, z j+1] for j = 0,1, . . . ,m. Thus we have

A1 = O (1)εδ

∫
R

|m′′
0(z)|dz

(1 + εδm′
0(z)t)2

= O (1)εδ

m∑
j=0

∣∣∣∣∣
z j+1∫
z j

m′′
0(z)dz

(1 + εδm′
0(z)t)2

∣∣∣∣∣
= O (1)

t

m∑
j=0

∣∣∣∣ 1

1 + εδm′
0(z j)t

− 1

1 + εδm′
0(z j+1)t

∣∣∣∣
� O (1)t−1. (2.7)

Here we have used the fact that limx±∞ m′
0(x) = 0.

Inserting (2.6) and (2.7) into (2.5) proves (iii).
To prove (iv), we first notice from⎧⎪⎨⎪⎩

±x0
(
t, f ′(u±)t)= ±(

f ′(u±)− f ′(φ0
(
x0
(
t, f ′(u±)t))))� 0,

±dx0(t, f ′(u±)t)

dt
= ± f ′(u±) − f ′(φ0(x0(t, f ′(u±)t)))

1 + f ′′(φ0(x0(t, f ′(u±)t)))t
� 0

that limt→∞ x0(t, f ′(u±)t) exist and moreover we can show that

lim x0
(
t, f ′(u±)t)= ±∞. (2.8)
t→∞
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We only prove that limt→∞ x0(t, f ′(u−)t) = −∞ since the other case can be treated similarly.
Assume on the other hand that such a claim does not hold true, we then can find an x̄ ∈ (−∞,0]
such that

lim
t→∞ x0

(
t, f ′(u−)t)= x̄.

Since x0(t, f ′(u−)t) is a decreasing function of t , we have

−∞ < x̄ � x0
(
t, f ′(u−)t)

= [
f ′(u−)− f ′(φ0

(
x0
(
t, f ′(u−)t)))]t

�
[

f ′(u−)− f ′(φ0(x̄)
)]

t < 0. (2.9)

Here we have used the facts that f ′(φ0(x)) is an increasing function of x and (i).
Letting t → ∞ in (2.9), we can arrive at a contradiction, this proves that limt→∞ x0(t, f ′(u−)t) =

−∞.
With (2.8) in hand, we now turn to prove (iv). To this end, we divide the t − x plane into the

following three regions: Ω1 = {(t, x): x < f ′(u−)t, t � 0}, Ω2 = {(t, x): f ′(u−)t � x � f ′(u+)t, t � 0},
and Ω3 = {(t, x): x > f ′(u+)t, t � 0}. It is easy to see that

φ(t, x) − r(t, x) =
⎧⎨⎩

φ(t, x) − u−, (t, x) ∈ Ω1,

φ(t, x) − ( f ′)−1( x
t ), (t, x) ∈ Ω2,

φ(t, x) − u+, (t, x) ∈ Ω3.

(2.10)

Since m0(x) and x0(t, x) are increasing functions of x, we have from (1.18), (2.1), (2.2) that if
x < f ′(u−)t , one has

∣∣φ(t, x) − u−∣∣= φ(t, x) − u− = δ

2

(
1 + m0

(
εx0(t, x)

))
� δ

2

(
1 + m0

(
εx0

(
t, f ′(u−)t))), (2.11)

while for (t, x) ∈ Ω3, we can deduce that

∣∣φ(t, x) − u+∣∣= u+ − φ(t, x) = δ

2

(
1 − m0

(
εx0(t, x)

))
� δ

2

(
1 − m0

(
εx0

(
t, f ′(u+)t))). (2.12)

As for the case when (t, x) ∈ Ω2, we only need to estimate f ′(φ(t, x)) − f ′(r(t, x)). For this purpose,
since f ′(φ(t, x)) solves {

wt + w wx = 0,

w(0, x) = w0(x) ≡ f ′(φ0(x)
)
,

(2.13)

we can get that {
f ′(φ(t, x(t; x0)

))= f ′(φ0(x0)
)
,

x(t; x0) = x0 + f ′(φ0(x0)
)
t.

(2.14)

Thus for f ′(u−)t � x � f ′(u+)t , we have from (1.10) and (2.14) that

∣∣ f ′(φ(t, x)
)− f ′(r(t, x)

)∣∣= ∣∣∣∣ x − x0

t
− x

t

∣∣∣∣= |x0|
t

. (2.15)
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Noticing that x0(t, x) is increasing with respect to x, we have for (t, x) ∈ Ω2 that

x0
(
t, f ′(u−)t)� x(t, x) � x0

(
t, f ′(u+)t). (2.16)

(2.15) and (2.16) together with the fact

x0
(
t, f ′(u±)t)= t

[
f ′(u±)− f ′(φ0

(
t, f ′(u±)t))] (2.17)

implies that for f ′(u−)t � x � f ′(u+)t

∣∣ f ′(φ(t, x)
)− f ′(r(t, x)

)∣∣
� max

{∣∣ f ′(u−)− f ′(φ0
(
t, f ′(u−)t))∣∣, ∣∣ f ′(u+)− f ′(φ0

(
t, f ′(u+)t))∣∣}. (2.18)

Putting (2.11), (2.12), and (2.18) together, we can deduce (iv) immediately from (2.8) and the as-
sumption (H3). This completes the proof of Lemma 2.2. �

For the temporal decay of the higher order derivatives of φ(t, x) with respect to x, since the as-
sumption (H1) implies that ∥∥∥∥∂kφ(t, x)

∂xk

∥∥∥∥
L p

� O (1)εk−1δ,

the above estimate, (iii) of Lemma 2.2 together with the Gagliardo–Nirenberg inequality implies
that:

Lemma 2.3. Under the assumptions listed in Lemma 2.2, for each k � 2 and θ > 0 sufficiently small, there
exists a positive constant C p,k such that

∥∥∥∥∂kφ(t, x)

∂xk

∥∥∥∥
L p

� C p,k(εδ)θ (1 + t)−1+θ . (2.19)

Let {
w(t, x) = ū(t, x) − φ(t, x),

z(t, x) = v̄1(t, x) − f
(
φ(t, x)

)
,

(2.20)

we now turn to deduce some energy type estimates on (w(t, x), z(t, x)).
For this purpose, recall that (ū(t, x), v̄(t, x)) satisfies{

ūt + v̄1x = 0,

v̄1t + a1ūx = −v1 + f (ū)
(2.21)

with the prescribed initial data

(
ū(0, x), v̄1(0, x)

)= (
ū0(x), v̄10(x)

)= (
φ0(x), f

(
φ0(x)

))
, (2.22)

where φ0(x) is given by (1.18).
It is easy to deduce from Theorem 3.1 of [30] that the Cauchy problem (2.21), (2.22) admits a

unique global smooth solution (ū(t, x), v̄(t, x)) satisfying
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∥∥ū(t, x)
∥∥

L∞(R)
� B(N0),

∥∥v̄1(t, x)
∥∥

L∞(R)
�

√
a1 B(N0) (2.23)

with ⎧⎪⎪⎨⎪⎪⎩
N0 = max

{∣∣u+∣∣, ∣∣u−∣∣,∥∥ f
(
φ0(x)

)∥∥
L∞(R)

}
,

F (N0) = sup
|u|�N0

∣∣ f ′(u)
∣∣,

B(N0) = 2N0 + F (2N0)

(2.24)

if the following sub-characteristic condition

max
|u|�B(N0)

∣∣ f ′(u)
∣∣< √

a1 (2.25)

holds true.
Moreover it is easy to see that (w(t, x), z(t, x)) satisfies⎧⎪⎨⎪⎩

wt + zx = 0,

zt + a1 wx + z = [
f (w + φ) − f (φ)

]− (
a1φx + f (φ)t

)
,(

w(0, x), z(0, x)
)= (

ū0(x) − φ0(x), v̄10(x) − f
(
φ0(x)

))= (0,0).

(2.26)

Direct calculations yield{
wtt + wt − a1 wxx = [

f (w + φ) − f (φ)
]

x + a1φxx + f (φ)tx,

w(0, x) = ū0(x) − φ0(x) = 0, wt(0, x) = −z0x(x) = 0.
(2.27)

The following lemma is concerned with the basic energy estimate on w(t, x):

Lemma 2.4 (Basic estimates). Under the sub-characteristic condition (2.25), we have

∥∥(w(t), wx(t), wt(t)
)∥∥2 +

t∫
0

∥∥(√φx w(s), wx(s), wt(s)
)∥∥2

ds � C1�
1
4 . (2.28)

Here C1 is a positive constant independent of t, x, ε, and δ.

