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Abstract—Rating prediction is a classic problem underlying recommender systems. It is traditionally tackled with matrix factorization.

Recently, deep learning based methods, especially graph neural networks, have made impressive progress on this problem. Despite

their effectiveness, existing methods focus on modeling the user-item interaction graph. The inherent drawback of such methods is that

their performance is bound to the density of the interactions, which is however usually of high sparsity. More importantly, for a strict cold

start user/item that neither appears in the training data nor has any interactions in the test stage, such methods are unable to learn the

preference embedding of the user/item since there is no link to this user/item in the graph. In this work, we develop a novel framework

Attribute Graph Neural Networks (AGNN) by exploiting the attribute graph rather than the commonly used interaction graph. This leads

to the capability of learning embeddings for the strict cold start users/items. Our AGNN can produce the preference embedding for a

strict cold user/item by learning on the distribution of attributes with an extended variational auto-encoder (eVAE) structure. Moreover,

we propose a new graph neural network variant, i.e., gated-GNN, to effectively aggregate various attributes of different modalities in a

neighborhood. Empirical results on three real-world datasets demonstrate that our model yields significant improvements for strict cold

start recommendations and outperforms or matches the state-of-the-art performance in the warm start scenario.

Index Terms—Recommender systems, rating prediction, graph neural networks, strict cold start recommendation

Ç

1 INTRODUCTION

RATING prediction is a well-known recommendation task
aiming at predicting a user’s ratings for those items

which are not rated yet by the user. Collaborative filtering
(CF) [1], which mainly makes use of historical ratings, has
been successfully used to build recommender systems in
various domains. Matrix factorization (MF) [2] is one of the
most prevalent method in CF due to its high predicting per-
formance and scalability. Given a M �N user-item rating
matrix, MF first performs a low rank approximation to learn
the user’s and item’s latent representation, also known as
preference embedding of a user or an item, and then uses a
score function over the learnt preference embeddings to
generate ratings for the missing entries in the matrix. Spar-
sity and its special case of cold start, where a new user/item
that does not appear in the training data, are the severe problem
in recommender systems. The performance of MF methods
will drop quickly in the sparsity or the cold start settings.
Conventional approaches to this issue are to generate feature
embedding using side or external information [3], [4], [5], [6],
[7], [8], [9]. Such methods often introduce additional objec-
tive terms which make the learning and inference process
very complicated.

The cold start users/items refer to those not appearing in
the training data. We call them as normal cold start users/
items. In this paper, we are interested in an extreme sce-
nario, i.e., the strict cold start users/items that neither appear in
the training data nor have any interactions (user-item links) at
the test stage. Conventional approaches like inductive learn-
ing [10], [11], optimization-based meta learning [12], [13],
and HIN based methods [13], [14], [15], [16], are inappropri-
ate for the strict cold start problem since they all require the
users/items have interactions in test.

Recent advances in deep learning, especially graph neu-
ral networks (GNNs), shed new light on the classic rating
prediction problem. The main advantage of GNN is that it
can represent information from its neighborhood [17], [18],
[19], [20], [21], [22]. GNN allows learning high-quality user
and item representations, and consequently achieves the
state-of-the-art performance. However, almost all existing
GNN based methods are built upon the user-item bipartite
graph, where the node denotes a user or an item, and the
edge is the interaction between the user and the item. Hence
such methods cannot be used for strict cold start recommen-
dation if no side information is involved.

Indeed, little attention has been paid on using graph neu-
ral network architectures to address the (strict) cold start
issues. We are aware of a few GNN based methods towards
this problem, i.e., STAR-GCN [23] and HERS [24]. Despite
its effectiveness, STAR-GCN has an inherent limitation, i.e.,
its performance is bound to the number of interactions. The
reason is that STAR-GCN relies on the interaction graph. It
requires an ask-to-rate technique to rate the new item dur-
ing the test phase. This means that STAR-GCN can be
applied to the normal cold start only. Moreover, though
HERS utilizes user-user and item-item relations to address
the strict cold start problem by referring to the influential
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nodes in contexts, the drawback is that it might recommend
the popular item to the new user, or vice versa, as it repre-
sents the new node by neighbor aggregation without con-
sidering the node’s own attributes.