Proof. For some positive constant λ, multiplying (2.27)1 by λw + wt and integrating the resulting
identity with respect to t and x over [0, t] × R , we have

λ

2

∥∥w(t)
∥∥2 + 1

2

∥∥wt(t)
∥∥2 + a1

2

∥∥wx(t)
∥∥2 + λ

∫
R

w wt(t)dx

+
t∫

0

(
λa1

∥∥wx(s)
∥∥2

ds + (1 − λ)
∥∥wt(s)

∥∥2)
ds

= λ

t∫
0

∫
R

{[( w+φ∫
φ

f (y)dy − f (φ)w

)
x

− (
f (w + φ) − f (φ) − f ′(φ)w

)
φx

]}
(s, x)dx ds

︸ ︷︷ ︸
J
1
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−
t∫

0

∫
R

{
wt

[
f ′(w + φ) − f ′(φ)

]
φx + wt wx f ′(w + φ)

}
(s, x)dx ds

︸ ︷︷ ︸
J2

+
t∫

0

∫
R

{[
a1φxx + f (φ)tx

]
(λw + wt)

}
(s, x)dx dy

︸ ︷︷ ︸
J3

. (2.29)

Now we turn to deal with J i (i = 1,2,3) term by term. First from Lemma 2.2, (2.23), (2.24), and
the convexity of f (u), we know that there exists a positive constant γ > 0 such that

J1 � −γ

2
λ

t∫
0

∫
R

φx w2 dx ds. (2.30)

For J2, the Cauchy–Schwarz inequality yields

| J2| �
(

1

2
k̄1 + η

) t∫
0

∥∥wx(s)
∥∥2

ds +
(

1

2
+ η

) t∫
0

∥∥wt(s)
∥∥2

ds

+ O (1)

t∫
0

∥∥w(s)
∥∥2∥∥φx(s)

∥∥∥∥φxx(s)
∥∥ds. (2.31)

Here and in the rest of this paper, η is a positive constant which can be chosen sufficiently small
and

k̄1 = max
|u|�B(N0)

∣∣ f ′(u)
∣∣2. (2.32)

At last for J3, we have from the Cauchy–Schwarz inequality and (2.23), (2.24) that

| J3| � O (1)

t∫
0

∥∥w(s)
∥∥

L∞
(∥∥φxx(s)

∥∥
L1 + ∥∥φx(s)

∥∥2)
ds

+ η

t∫
0

∥∥w2
t (s)

∥∥ds + O (1)

t∫
0

(∥∥φxx(s)
∥∥2 + ∥∥φx(s)

∥∥4
L4

)
ds. (2.33)

Notice that

∥∥w(t)
∥∥

L∞ �
∥∥w(t)

∥∥ 1
2
∥∥wx(t)

∥∥ 1
2 ,

we have
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t∫
0

∥∥w(s)
∥∥

L∞
(∥∥φxx(s)

∥∥
L1 + ∥∥φx(s)

∥∥2)
ds

�
t∫

0

∥∥w(s)
∥∥ 1

2
∥∥wx(s)

∥∥ 1
2
(∥∥φxx(s)

∥∥
L1 + ∥∥φx(s)

∥∥2)
ds

� η

t∫
0

∥∥wx(s)
∥∥2

ds + O (1)

t∫
0

∥∥w(s)
∥∥2(∥∥φxx(s)

∥∥ 4
3
L1 + ∥∥φx(s)

∥∥ 8
3
)

ds

+ O (1)

t∫
0

(∥∥φxx(s)
∥∥ 4

3
L1 + ∥∥φx(s)

∥∥ 8
3
)

ds. (2.34)

Substituting (2.34) into (2.33), we can get that

| J3| � η

t∫
0

(∥∥wx(s)
∥∥2 + ∥∥wt(s)

∥∥2)
ds

+ O (1)

t∫
0

∥∥w(s)
∥∥2(∥∥φxx(s)

∥∥ 4
3
L1 + ∥∥φx(s)

∥∥ 8
3
)

ds

+ O (1)

t∫
0

(∥∥φxx(s)
∥∥2 + ∥∥φx(s)

∥∥4
L4 + ∥∥φxx(s)

∥∥ 4
3
L1 + ∥∥φx(s)

∥∥ 8
3
)

ds. (2.35)

Due to

λ

∫
R

w(t, x)wt(t, x)dx � λ

4

∥∥w(t)
∥∥2 + λ

∥∥wt(t)
∥∥2

,

we can deduce by inserting (2.30), (2.31), and (2.35) into (2.29) that

λ

4

∥∥w(t)
∥∥2 +

(
1

2
− λ

)∥∥wt(t)
∥∥2 + a1

2
‖wx(t)‖2 + γ λ

2

t∫
0

∫
R

φx(s, x)w2(s, x)dx ds

+
t∫

0

{(
λa1 − k′

1

2
− 2η

)∥∥wx(s)
∥∥2 +

(
1

2
− λ − 2η

)∥∥wt(s)
∥∥2
}

ds

� O (1)

t∫
0

∥∥w(s)
∥∥2(∥∥φx(s)

∥∥∥∥φxx(s)
∥∥+ ∥∥φxx(s)

∥∥ 4
3
L1 + ∥∥φx(s)

∥∥ 8
3
)

ds

+ O (1)

t∫ (∥∥φxx(s)
∥∥2 + ∥∥φx(s)

∥∥4
L4 + ∥∥φxx(s)

∥∥ 4
3
L1 + ∥∥φx(s)

∥∥ 8
3
)

ds. (2.36)
0
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Now the sub-characteristic condition (2.25) implies that we can find λ ∈ (0, 1
2 ) and η > 0 suffi-

ciently small such that ⎧⎪⎪⎨⎪⎪⎩
λa1 − k̄1

2
− 2η > 0,

1

2
− λ − 2η > 0,

(2.37)

and moreover, Lemma 2.2 and Lemma 2.3 tell us that there is a positive constant C , which is inde-
pendent of t , x, ε and δ, such that

t∫
0

(∥∥φx(s)
∥∥∥∥φxx(s)

∥∥+ ∥∥φxx(s)
∥∥ 4

3
L1 + ∥∥φx(s)

∥∥ 8
3
)

ds � C . (2.38)

(2.36), (2.37), (2.38) together with the Gronwall inequality imply

∥∥w(t)
∥∥2 + ∥∥wx(t)

∥∥2 + ∥∥wt(t)
∥∥2 +

t∫
0

(∥∥√φx(s)w(s)
∥∥2 + ∥∥wx(s)

∥∥2 + ∥∥wt(s)
∥∥2)

ds

� C

t∫
0

(∥∥φxx(s)
∥∥2 + ∥∥φx(s)

∥∥4
L4 + ∥∥φxx(s)

∥∥ 4
3
L1 + ∥∥φx(s)

∥∥ 8
3
)

ds. (2.39)

Finally from Lemma 2.2 and Lemma 2.3, we know that⎧⎪⎪⎨⎪⎪⎩
∥∥φx(t)

∥∥
L4 � O (1)�

3
8 (1 + t)− 3

8 ,∥∥φx(t)
∥∥� O (1)�

1
10 (1 + t)− 2

5 ,∥∥φxx(t)
∥∥� O (1)�

1
8 (1 + t)− 7

8 ,

(2.40)

and (2.28) follows immediately from (2.39) and (2.40). This completes the proof of Lemma 2.4. �
Based on the basic energy type estimate (2.28) on w(t, x), we can get the corresponding higher

order energy type estimates on w(t, x), since the proofs are simpler in some sense, we just state the
results and omit the details for brevity.

Lemma 2.5 (Higher order estimates). Under the assumptions listed in Lemma 2.4, we have the following higher
order energy type estimates on w(t, x)

∥∥(wx(t), wt(t)
)∥∥2

4 +
t∫

0

∥∥(wx(s), wt(s)
)∥∥2

4 ds � C2�
1
4 . (2.41)

Consequently

∥∥(wx(t), wt(t)
)∥∥2

W 3,∞(R)
+

t∫
0

∥∥(wx(s), wt(s)
)∥∥2

W 3,∞(R)
ds � C3�

1
4 . (2.42)

Here C2 and C3 are positive constants independent of t, x, ε, and δ.
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Before concluding this section, we list some properties on ū(t, x).

Lemma 2.6. The global solution (ū(t, x), v̄1(t, x)) of the Cauchy problem (2.21), (2.22) satisfies

⎧⎪⎨⎪⎩
ūx(t, x) � 0,

∣∣ūt(t, x)
∣∣� √

a1ūx(t, x), t � 0, x ∈ R,∥∥∥∥∂ i ū(t)

∂xi

∥∥∥∥
L∞(R)

� O (1)

(∥∥∥∥∂ i w(t)

∂xi

∥∥∥∥+
∥∥∥∥∂ i+1 w(t)

∂xi+1

∥∥∥∥+ �
1
8 (1 + t)−

5
8

)
, i = 1,2,3,4.

(2.43)

The proof of (2.43)1 can be found in [20] and by noticing ū(t, x) = w(t, x) + φ(t, x), (2.43)2 is a
direct consequence of Sobolev’s inequality, Lemma 2.2, and Lemma 2.3.

3. Energy estimates

This section is devoted to deducing some energy type estimates on the solution (U (t, x, y),

V 1(t, x, y), V 2(t, x, y)) of (1.13)–(1.17) based on the assumption that such a solution has been ex-
tended to the time interval [0, T ).

Recall that U (t, x, y) solves

Utt + Ut − a1Uxx − a2U yy + [
f (ū + U ) − f (ū)

]
x + g(ū + U )y = 0 (3.1)

with the initial data{
U (0, x, y) = U0(x, y) ∈ H2

(
R2
)
,

Ut(0, x, y) = V 0(x, y) ≡ −V 10x(x, y) − V 20y(x, y) ∈ H1
(
R2
)
.

(3.2)

If we consider the Cauchy problem (3.1), (3.2) in the following Banach space:

X(0, T ) =
{

U (t, x, y)

∣∣∣ U (t, x, y) ∈ C0(0, T ; H2(R2)), Ut(t, x, y) ∈ L2(0, T ; H1(R2)),

Ux(t, x, y), U y(t, x, y) ∈ L2(0, T ; H1(R2))

}
,

then we have the following result on the local solvability of the Cauchy problem (3.1), (3.2):

Lemma 3.1 (Local existence). Assume that U0(x, y) ∈ H2(R2), (V 10x(x, y), V 20y(x, y)) ∈ H1(R2), then there
exists a sufficiently small t1 , which depends only on ‖U0‖2 +‖V 0‖1 , such that the Cauchy problem (3.1), (3.2)
admits a unique U (t, x, y) ∈ X(0, t1) and for each 0 � t � t1{∥∥(U (t),∇U (t), Ut(t)

)∥∥2 � 4N1(0),∥∥∇(
Ut(t), Ux(t), U y(t)

)∥∥2 � 4N2(0).
(3.3)

Assume that the local solution U (t, x, y) constructed above has been extended to the time step
t = T � t1, we now turn to deduce certain energy type estimates on U (t, x, y) based on the following
a priori assumption

sup
(t,x,y)∈[0,T ]×R2

∣∣U (t, x, y)
∣∣� M, (3.4)

where M > 0 is some positive constant.
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To do so, for simplicity of notations, we set

Q 1(M) = sup
|u|�B(N0)+M

∣∣ f ′′(u)
∣∣2, Q 2(M) = sup

|u|�B(N0)+M

∣∣g′′(u)
∣∣2,

and our result on the basic energy estimates can be stated in the following lemma:

Lemma 3.2 (Basic energy estimates). Suppose that U (t, x, y) ∈ X(0, T ) solves the Cauchy problem (3.1), (3.2)
and satisfies the a priori assumption (3.4). If we assume further that the sub-characteristic condition (1.5) holds
with M= [−B(N0) − M, B(N0) + M], then there is a positive constant C4 > 0, which is independent of T , x,
�, and M, such that for t ∈ [0, T ], we have

∥∥Ut(t)
∥∥2 + ∥∥∇U (t)

∥∥2 + ∥∥U (t)
∥∥2 +

t∫
0

(∥∥Ut(s)
∥∥2 + ∥∥∇U (s)

∥∥2)
ds � C4N1(0). (3.5)

Proof. Set ⎧⎪⎪⎨⎪⎪⎩
k1 = sup

|u|�B(N0)+M

{[
f ′(u)

]2}
,

k2 = sup
|u|�B(N0)+M

{[
g′(u)

]2}
,

then sub-characteristic condition imposed in Lemma 3.2 implies that

k = k1

a1
+ k2

a2
∈ (0,1).

Consequently we can choose

λ = 3 − k

2 − k
,

and η > 0 sufficiently small such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1 − λ

2
a1 − 2η > 0, a2 − λ

2
a2 − 2η > 0,

λ − 1 − λk1

2a1
− λk2

2a2
− 2η > 0, 1 < λ < 2,

λa1

2
− η > 0,

λa2

2
− η > 0,

λ

2
− η > 0.

(3.6)

With the constants λ and η chosen as above, multiplying (3.1) by λUt + U and integrating the
result with respect to t , x, y over [0, T ] × R2, we have by some integrations by parts that

1

2

∥∥U (t)
∥∥2 + λ

2

∥∥Ut(t)
∥∥2 + λa1

2

∥∥Ux(t)
∥∥2 + λa2

2

∥∥U y(t)
∥∥2

+
t∫

0

(
(λ − 1)

∥∥Ut(s)
∥∥2 + a1

∥∥Ux(s)
∥∥2 + a2

∥∥U y(s)
∥∥2)

ds +
∫

2

(U Ut)(t, x, y)dx dy
R
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=
∫
R2

(U Ut)(0, x, y)dx dy + 1

2

∥∥U (0)
∥∥2 + λ

2

∥∥Ut(0)
∥∥2 + λa1

2

∥∥Ux(0)
∥∥2 + λa2

2

∥∥U y(0)
∥∥2

−
t∫

0

∫
R2

{
(U + λUt)

[(
f (ū + U ) − f (ū)

)
x + g(ū + U )y

]}
(s, x, y)ds dx dy. (3.7)

Due to

−
t∫

0

∫
R2

{
(U + λUt)

[(
f (ū + U ) − f (ū)

)
x + g(ū + U )y

]}
(s, x, y)ds dx dy

= −
t∫

0

∫
R2

{
U
[

f (ū + U ) − f (ū)
]

x

}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I1

−
t∫

0

∫
R2

{
U g(U + ū)y

}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I2

− λ

t∫
0

∫
R2

{
Ut
[

f (ū + U ) − f (ū)
]

x

}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I3

− λ

t∫
0

∫
R2

{
Ut g(U + ū)y

}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I4

,

to prove Lemma 3.2, we only need to control I j ( j = 1,2,3,4) suitably. For this purpose, we have
from Lemma 2.6 that

I1 = −
t∫

0

∫
R2

{[ ū+U∫
ū

f (z)dz − f (ū)U

]
x

+ [
f (ū + U ) − f (ū) − f ′(ū)U

]
ūx

}
(s, x, y)ds dx dy

= −
t∫

0

∫
R2

(
f (ū + U ) − f (ū) − f ′(ū)U

)
(s, x, y)ūx(s, x)ds dx dy

� 0 (3.8)

and
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I2 =
t∫

0

∫
R2

{
U y g(U + ū)

}
(s, x, y)dx dy ds

=
t∫

0

∫
R2

{ ū+U∫
ū

g(z)dz

}
y

(s, x, y)ds dx dy

= 0. (3.9)

As to I4, the Cauchy–Schwarz inequality gives

|I4| � λk2

2a2

t∫
0

∥∥Ut(s)
∥∥2

ds + λa2

2

t∫
0

∥∥U y(s)
∥∥2

ds. (3.10)

At last we deal with I3. To this end, due to

I3 = −λ

t∫
0

∫
R2

{
Ut ūx

[
f ′(ū + U ) − f ′(ū)

]}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I1
3

− λ

t∫
0

∫
R2

{
Ut Ux f ′(ū + U )

}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I2
3

, (3.11)

we now estimate I i
3 (i = 1,2) term by term. Firstly we have from the Cauchy–Schwarz inequality

that

∣∣I2
3

∣∣� λk1

2a1

t∫
0

∥∥Ut(s)
∥∥2

ds + λa1

2

t∫
0

∥∥Ux(s)
∥∥2

ds. (3.12)

For I1
3, notice from the sub-characteristic condition (1.5), (2.23), (2.24), and the fact the f (u) is suffi-

ciently smooth that

∣∣ f ′(ū + U ) − f ′(ū)
∣∣� {

max
|U |�1

∣∣∣∣ f ′(ū + U ) − f ′(ū)

U

∣∣∣∣+ max
|U |�1

∣∣∣∣ f ′(ū + U ) − f ′(ū)

U

∣∣∣∣}|U |

�
{

max
|U |�1

∣∣∣∣ f ′(ū + U ) − f ′(ū)

U

∣∣∣∣+ max
|U |�1

∣∣ f ′(ū + U ) − f ′(ū)
∣∣}|U |

�
{

max
|u|�1+B(N0)

∣∣ f ′′(u)
∣∣+ max

|U |�1

∣∣ f ′(ū + U ) − f ′(ū)
∣∣}|U |

� O (1)|U |, (3.13)

we have



Q. Zou et al. / J. Differential Equations 253 (2012) 563–603 585
∣∣I1
3

∣∣� O (1)

t∫
0

∫
R2

∣∣ūx(s, x)
∣∣2U 2(s, x, y)dx dy ds + η

t∫
0

∥∥Ut(s)
∥∥2

ds

� O (1)

t∫
0

∥∥ūx(s)
∥∥2

L∞
∥∥U (s)

∥∥2
ds + η

t∫
0

∥∥Ut(s)
∥∥2

ds. (3.14)

Putting (3.12) and (3.14) into (3.11), we get that

|I3| � O (1)

t∫
0

∥∥ūx(s)
∥∥2

L∞
∥∥U (s)

∥∥2
ds

+
(

λk1

2a1
+ η

) t∫
0

∥∥Ut(s)
∥∥2

ds + λa1

2

t∫
0

∥∥Ux(s)
∥∥2

ds. (3.15)