In order to address the above limitations, we propose a
novel framework Attribute Graph Neural Networks (AGNN)
by exploiting the attribute graph instead of the widely used
user-item graph. Unlike the ratings, the attributes are avail-
able even for strict cold start users/items. For example,
when amerchant starts to sale its products online, there is no
interaction for the product. However, it is necessary to pro-
vide the product attributes such as the category, description,
and image. Similarly, many web-sites ask users to fill their
profile like gender and location at the time of registration. In
case that the user’s profile information is unavailable due to
the privacy concerns, the user’s links, which are ubiquitous
in almost all social networks or online sites, can be treated as
his/her attributes (as wewill later show in our experiments).

Motivation Example. The difficulty in strict cold start rec-
ommendation lies in the lack of preference information (i.e.,
historical interactions) of users and items. Fig. 1 presents
the users’ historical rating behaviors on various movies.
When a new movie “Avengers” is released, it is a strict cold
start item since it is not included in the training data and it
does not have any interactions, and it is hard to predict the
user Bob’s rating on this movie. Fortunately, the attribute
information such as the movie’s director and its category
can be exploited to represent the movie. Furthermore, the
movies having the same attributes can form a graph which
will be used to the pass preference information from the
neighbor movie like “Captain America” to “Avengers”.

While it seems to be ready to exploit the attribute informa-
tion for strict cold start recommendations, there are two key
challenges that hinder its potential. One is how to transform
the attribute representation into the preference representa-
tion. The other is how to effectively aggregate attributes of dif-
ferent modalities, e.g., textual description and image, of the
nodes in a neighborhood. In this work, we first develop an
extended variational auto-encoder (eVAE) structure to generate
preference embedding from the reconstructed attribute distri-
bution, with the perception that users’ or items’ preference
can be inferred from their attributes. For example, a female
usermay prefer the romantic movie to the horror one.We fur-
ther design a gated-GNN structure to aggregate the compli-
cated node embeddings in the same neighborhood, which

enables a leap in model capacity since it can assign different
importance to each dimension of the node embeddings.

We conduct extensive experiments on three real-world
datasets. Results demonstrate that our proposed AGNN
model yields significant improvements over the state-of-
the-art baselines for strict cold start recommendations, and
it also outperforms or matches the performance of these
baselines in the warm start scenario. In summary, the contri-
butions of this work are three-fold.

� We highlight the importance of exploiting the attri-
bute graph rather than the interaction graph in
addressing strict cold start problem in neural graph
recommender systems.

� We design a novel eVAE structure to effectively infer
the users’/items’ preference embeddings from their
attribute distributions with the empowered approxi-
mation ability.

� We address the key challenges in aggregating vari-
ous attributes in a neighborhood by developing a
gated-GNN structure which greatly improves the
model capacity.

2 RELATED WORK

In this section, we first review the literature in rating predic-
tion and then focus on the highly relevant work on GNN
based recommendation and cold start recommendation.

2.1 Collaborative Filtering

Collaborative filtering is commonly used to leverage the
user-item interaction data for recommendation. It mainly
consists of neighbor-based methods [25], [26] and matrix
factorization methods [2], [27]. Recently, the CF approaches
are extended with various types of deep learning techni-
ques [19], [28], [29], [30]. Although these methods have
improved the performance of CF, none of them utilizes the
side information for enhancing the performance of recom-
mender systems.

2.2 Graph Neural Network Based Recommendation

The first GNN architecture employed for recommendation
is graph convolution network (GCN). After that, a good
number of GNN methods have been proposed for recom-
mendation. We discuss these methods by the graph types
and the approaches in utilizing the GNN.