Substituting (3.8), (3.9), (3.10), and (3.15) into (3.7), we finally arrive at

1

2

∥∥U (t)
∥∥2 + λ

2

∥∥Ut(t)
∥∥2 + λa1

2

∥∥Ux(t)
∥∥2 + λa2

2

∥∥U y(t)
∥∥2 +

∫
R2

(U Ut)(t, x, y)dx dy

+
t∫

0

{(
λ − 1 − λk1

2a1
− λk2

2a2
− η

)∥∥Ut(s)
∥∥2 + (2 − λ)a1

2

∥∥Ux(s)
∥∥2 + (2 − λ)a2

2

∥∥U y(s)
∥∥2
}

ds

�
∫
R2

U Ut(0, x, y)dx dy + 1

2

∥∥U (0)
∥∥2 + λ

2

∥∥Ut(0)
∥∥2 + λa1

2

∥∥Ux(0)
∥∥2 + λa2

2

∥∥U y(0)
∥∥2

+ O (1)

t∫
0

∥∥ūx(s)
∥∥2

L∞
∥∥U (s)

∥∥2
ds. (3.16)

(3.6), (3.16) together with the Gronwall inequality implies

∥∥(U (t), Ux(t), U y(s), Ut(t)
)∥∥2 +

t∫
0

∥∥(Ut(s), Ux(s), U y(s)
)∥∥2

ds

� O (1)N1(0)exp

(
O (1)

t∫
0

∥∥ūx(s)
∥∥2

L∞ ds

)
. (3.17)

On the other hand, Lemma 2.2, Lemma 2.4, Lemma 2.5, and Lemma 2.6 tell us that

t∫
0

∥∥ūx(s)
∥∥2

L∞ ds � O (1)

t∫
0

(∥∥wx(s)
∥∥2 + ∥∥wxx(s)

∥∥2 + �
1
4 (1 + s)−

5
4
)

ds

� O (1)�
1
4 . (3.18)
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Having obtained (3.17) and (3.18), (3.5) follows immediately. This completes the proof of
Lemma 3.2. �

Now we turn to deduce the second-order energy type estimates on U (t, x, y). For result in this
direction, we have

Lemma 3.3. Under the assumptions listed in Lemma 3.1, if we assume further that

� · (Q 8
1 (M) + Q 8

2 (M)
)
� 1, (3.19)

we have

∥∥(∇Ut ,∇Ux,∇U y)(t)
∥∥2 +

t∫
0

∥∥(∇Ut,∇Ux,∇U y)(s)
∥∥2

ds

� C5
(
N1(0) + N2(0)

)
exp

(
C5
(

Q 2
1 (M) + Q 2

1 (M)
)
N1(0)

)
. (3.20)

Here C5 is a positive constant independent of �, t, x, y, and M.

Proof. With the constants λ and η chosen as in Lemma 3.2, we have by performing ∇ to (3.1),
multiplying the resulting identity by ∇U + λ∇Ut , and integrating the final result with respect to t , x,
y over [0, t] × R2 that

1

2

∥∥∇U (t)
∥∥2 + λ

2

∥∥∇Ut(t)
∥∥2 + λa1

2

∥∥∇Ux(t)
∥∥2 + λa2

2

∥∥∇U y(t)
∥∥2

+
t∫

0

(
(λ − 1)

∥∥∇Ut(s)
∥∥2 + a1

∥∥∇Ux(s)
∥∥2 + a2

∥∥∇U y(s)
∥∥2)

ds

+
∫
R2

∇U (t, x, y) · ∇Ut(t, x, y)dx dy

=
∫
R2

∇U (0, x, y) · ∇Ut(0, x, y)dx dy + 1

2

∥∥∇U (0)
∥∥2 + λ

2

∥∥∇Ut(0)
∥∥2

+ λa1

2

∥∥∇Ux(0)
∥∥2 + λa2

2

∥∥∇U y(0)
∥∥2

+
t∫

0

∫
R2

{∇Ux · ∇[
f (ū + U ) − f (ū)

]}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I5

+
t∫

0

∫
R2

{∇U y · ∇[
g(U + ū) − g(ū)

]}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I
6
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− λ

t∫
0

∫
R2

{∇Ut · ∇[
f (ū + U ) − f (ū)

]
x

}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I7

− λ

t∫
0

∫
R2

{∇Ut · ∇g(U + ū)y
}
(s, x, y)ds dx dy

︸ ︷︷ ︸
I8

. (3.21)

Now we deal with I j ( j = 5,6,7,8) term by term. To this end, we first deduce from the sub-
characteristic condition (1.5) with M= [−B(N0)− M, B(N0)+ M], the estimates (3.5), (3.13), and the
a priori assumption (3.4) that

|I5| � η

t∫
0

∥∥∇Ux(s)
∥∥2

ds + O (1)

t∫
0

∥∥∇U (s)
∥∥2

ds + O (1)

t∫
0

∥∥ūx(s)
∥∥2

L∞
∥∥U (s)

∥∥2
ds

� η

t∫
0

∥∥∇Ux(s)
∥∥2

ds + O (1)N1(0)

� O (1)N1(0) + η

t∫
0

∥∥∇Ux(s)
∥∥2

ds, (3.22)

and

|I6| � η

t∫
0

∥∥∇U y(s)
∥∥2

ds + O (1)

t∫
0

∥∥∇U (s)
∥∥2

ds + O (1)

t∫
0

∥∥ūx(s)
∥∥2

L∞
∥∥U (s)

∥∥2
ds

� η

t∫
0

∥∥∇U y(s)
∥∥2

ds + O (1)N1(0)

� O (1)N1(0) + η

t∫
0

∥∥∇U y(s)
∥∥2

ds. (3.23)

The estimation on I7 is a little bitter complex. To control such a term, notice that

|I7| � λ

t∫
0

∫
R2

(∇Ut · f ′(ū + U )∇Ux
)
(s, x, y)dx dy ds

︸ ︷︷ ︸
I1
7

+ λ

t∫
0

∫
R2

(∇Ut · [ f ′(ū + U ) − f ′(ū)
]∇ūx

)
(s, x, y)dx dy ds

︸ ︷︷ ︸
I2

7
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+ λ

t∫
0

∫
R2

(∇Ut · f ′′(ū + U )ūx∇U
)
(s, x, y)dx dy ds

︸ ︷︷ ︸
I3
7

+ λ

t∫
0

∫
R2

(∇Ut · f ′′(ū + U )Ux∇U
)
(s, x, y)dx dy ds

︸ ︷︷ ︸
I4
7

+ λ

t∫
0

∫
R2

(∇Ut · f ′′(ū + U )Ux∇ū
)
(s, x, y)dx dy ds

︸ ︷︷ ︸
I5
7

+ λ

t∫
0

∫
R2

(∇Ut · [ f ′′(ū + U ) − f ′′(ū)
]∇ūūx

)
(s, x, y)dx dy ds

︸ ︷︷ ︸
I6
7

, (3.24)

we have from the Cauchy–Schwarz inequality that

I1
7 � λk1

2a1

t∫
0

∥∥∇Ut(s)
∥∥2

ds + λa1

2

t∫
0

∥∥∇Ux(s)
∥∥2

ds. (3.25)

On the other hand, Lemma 2.6, (3.5), (3.13), (3.18) together with the assumption (3.19) imply
that

∣∣I2
7

∣∣� η

10

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)

t∫
0

∥∥ūxx(s)
∥∥2

L∞
∥∥U (s)

∥∥2
ds

� η

10

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)N1(0), (3.26)

∣∣I3
7

∣∣+ ∣∣I5
7

∣∣� η

10

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)Q 2
1 (M)

t∫
0

∥∥ūx(s)
∥∥2

L∞
∥∥∇U (s)

∥∥2
ds

� η

10

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)N1(0), (3.27)

and
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∣∣I6
7

∣∣� η

10

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)Q 2
1 (M)

t∫
0

∥∥ūx(s)
∥∥4

L∞
∥∥U (s)

∥∥2
ds

� η

10

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)N1(0). (3.28)

Here in deducing (3.28), similar to that of (3.13), we have used the fact that

∣∣ f ′′(ū + U ) − f ′′(ū)
∣∣� max

{
max

|u|�1+B(N0)

∣∣ f ′′′(u)
∣∣,2 max

|u|�B(N0)+M

∣∣ f ′′(u)
∣∣}|U |

� O (1)
(
1 + Q 1(M)

)|U |. (3.29)

Now for I4
7, noticing that (ii) of Corollary 2.1 with f = Ux , g = ∇U implies

∫
R2

(|Ux|2|∇U |2)(s, x, y)dx dy �
∥∥∇U (s)

∥∥2(∥∥∇Ux(s)
∥∥2 + ∥∥∇U y(s)

∥∥2)
, (3.30)

we can get that

∣∣I4
7

∣∣� η

10

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)Q 2
1 (M)

t∫
0

∫
R2

(|Ux|2|∇U |2)(s, x, y)dx dy

� η

10

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)Q 2
1 (M)

t∫
0

∥∥∇U (s)
∥∥2(∥∥∇Ux(s)

∥∥2 + ∥∥∇U y(s)
∥∥2)

ds. (3.31)

Inserting (3.25)–(3.28), (3.31) into (3.24), we can conclude that

|I7| � O (1)N1(0) +
(

λk1

2a1
+ 2

5
η

) t∫
0

∥∥∇Ut(s)
∥∥2

ds + λa1

2

t∫
0

∥∥∇Ux(s)
∥∥2

ds

+ O (1)Q 2
1 (M)

t∫
0

∥∥∇U (s)
∥∥2(∥∥∇Ux(s)

∥∥2 + ∥∥∇U y(s)
∥∥2)

ds. (3.32)

At last, for I8, similar to that of I7, we have

|I8| � O (1)N1(0) +
(

λk2

2a2
+ 2

5
η

) t∫
0

∥∥∇Ut(s)
∥∥2

ds + λa2

2

t∫
0

∥∥∇U y(s)
∥∥2

ds

+ O (1)Q 2
2 (M)

t∫ ∥∥∇U (s)
∥∥2(∥∥∇Ux(s)

∥∥2 + ∥∥∇U y(s)
∥∥2)

ds. (3.33)
0
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Putting (3.21)–(3.23), (3.32), (3.33) together, we finally arrive at

1

2

∥∥∇U (t)
∥∥2 + λ

2

∥∥∇Ut(t)
∥∥2 + λa1

2

∥∥∇Ux(t)
∥∥2 + λa2

2

∥∥∇U y(t)
∥∥2

+
t∫

0

((
λ − 1 − λk1

2a1
− λk2

2a2
− η

)∥∥∇Ut(s)
∥∥2 +

(
(2 − λ)a1

2
− η

)∥∥∇Ux(s)
∥∥2

+
(

(2 − λ)a2

2
− η

)∥∥∇U y(s)
∥∥2
)

ds +
∫
R2

∇U (t, x, y) · ∇Ut(t, x, y)dx dy

� O (1)
(
N1(0) + N2(0)

)
+ O (1)

(
Q 2

1 (M) + Q 2
2 (M)

) t∫
0

∥∥∇U (s)
∥∥2∥∥(∇Ux(s),∇U y(s)

)∥∥2
ds. (3.34)

Having obtained (3.34), (3.20) follows from (3.6) and the Gronwall inequality and this completes
the proof of Lemma 3.3. �

It is worth to pointing out that, even under the assumption (3.19), the right hand side of the
estimate (3.20) does depend on M , we note, however, that if both f ′′(u) and g′′(u) are uniformly
bounded, then the assumption (3.19) is unnecessary and we have from Lemma 3.2 and Lemma 3.3
that:

Corollary 3.1. In addition to the assumption listed in Lemma 3.2, we assume further that both f ′′(u) and g′′(u)

are uniformly bounded, then we have

∥∥U (t)
∥∥2

2 + ∥∥Ut(t)
∥∥2

1 +
t∫

0

(∥∥Ut(s)
∥∥2

1 + ∥∥∇U (s)
∥∥2

1

)
ds

� C6
(
N1(0) + N2(0)

)
exp

(
C6N1(0)

)
. (3.35)

Here C6 > 0 is some positive constant independent of t, x, y, and M.

As pointed out before, the right hand side of the estimate (3.20) obtained in Lemma 3.3 does
depend on M , what we are concerned with in the following is the following problem: Under which
conditions on the nonlinear flux functions f (u) and g(u), can the second-order energy type esti-
mates on U (t, x, y) be bounded by some M-independent positive constant which depends only on
the H2(R2)-norm of the initial data? For result in this direction, we have

Lemma 3.4. In addition to the assumptions listed in Lemma 3.2, we assume further that f ′′′(u) and g′′′(u) are
uniformly bounded, then we have

∥∥(∇Ut(t),∇Ux(t),∇U y(t)
)∥∥2 +

t∫
0

∥∥(∇Ut(s),∇Ux(s),∇U y(s)
)∥∥2

ds

� C7
(
N1(0) + N2(0)

)5
exp

(
C7N4

1(0)
)
. (3.36)

Here C7 is some positive constant independent of t, x, y, and M.



Q. Zou et al. / J. Differential Equations 253 (2012) 563–603 591
Proof. Compared with that of Lemma 3.3, the main new points in deducing Lemma 3.4 are the fol-
lowing:

• We do not use the smallness of the parameter � to control the possible growth of the solutions
caused by the nonlinearity of the equation under consideration, i.e. the assumption (3.19) is not
imposed in Lemma 3.4.

• The right hand side of the estimate (3.36) is independent of M .

The main differences to deduce (3.36) are the way to control I7 and I8, especially the following
terms

I9 = I3
7 + I5

7 + I6
7 − λ

t∫
0

∫
R2

{
g′′(ū + U )U y∇Ut · ∇ū

}
(s, x, y)dx dy ds (3.37)

and

I10 = −λ

t∫
0

∫
R2

{
f ′′(ū + U )Ux∇Ut · ∇U + g′′(ū + U )U y∇Ut · ∇U

}
(s, x, y)ds dx dy

= −λ

t∫
0

∫
R2

{
f ′′(ū + U )U 2

x Uxt
}
(s, x, y)dx dy ds

︸ ︷︷ ︸
I1
10

− λ

t∫
0

∫
R2

{
g′′(ū + U )U 2

y U yt
}
(s, x, y)dx dy ds

︸ ︷︷ ︸
I2
10

− λ

t∫
0

∫
R2

{
f ′′(ū + U )UxU y U yt

}
(s, x, y)dx dy ds

︸ ︷︷ ︸
I3
10

− λ

t∫
0

∫
R2

{
g′′(ū + U )UxU y Uxt

}
(s, x, y)dx dy ds

︸ ︷︷ ︸
I4
10

. (3.38)

In fact from Corollary 2.1, Lemma 3.2, the facts that | f ′′′(u)| � O (1), | f ′′(u)| � O (1)(1 + |u|), we
can deduce that

|I9| � η

5

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)

t∫
0

∫
2

{(
1 + |U |2)|∇U |2 + |U |2|ūx|4

}
(s, x, y)dx dy ds
R
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� O (1)N1(0) + η

5

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)

t∫
0

∥∥U (s)
∥∥∥∥∇U (s)

∥∥2∥∥∇(
Ux(s), U y(s)

)∥∥ds

� O (1)
(
N1(0) + N1(0)

)3 + η

5

t∫
0

∥∥∇(
Ut(s), Ux(s), U y(s)

)∥∥2
ds. (3.39)

Here it is worth pointing out that since our main purpose is trying to deal with the case with large
initial perturbation, we have assumed that N1(0) � 1 and N2(0) � 1 in this lemma.

As to I i
10 (i = 1,2,3,4), due to

I1
10 = −λ

3

∫
R2

{
f ′′(ū + U )U 3

x

}
(t, x, y)dx dy + λ

3

∫
R2

{
f ′′(ū + U )U 3

x

}
(0, x, y)dx dy

+ λ

3

t∫
0

∫
R2

{
f ′′′(ū + U )U 3

x (ūt + Ut)
}
(s, x, y)dx dy ds, (3.40)

we have from Corollary 2.1, Lemma 3.2, the Cauchy–Schwarz inequality and the fact that | f ′′(u)| �
O (1)(1 + |u|) that

λ

3

∣∣∣∣∫
R2

{
f ′′(ū + U )U 3

x

}
(t, x, y)dx dy

∣∣∣∣� O (1)

∫
R2

{(
1 + |U |)|Ux|3

}
(t, x, y)dx dy

� O (1)
(∥∥U (t)

∥∥ 1
2
∥∥∇U (t)

∥∥2∥∥∇Ux(t)
∥∥ 3

2 + ∥∥∇U (t)
∥∥2∥∥∇Ux(t)

∥∥)
� η

10

∥∥∇Ux(t)
∥∥2 + O (1)N1(0)5

and

λ

3

∣∣∣∣∫
R2

{
f ′′(ū + U )U 3

x

}
(0, x, y)dx dy

∣∣∣∣� O (1)N1(0)
5
4 N2(0)

3
4 .

As to the last term in the right hand side of (3.40), we have from Corollary 2.1, Lemma 3.2, and
the fact that f ′′′(u) is uniformly bounded that

∣∣∣∣∣λ3
t∫

0

∫
R2

{
f ′′′(ū + U )U 3

x (ūt + Ut)
}
(s, x, y)dx dy ds

∣∣∣∣∣
� O (1)

t∫
0

(∥∥Ux(s)
∥∥2∥∥∇xU (s)

∥∥+ ∥∥Ux(s)
∥∥ 3

2
∥∥∇xUx(s)

∥∥ 3
2
∥∥Ut(s)

∥∥ 1
2
∥∥∇Ut(s)

∥∥ 1
2
)

ds

� η

10

t∫ ∥∥∇Ut(s)
∥∥2

ds + O (1)N1(0)3

t∫ ∥∥∇U (s)
∥∥2∥∥∇Ux(s)

∥∥2
ds.
0 0
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Inserting the above three estimates into to (3.40), we can deduce that

∣∣I1
10

∣∣� O (1)
(
N1(0) + N2(0)

)5 + η

20

∥∥∇Ux(t)
∥∥2

+ η

20

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)N1(0)3

t∫
0

∥∥∇U (s)
∥∥2∥∥∇Ux(s)

∥∥2
ds. (3.41)

Similarly we have

∣∣I2
10

∣∣� O (1)
(
N1(0) + N2(0)