Graph types. Most of previous methods employ the exist-
ing graph as their input of GNN, such as the user-item inter-
action graph [17], [19], [23], [31], [32], [33], users’ social
graph [20], [21], [24], and knowledge graph [9], [34]. A few
studies present graph construction methods to fit the user-
user or item-item graph in GNN for recommendation. For
example, RMGCNN [31] constructs the user-user or item-
item graphs as un-weighted k-nearest neighbor graphs in
the space of user and item features. DANSER [21] calculates
the relevance between two items by the common users who
click or rate them to construct item-item graph. HERS [24]
builds the item-item links based on the number of common
tags between items.

Approaches in utilizing GNN. RMGCNN [31] adopts GCN
framework to aggregate information from user-user and

Fig. 1. Motivation example. Solid line denotes a user’s rating on the item.
Dotted line denotes the user-user or item-item link constructed from their
proximity.
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item-item graphs. PinSage [18] combines random walks and
graph convolutions to incorporate graph structure and node
feature. STAR-GCN [23] designs a stacked and reconstructed
GCN to improve the prediction performance. TheGNNarchi-
tecture is also used for the recursive diffusion in social recom-
mendation [20], [35]. For example, NGCF [19] encodes the
high-order connectivity by performing the embedding propa-
gation. DANSER [21] deploys graph attention networks for
modeling social effects for recommendation tasks.

A brief summary. Our proposed model differs from prior
GNN based methods in both the graph type and the GNN
method. First, our model is based on the attribute graph
while most of existing methods are based on the interaction
graph. Though RMGCNN [31] also employs the attribute
graph, it directly applies GCN to the attribute graph with-
out a preference reconstruction process. Second, we present
a novel GNN architecture with an injected eVAE and gated-
GNN structure. To be specific, our eVAE structure can gen-
erate preference embedding from attribute embedding of
different modality. To our knowledge, this is the first time
that VAE [36] is used for this purpose, while previous
researches in recommendation adopt VAE to reconstruct
the latent representations with the same modality [37], [38],
[39]. Moreover, our gated-GNN structure can differentiate
the importance of each dimension of node embeddings.
Though gated mechanism has been introduced in the
broader research area [40], [41], it is developed for informa-
tion passing between edges with different types and direc-
tions [40] or between nodes at different layers [41], and the
detailed design is totally different from that in our model.

2.3 Dealing With Cold Start Issues

Recommender systems often suffer from sparsity and cold
start problem. A promising approach to this problem is to
leverage side information such as contextual information
[4], [42], [43], the user and item relations [5], [44]. Conven-
tional methods mainly exploit side information as regulari-
zation in MF objective function [3], [6]. More recently, a
number of studies focused on developing various types of
neural networks to incorporate side information [7], [8], [9],
[14], [15], [16], [21], [34], [44], [45]. A related line of research
is at the model level, such as developing inductive methods
that can be generalized to users/items unseen during the
training, and active learning methods that ask a number of
users to interact with items, as well as the meta learning
methods that can be adapted to a new task by deriving gen-
eral knowledge across different learning tasks. We catego-
rize these methods by their ability in dealing with normal
and strict cold start issues.

Addressing normal cold start issues. The inductive learning
methods [10], [11] can alleviate normal cold start problem.
Specifically, IGMC [11] trains inductive matrix completion
models without using side information. GraphSage [10] lev-
erages node feature information to generate node embeddings
for previously unseen data. Both these methods require that
cold start nodes have some interactions or links at the test
phase. The optimization based meta learning methods
MeLU [12] and MetaHIN [13] utilize a support set such that
the meta-learner adapts the global prior to task-specific
parameters with respect to the loss on this set in testing stage.