)5 + η

20

∥∥∇U y(t)
∥∥2

+ η

20

t∫
0

∥∥∇Ut(s)
∥∥2

ds + O (1)N1(0)3

t∫
0

∥∥∇U (s)
∥∥2∥∥∇U y(s)

∥∥2
ds. (3.42)

Now we turn to deal with I3
10, to this end, we have from

2Uxy Ut U y f ′′(ū + U ) = [
f ′(ū + U )U y Uxy

]
t − [

f ′(ū + U )U y Uty
]

x

+ [
f ′(ū + U )U y Ut Ux

]
y − f ′′(ū + U )ūt U y Uty

+ f ′′(ū + U )ūxU y Uty − f ′′′(ū + U )UxU 2
y Ut

− f ′′(ū + U )UxUt U yy, (3.43)

and

U yy = 1

a2

{
Utt + Ut − a1Uxx + (

f (ū + U ) − f (ū)
)

x + g(ū + U )y
}

that

2Uxy Ut U y f ′′(ū + U ) = [
f ′(ū + U )U y Uxy

]
t − [

f ′(ū + U )U y Uty
]

x

+ [
f ′(ū + U )U y Ut Ux

]
y − f ′′(ū + U )ūt U y Uty

+ f ′′(ū + U )ūxU y Uty − f ′′′(ū + U )UxU 2
y Ut

− f ′′(ū + U )UxUt Utt

a2
+ f ′′(ū + U )UxUt Ut

a2

+ f ′′(ū + U )[ f (ū + U ) − f (ū)]xUxUt

a2

+ f ′′(ū + U )g(ū + U )y UxUt

a2

− a1 f ′′(ū + U )UxUt Uxx
. (3.44)
a2
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Consequently

I3
10 = − λ

2

∫
R2

{
f ′(ū + U )U y Uxy

}
(s, x, y)dx dy

∣∣∣∣s=t

s=0︸ ︷︷ ︸
J 1

103

+ λ

2

t∫
0

∫
R2

{
f ′′(ū + U )(ūt − ūx)U y Uty

}
(s, x, y)dx dy ds

︸ ︷︷ ︸
J 2

103

+ λ

2

t∫
0

∫
R2

{
f ′′′(ū + U )UxU 2

y Ut
}
(s, x, y)dx dy ds

︸ ︷︷ ︸
J 3

103

+ λ

2a2

t∫
0

∫
R2

{
f ′′(ū + U )UxUt Utt

}
(s, x, y)dx dy ds

︸ ︷︷ ︸
J 4

103

− λ

2a2

t∫
0

∫
R2

{
f ′′(ū + U )UxU 2

t

}
(s, x, y)dx dy ds

︸ ︷︷ ︸
J 5

103

− λ

2a2

t∫
0

∫
R2

{
f ′′(ū + U )

(
f (ū + U ) − f (ū)

)
xUxUt

}
(s, x, y)dx dy ds

︸ ︷︷ ︸
J 6

103

− λ

2a2

t∫
0

∫
R2

{
f ′′(ū + U )g(ū + U )y UxUt

}
(s, x, y)dx dy ds

︸ ︷︷ ︸
J 7

103

− λa1

2a2

t∫
0

∫
R2

{
f ′′(ū + U )UxUt Uxx

}
(s, x, y)dx dy ds

︸ ︷︷ ︸
J 8

103

(3.45)

and J i
103 (i = 1,2, . . . ,8) can be estimated as in the following: First from the sub-characteristic condi-

tion (1.5) with M= [−B(N0)− M, B(N0)+ M], Corollary 2.1, Lemma 3.2, Cauchy–Schwarz’s inequality,
the facts that f ′′′(u) is uniformly bounded and | f ′′(u)| � O (1)(1 + |u|) that∣∣ J 1

103

∣∣� O (1)
(
N1(0) + N2(0)

)+ η ∥∥∇U y(t)
∥∥2

, (3.46)

20



Q. Zou et al. / J. Differential Equations 253 (2012) 563–603 595
and

∑
i 
=1,4,8

∣∣ J i
103

∣∣� O (1)

t∫
0

∫
R2

{(
1 + |U |)|∇U |(|∇Ut | + |Ut |

(|Ut | + |U | + |∇U |))}(s, x, y)dx dy ds

+ O (1)

t∫
0

∫
R2

∣∣Ut(s, x, y)
∣∣∣∣∇U (s, x, y)

∣∣3 dx dy ds

� O (1)N1(0) + η

20

t∫
0

∥∥∇Ut(s)
∥∥2

ds

+ O (1)

t∫
0

∫
R2

{|∇U |(|U |2(|∇U | + |Ut |
)+ (

1 + |U |)U 2
t

)}
(s, x, y)dx dy ds

+ O (1)

t∫
0

∫
R2

{|∇U |2|Ut |
(|U | + |∇U |)}(s, x, y)dx dy ds

� O (1)
(
N1(0) + N1(0)3)+ η

20

t∫
0

∥∥∇(
Ut(s), Ux(s), U y(s)

)∥∥2
ds

+ O (1)N1(0)3

t∫
0

∥∥∇U (s)
∥∥2∥∥∇(

Ux(s), U y(s)
)∥∥2

ds. (3.47)

Now for J 4
103, we have from Corollary 2.1, Lemma 2.2, the facts that | f ′′′(u)| � O (1), | f ′′(u)| �

O (1)(1 + |u|), and some integrations by parts that

J 4
103 = λ

4a2

∫
R2

{
f ′′(ū + U )UxU 2

t

}
(s, x, y)dx dy

∣∣∣∣s=t

s=0

+ λ

12a2

t∫
0

∫
R2

{
f ′′′(ū + U )U 3

t (ūx + Ux)
}
(s, x, y)dx dy ds

− λ

4a2

t∫
0

∫
R2

{
f ′′′(ū + U )U 2

t Ux(ūt + Ut)
}
(s, x, y)dx dy ds

� O (1)

∫
R2

{(
1 + |U |)|Ux|U 2

t

}
(s, x, y)dx dy

∣∣∣∣s=t

s=0

+ O (1)

t∫
0

∫
2

{(
1 + |Ux|

)|Ut |3 + (
1 + |Ut |

)|Ux|U 2
t

}
(s, x, y)dx dy ds
R
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� O (1)
(
N1(0) + N2(0)

)5 + η

20

∥∥∇(Ut , Ux)(t)
∥∥2 + η

20

t∫
0

∥∥∇Ut(s)
∥∥2

ds

+ O (1)N1(0)3

t∫
0

∥∥∇U (s)
∥∥2∥∥∇Ux(s)

∥∥2
ds. (3.48)

At last for J 8
103, due to

J 8
103 = λa1

12a2

∫
R2

{
f ′′(ū + U )U 3

x

}
(s, x, y)dx dy

∣∣∣∣s=t

s=0

− λa1

12a2

t∫
0

∫
R2

{
f ′′′(ū + U )(ūt + Ut)U 3

x

}
(s, x, y)dx dy ds

+ λa1

4a2

t∫
0

∫
R2

{
f ′′′(ū + U )(ūx + Ux)U 2

x Ut
}
(s, x, y)dx dy ds,

we have by repeating the argument to estimate J 4
103 that

∣∣ J 8
103

∣∣� O (1)
(
N1(0) + N2(0)

)5 + η

20

∥∥∇(Ut , Ux)(t)
∥∥2 + η

20

t∫
0

∥∥∇Ut(s)
∥∥2

ds

+ O (1)N1(0)3

t∫
0

∥∥∇U (s)
∥∥2∥∥∇Ux(s)

∥∥2
ds. (3.49)

Inserting (3.46)–(3.49) into (3.45), we finally arrive at

∣∣I3
10

∣∣� O (1)
(
N1(0) + N2(0)

)5 + η

10

∥∥∇(Ut, Ux, U y)(t)
∥∥2 + η

10

t∫
0

∥∥∇(Ut , Ux, U y)(s)
∥∥2

ds

+ O (1)N1(0)3

t∫
0

∥∥∇U (s)
∥∥2∥∥∇(Ut, Ux, U y)(s)

∥∥2
ds. (3.50)

Repeating the argument used above, we can also get that

∣∣I4
10

∣∣� O (1)
(
N1(0) + N2(0)

)5 + η

10

∥∥∇(Ut, Ux, U y)(t)
∥∥2 + η

10

t∫
0

∥∥∇(Ut , Ux, U y)(s)
∥∥2

ds

+ O (1)N1(0)3

t∫ ∥∥∇U (s)
∥∥2∥∥∇(Ut, Ux, U y)(s)

∥∥2
ds. (3.51)
0



Q. Zou et al. / J. Differential Equations 253 (2012) 563–603 597
Putting (3.38), (3.41), (3.42), (3.50) and (3.51) together, we can deduce that

|I10| � O (1)
(
N1(0) + N2(0)

)5 + η

5

∥∥∇(Ut , Ux, U y)(t)
∥∥2 + η

5

t∫
0

∥∥∇(Ut, Ux, U y)(s)
∥∥2

ds

+ O (1)N1(0)3

t∫
0

∥∥∇U (s)
∥∥2∥∥∇(Ut , Ux, U y)(s)

∥∥2
ds. (3.52)

(3.25), (3.26), (3.39) together with (3.52) imply

|I7| � O (1)
(
N1(0) + N2(0)

)5 + η

2

∥∥∇(Ut , Ux, U y)(t)
∥∥2

+ O (1)N1(0)3

t∫
0

∥∥∇U (s)
∥∥2∥∥∇(Ut, Ux, U y)(s)

∥∥2
ds +

(
λk1

2a1
+ η

2

) t∫
0

∥∥∇Ut(s)
∥∥2

ds

+
(

λa1

2
+ η

2

) t∫
0

∥∥∇Ux(s)
∥∥2

ds + η

2

t∫
0

∥∥∇U y(s)
∥∥2

ds, (3.53)

while for I8, we have by employing the argument used above that

|I8| � O (1)
(
N1(0) + N2(0)

)5 + η

2

∥∥∇(Ut , Ux, U y)(t)
∥∥2

+ O (1)N1(0)3

t∫
0

∥∥∇U (s)
∥∥2∥∥∇(Ut, Ux, U y)(s)

∥∥2
ds +

(
λk2

2a2
+ η

2

) t∫
0

∥∥∇Ut(s)
∥∥2

ds

+
(

λa2

2
+ η

2

) t∫
0

∥∥∇U y(s)
∥∥2

ds + η

2

t∫
0

∥∥∇Ux(s)
∥∥2

ds. (3.54)

Inserting (3.22), (3.24), (3.53), (3.54) into (3.21) yields

1

2

∥∥∇U (t)
∥∥2 +

(
λ

2
− η

)∥∥∇Ut(t)
∥∥2 +

(
λa1

2
− η

)∥∥∇Ux(t)
∥∥2 +

(
λa2

2
− η

)∥∥∇U y(t)
∥∥2

+
t∫

0

((
λ − 1 − λk1

2a1
− λk2

2a2
− η

)∥∥∇Ut(s)
∥∥2 +

(
(2 − λ)a1

2
− 2η

)∥∥∇Ux(s)
∥∥2

+
(

(2 − λ)a2

2
− 2η

)∥∥∇U y(s)
∥∥2
)

ds +
∫
R2

∇U (t, x, y) · ∇Ut(t, x, y)dx dy

� O (1)
(
N1(0) + N2(0)

)5 + O (1)N1(0)3

t∫ ∥∥∇U (s)
∥∥2∥∥∇(

Ut(s), Ux(s), U y(s)
)∥∥2

ds. (3.55)
0
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(3.55), (3.5), (3.6) together with the Gronwall inequality imply

∥∥∇(U , Ut , Ux, U y)(t)
∥∥2 +

t∫
0

∥∥∇(Ut, Ux, U y)(s)
∥∥2

ds

� O (1)
(
N1(0) + N2(0)

)5
exp

(
O (1)N1(0)4). (3.56)

This completes the proof of Lemma 3.4. �
4. The proofs of our main results

This section is devoted to proving our main results. To make the presentation easy to read, we
divide this section into two subsections and the first one is concentrated on the proof of Theo-
rem 1.1.

4.1. The proof of Theorem 1.1

Now we turn to prove Theorem 1.1 which is based on the continuation argument and the energy
type estimates established in Lemma 3.2 and Lemma 3.3.

Under the conditions listed in Theorem 1.1, we have from the local existence result Lemma 3.1
that the Cauchy problem (3.1), (3.2) admits a unique smooth solution U (t, x, y) ∈ X(0, t1) on

∏
t1

=
{(t, x, y) | 0 � t � t1, (x, y) ∈ R2}, where t1 depends only on ‖U0‖2 and ‖V 0‖1 and U (t, x, y) satis-
fies {∥∥(U (t),∇U (t), Ut(t)

)∥∥2 � 4N1(0),∥∥∇(
Ut(t), Ux(t), U y(t)

)∥∥2 � 4N2(0)
(4.1)

for all 0 � t � t1.
The estimate (4.1) and the Gagliardo–Nirenberg inequality together with the assumption (1.22)

imposed on the initial perturbation tell us that

∥∥U (t)
∥∥

L∞ � D0
∥∥U (t)

∥∥ 1
2
∥∥D2U (t)

∥∥ 1
2

� 2D0
4
√

N1(0)N2(0)

� 2D0
4
√

D1 D2�α
(
1 + �−β

)
� 2D0

4
√

2D1 D2 =: M̃1 (4.2)

holds true for all 0 � t � t1. Here D0 is the Sobolev constant.
Since M̃1 = 2D0

4
√

2D1 D2 is independent of �, we can find a sufficiently small positive constant
�1 ∈ (0,1] such that for 0 < � � �1

� · (Q 1(M̃1) + Q 2(M̃1)
)16 � 1, �α

(
Q 1(M̃1) + Q 2(M̃1)

)2 � 1, D1 · �α � 1, (4.3)

thus if we assume that the sub-characteristic condition (1.5) holds with M = [−B(N0) − M̃1,

B(N0)+ M̃1], we know that the assumptions listed in Lemma 3.2 and Lemma 3.3 are satisfied with the
constant M in the a priori assumption (3.4) being replaced by M̃1 and consequently we can deduce
from Lemma 3.2, Lemma 3.3, and Lemma 3.5 that
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∥∥(U (t), Ut(t),∇U (t)
)∥∥2 � C4N1(0) � C4 D1�

α,∥∥∇(
Ut(t), Ux(t), U y(t)

)∥∥2 � C5
(
N1(0) + N2(0)

)
exp

(
C5
(

Q 2
1 (M̃1) + Q 2(M̃1)

)
N1(0)

)
� C5

(
N1(0) + N2(0)

)
exp

(
C5 D1

(
Q 2

1 (M̃1) + Q 2
2 (M̃1)

)
�α
)

� C5
(
N1(0) + N2(0)

)
exp(C5 D1)

(4.4)

holds for all 0 � t � t1.
Now take (U (t1, x, y), Ut(t1, x, y)) as initial data, we have from Lemma 3.1 again that the local

solution U (t, x, y) constructed above can be extended to the time step t = t1 +t2 such that U (t, x, y) ∈
X(0, t1 + t2) satisfying⎧⎪⎪⎨⎪⎪⎩

∥∥(U (t), Ut(t),∇U (t)
)∥∥2 � 4

∥∥(U (t1), Ut(t1),∇U (t1)
)∥∥2 � 4C4N1(0) � 4C4 D1�

α,∥∥∇(
Ut(t), Ux(t), U y(t)

)∥∥2 � 4
∥∥∇(

Ut(t1), Ux(t1), U y(t1)
)∥∥2

� 4C5
(
N1(0) + N2(0)

)
exp(C5 D1)

(4.5)

holds for t1 � t � t1 + t2.
Notice that (4.5) together with (4.4) imply that (4.5) holds for 0 � t � t1 + t2. Such an observation

together with the Gagliardo–Nirenberg inequality tell us that

∥∥U (t)
∥∥

L∞ � D0
∥∥U (t)

∥∥ 1
2
∥∥D2U (t)

∥∥ 1
2

� D0
4
√

4C4N1(0)
4
√

4C5
(
N1(0) + N2(0)

)
exp(C5 D1)

� 2D0
4
√

C4C5 D1�α
(

D1�α + D2
(
1 + �−β

))
exp(C5 D1)

� 2D0
4
√

C4C5 D1(1 + 2D2)exp(C5 D1) =: M̃2 (4.6)

holds for 0 � t � t1 + t2.
Since M̃2 = 2D0

4
√

C4C5 D1(1 + 2D2)exp(C5 D1) > M̃1 is independent of �, we can find a constant
�2 ∈ (0,1] which is chosen suitably small such that for 0 < � � �2

� · (Q 1(M̃2) + Q 2(M̃2)
)8 � 1, �α

(
Q 1(M̃2) + Q 2(M̃2)

)2 � 1, D1 · �α � 1, (4.7)

thus if we assume that the sub-characteristic condition (1.5) holds with M = [−B(N0) − M̃2,

B(N0)+ M̃2], we know that the assumptions listed in Lemma 3.2 and Lemma 3.3 are satisfied with the
constant M in the a priori assumption (3.4) being replaced by M̃2 and consequently we can deduce
from Lemma 3.2, Lemma 3.3, and Lemma 3.5 that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∥∥(U (t), Ut(t),∇U (t)
)∥∥2 � C4N1(0) � C4 D1�

α,∥∥∇(
Ut(t), Ux(t), U y(t)

)∥∥2 � C5
(
N1(0) + N2(0)

)
exp

(
C5
(

Q 2
1 (M̃2) + Q 2(M̃2)

)
N1(0)

)
� C5

(
N1(0) + N2(0)

)
exp

(
C5 D1

(
Q 2

1 (M̃2) + Q 2
2 (M̃2)

)
�α
)

� C5
(
N1(0) + N2(0)

)
exp(C5 D1)

(4.8)

holds for all 0 � t � t1 + t2.
Now take (U (t1 + t2, x, y), Ut(t1 + t2, x, y)) as initial data, since we have by employing the local

existence result Lemma 3.1 once more that the solution U (t, x, y) constructed above can be extended
into the time step t = t1 + t2 + t3 such that U (t, x, y) ∈ X(0, t1 + t2) satisfying
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥∥(U (t), Ut(t),∇U (t)
)∥∥2 � 4