The active learning scheme [46], [47], [48], [49], where a num-
ber of users are selected for rating or commenting on a new
item, can also tackle this problem but with the extra costs or
budgets. STAR-GCN [23] actually falls into this active learn-
ing category. Finally, by utilizing the heterogeneous side
information [13], [14], [15], [16], the meta path based and the
multi-view based methods can boost the recommendation
performance of their counterpart without deploying meta
path or only using single view. However, the JRL [14] and
HIRE [15] methods are applicable to sparsity problem only
because the users’ or items’ side information serves as one
type of view or as the loss to guide the learning process which
should be included in the training set, and the performance of
meta path based methods [13], [16] will drop since some of
meta paths do not exist anymore for cold start users/items.

Addressing strict cold start issues. Both the model based
meta-learning methods LWA and NLBA [50] and the gradi-
ent based meta-learning method MetaEmb [51] can be
applied to the strict cold start scenario. LWA and NLBA
focus on the specific twitter cold start where a user has many
interactions with previous twitters that can be used to train
the meta-learner. The drawback of MetaEmb lies in that it
does not explore the information in the neighborhood.
Among the methods that integrate auxiliary data, Dropout-
Net [52] trains DNNs by incorporating content and prefer-
ence information such that the model can be generalized to
missing input. However, the training of the DropoutNet
model is still dependent on the existing interactions since its
objective is to reconstruct the rating of the user-item pairs.
HERS [24] aggregates user and item relations without fully
exploiting users’ or items’ attributes. We notice a recent
study LLAE [53] also employs the user’s attribute for strict
cold start recommendation. However, LLAE does not make
use of the graph network, and thus it loses the ability to bor-
row information from neighborswith the same attributes.

A brief summary. Though several models have been pro-
posed for dealing with the strict cold start issues, almost all
these models [50], [51], [52], [53] disregard the potential of
GNN, and only a few models [24], [53] utilize the attribute
information. Our proposed framework is distinct in that we
exploit the users’/items’ inherent attribute information via
a specially designed GNN architecture to better absorb the
information from the neighbors.

3 PROPOSED MODEL

3.1 Problem Definition

Let U ¼ fu1; u2; . . . ; uMg be a set of users and V ¼
fv1; v2; . . . ; vNg be a set of items, where M and N denote the
corresponding cardinalities. In addition, each user or item is
associated with a set of attributes from different fields. Each
attribute value has a separated encoding, and all attributes
are concatenated into a multi-hot attribute encoding a 2 RK .
Below is an example of user attribute encoding au.

au ¼ ½0; 1�|ffl{zffl}
gender

½1; 0; 0; . . . ; 0�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
age

½0; 1; 0; . . . ; 0�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
occupation

;

Let R 2 RM�N be the user-item interaction matrix, which
consists of real-valued ratings for explicit interactions, or
binary entries for implicit feedbacks such as click or not. We
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tackle the recommendation task with explicit interactions,
where each rij 2 R is either a rating score denoting ui gives
a rating to vj, or 0 denoting the unknown ratings of items
that the users have not interacted yet. The goal of classic
warm start rating prediction problem is to predict the unknown
ratings for the users/items that already exist in the original
interaction matrix R and also have interaction history, while
the normal cold start rating prediction problem refers to predict-
ing the ratings for the users/items unseen during training
but having interactions at the test stage, as shown in Fig. 2a.

In this paper, we are interested in the strict cold start rating
prediction problem. Specifically, letNU ¼ fujMjþ1; . . . ; ujMjþDjMjg
be a set of new users and NV ¼ fvjNjþ1; . . . ; vjNjþDjN jg be a set
of new items. Note that these new users/items are neither
included in the original matrix R nor they have interactions in
the test stage, but they should have attribute information.
Fig. 2b shows warm start and the strict cold start scenarios in
rating prediction. The goal of strict cold start user/item recom-
mendation is to predict new users’ ratings on items or to pre-
dict users’ ratings on new items.

3.2 An Overview

The architecture of the proposed AGNN model is shown in
Fig. 3a. It consists of an input layer, an interaction layer, a
gated-GNN layer, and a prediction layer.