∥∥(U (t1 + t2), Ut(t1 + t2),∇U (t1 + t2)
)∥∥2

� 4C4N1(0) � 4C4 D1�
α,∥∥∇(

Ut(t), Ux(t), U y(t)
)∥∥2 � 4

∥∥∇(
Ut(t1 + t2), Ux(t1 + t2), U y(t1 + t2)

)∥∥2

� 4C5
(
N1(0) + N2(0)

)
exp(C5 D1)

(4.9)

holds for t1 + t2 � t � t1 + t2 + t3.
Notice that M̃2 > M̃1, the above analysis shows that (4.9) holds for 0 � t � t1 + t2 + t3. These

estimates together with the fact that the constants in the right hand side of (4.9)1 and (4.9)2 are
independent of the time t tell us that (4.6) holds for all 0 � t � t1 + t2 + t3. Thus if we choose 0 < � �
min{�1, �2} and assume that the sub-characteristic condition (1.5) holds with M = [−B(N0) − M̃2,

B(N0) + M̃2], we can deduce that the assumptions listed in Lemma 3.2 and Lemma 3.3 are satisfied
with the constant M in the a priori assumption (3.4) being replaced by M̃2 and consequently we can
deduce from Lemma 3.2, Lemma 3.3, and Lemma 3.5 that (4.8) holds for 0 � t � t1 + t2 + t3. If we
take (U (t1 + t2 + t3, x, y), Ut(t1 + t2 + t3, x, y)) as initial data, we can then extend U (t, x, y) to the
time step t = t1 + t2 + 2t3. Repeating the above procedure, if we assume that

0 < � � �0 := min{�1, �2}
and the sub-characteristic condition (1.5) holds with M= [−B(N0) − M1, B(N0) + M1] and

M1 := M̃2 = 2D0
4
√

C4C5 D1(1 + 2D2)exp(C5 D1),

we can then extend U (t, x, y) globally and as a by-product of the above procedure, we can also show
that such a global solution U (t, x, y) satisfies

∥∥U (t)
∥∥2

2 + ∥∥Ut(t)
∥∥2

1 +
t∫

0

(∥∥∇U (s)
∥∥2

1 + ∥∥Ut(s)
∥∥2

1

)
ds � O (1)

(‖U0‖2
2 + ‖V 0‖2

1

)
. (4.10)

Having obtained (4.10), the time-asymptotic behavior (1.25) can be proved by exploiting the argument
used in [20] and [43]. This completes the proof of Theorem 1.1.

4.2. The proofs of Theorem 1.2 and Theorem 1.3

Compared with that of Theorem 1.1, the proofs of Theorem 1.2 and Theorem 1.3 are relatively
easier. We will only prove Theorem 1.3 in details in the following, since the proof of Theorem 1.2 are
completely the same, we thus omit the details for brevity.

For (U0(x, y), V 0(x, y)) ∈ H2(R2), the local solvability result Lemma 3.1 tells us that there exists
a sufficiently small positive constant t1, which depends on ‖U0‖2 and ‖V 0‖1, such that the Cauchy
problem (3.1), (3.2) admits a unique solution U (t, x, y) ∈ X(0, t1) satisfying{∥∥(U (t),∇U (t), Ut(t)

)∥∥2 � 4N1(0),∥∥∇(
Ut(t), Ux(t), U y(t)

)∥∥2 � 4N2(0)
(4.11)

for all 0 � t � t1.
(4.11) together with the Gagliardo–Nirenberg inequality yield∥∥U (t)

∥∥
L∞ � D0

∥∥U (t)
∥∥ 1

2
∥∥D2U (t)

∥∥ 1
2

� 2D0
4
√

N1(0)N2(0) =: M̃3 (4.12)

holds true for all 0 � t � t1. Here D0 is the Sobolev constant.
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Thus if the sub-characteristic condition (1.5) holds with M = [−B(N0) − M̃3, B(N0) + M̃3], we
know that the assumptions listed in Lemma 3.2, Lemma 3.4, and Lemma 3.5 are satisfied with the
constant M in the a priori assumption (3.4) being replaced by M̃3 and consequently we can deduce
from Lemma 3.2, Lemma 3.4, and Lemma 3.5 that{∥∥(U (t), Ut(t),∇U (t)

)∥∥2 � C4N1(0),∥∥∇(
Ut(t), Ux(t), U y(t)

)∥∥2 � C7
(
N1(0) + N2(0)

)5
exp

(
C7N4

1(0)
) (4.13)

holds for all 0 � t � t1.
Now take (U (t1, x, y), Ut(t1, x, y)) as initial data, we have by employing Lemma 3.1 again that

the solution U (t, x, y) constructed above can be extended into the time step t = t1 + t2 such that
U (t, x, y) ∈ X(0, t1 + t2) satisfying⎧⎪⎪⎨⎪⎪⎩

∥∥(U (t), Ut(t),∇U (t)
)∥∥2 � 4

∥∥(U (t1), Ut(t1),∇U (t1)
)∥∥2 � 4C4N1(0),∥∥∇(

Ut(t), Ux(t), U y(t)
)∥∥2 � 4

∥∥∇(
Ut(t1), Ux(t1), U y(t1)

)∥∥2

� 4C7
(
N1(0) + N2(0)

)5
exp

(
C7N4

1(0)
) (4.14)

holds for t1 � t � t1 + t2.
(4.13) and (4.14) imply that (4.14) holds for 0 � t � t1 + t2. This fact together with the Gagliardo–

Nirenberg inequality yield

∥∥U (t)
∥∥

L∞ � D0
∥∥U (t)

∥∥ 1
2
∥∥D2U (t)

∥∥ 1
2

� 2D0
4
√

C4C7N1(0)
(
N1(0) + N2(0)

)5
exp

(
C7N4

1(0)

4

)
=: M̃4 � M̃3 (4.15)

holds true for all 0 � t � t1 + t2. Here to deduce M̃4 � M̃3, we have used the assumption that
Ni(0) � 1 (i = 1,2) and C4 � 1, C7 � 1. Since we are concerned with the nonlinear stability result
with large initial perturbation, such an assumption seems natural.

Now if the sub-characteristic condition (1.5) holds with M = [−B(N0) − M̃4, B(N0) + M̃4], we
know that the assumptions listed in Lemma 3.2, Lemma 3.4, and Lemma 3.5 are satisfied with the
constant M in the a priori assumption (3.4) being replaced by M̃4 and consequently we can deduce
from Lemma 3.2, Lemma 3.4, and Lemma 3.5 that{∥∥(U (t), Ut(t),∇U (t)

)∥∥2 � C4N1(0),∥∥∇(
Ut(t), Ux(t), U y(t)

)∥∥2 � C7
(
N1(0) + N2(0)

)5
exp

(
C7N4

1(0)
) (4.16)

holds for all 0 � t � t1 + t2.
Take (U (t1 + t2, x, y), Ut(t1 + t2, x, y)) as initial data, we have by employing Lemma 3.1 once more

that the solution U (t, x, y) constructed above can be extended into the time step t = t1 + t2 + t3 such
that U (t, x, y) ∈ X(0, t1 + t2) satisfying⎧⎪⎪⎨⎪⎪⎩

∥∥(U (t), Ut(t),∇U (t)
)∥∥2 � 4

∥∥(U (t1 + t2), Ut(t1 + t2),∇U (t1 + t2)
)∥∥2 � 4C4N1(0),∥∥∇(

Ut(t), Ux(t), U y(t)
)∥∥2 � 4

∥∥∇(
Ut(t1 + t2), Ux(t1 + t2), U y(t1 + t2)

)∥∥2

� 4C7
(
N1(0) + N2(0)

)5
exp

(
C7N4

1(0)
) (4.17)

holds for t1 + t2 � t � t1 + t2 + t3.
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(4.16) together with (4.17) implies that (4.17) holds for all 0 � t � t1 + t2 + t3 and similar to that
of (4.15), we can deduce that (4.15) holds for all 0 � t � t1 + t2 + t3. Thus if we assume that the
sub-characteristic condition (1.5) holds with M = [−B(N0) − M̃4, B(N0) + M̃4], we know that the
assumptions listed in Lemma 3.2, Lemma 3.4, and Lemma 3.5 are satisfied with the constant M in
the a priori assumption (3.4) being replaced by M̃4 and consequently we can deduce from Lemma 3.2,
Lemma 3.4, and Lemma 3.5 that (4.16) holds for all 0 � t � t1 + t2 + t3. And if we take (U (t1 +
t2 + t3, x, y), Ut(t1 + t2 + t3, x, y)) as initial data, we have from Lemma 3.1 that U (t, x, y) can be
extended into the time step t = t1 + t2 + 2t3. Repeating the above procedure, if we assume that the
sub-characteristic condition (1.5) imposed in Theorem 1.3 holds with M3 = M̃4, we can thus extend
U (t, x, y) step by step to a global one and as a by-product, we can show that (4.10) holds for all t � 0.
This completes the proof of Theorem 1.3.
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