We first present an input layer to construct the user
(item) attribute graph. We then design an interaction layer
to integrate one node’s different information into a unified
embedding. We also develop an injected eVAE structure to
generate the preference embedding for strict cold start
nodes in this layer. Next, we propose a gated-GNN layer to
aggregate the complicated node embeddings in a neighbor-
hood in the attribute graph. Finally, we add a prediction
layer to let the aggregated representations of user and item
interact with each other to calculate the rating score.

In general, our model adopts GNN as the main framework
to deal with the strict cold start problem using items’ and
users’ attributes, where the graph construction component is
used to prepare the input of the GNN since in the strict cold
start scenario we cannot use user-item interaction graph, and
the eVAE structure is used to approximate the users’ prefer-
ence from their attribute and gated-GNN is for information fil-
tering and aggregating during the process of propagation in
GNN. The entire framework and the injected components are
all designated for addressing the strict cold start problem.

3.3 Model Architecture

3.3.1 Input Layer

Our model differs from exiting ones in that it is upon the
homogeneous attribute graph rather than the bipartite user-
item graph. This enables our model to free from sparse
interactions and to deal with the strict cold start issues.

We construct the attribute graph using attribute informa-
tion in this layer. The quality of attribute graph plays a key
role in our task. In this paper, we resort to a natural proxim-
ity-based way to construct the attribute graph, and we will
investigate the impacts of different graph construction
methods in our experiments. We first define two types of
proximities, i.e., preference proximity and attribute proximity.

1) The preference proximity measures the historical pref-
erence similarity between two nodes. If two users have simi-
lar rating record list (or two items have similar rated record
list), they will have a high preference proximity. Note we
cannot calculate the preference proximity for strict cold start
nodes as they do not have historical ratings.

2) The attribute proximity measures the similarity
between the attributes of two nodes. If two users have simi-
lar user profiles, e.g., gender, occupation (or two items have
similar properties, e.g., category), they will have a high attri-
bute proximity.

Both types of proximity can be measured by cosine dis-
tance. It is calculated as

proximityðw; vÞ ¼ 1� w � vT
kwkkvk ; (1)

wherew and v are two nodes’ preference representations or
their multi-hot attribute encodings. Two types of proximity
are summed after the min-max normalization to get an
overall proximity.

After calculating the overall proximity between two
nodes, it becomes a natural choice to build a k-NN graph as
adopted in [31]. Such a method will keep a fixed number of
neighbors once the graph is constructed. It may work well
when the graph is constructed on the single type of node
attribute like a social graph. However, since our similarity is
defined on multiple types of attributes, it is necessary to
maintain a diversity of neighborhood to some extent. The
rationale is that we wish the age is the dominant factor in
determining the neighborhood in some cases while the occu-
pation holds the lead in other cases. To this end, we propose
a dynamic graph construction strategy. To be specific, for a node
u, we add all the nodes which have a top p% proximity with
node u to the candidate pool NC

u . During each round of the
training process, the neighbors of node u are sampled
according to the proximity from the candidate pool.

3.3.2 Attribute Interaction Layer

In the constructed attribute graph Au and Ai, each node has
an attached multi-hot attribute encoding and a unique one-
hot representation denoting its identity. Due to the huge num-
ber of users and items in theweb-scale recommender systems,
the dimensionality of nodes’ one-hot representation is
extremely high. Moreover, the multi-hot attribute representa-
tion simply combines multiple types of attributes into one
long vector without considering their interactive relations.

Fig. 2. Warm start, normal cold start, and strict cold start scenarios in rat-
ing prediction task. ðR0 2 RðMþDMÞ�ðNþDNÞÞ.
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The goal of interaction layer is to reduce the dimensionality
for one-hot identity representation and learn the high-order
attribute interactions formulti-hot attribute representation.

To this end, we first set up a lookup table to transform a
node’s one-hot representation into the low-dimensional
dense vector. The lookup layers correspond to two parame-
ter matrices M 2 RM�D and N 2 RN�D. Each entry mu 2 RD

and ni 2 RD encodes the user u’s preference and the item i’s
property, respectively. Note that mu and ni for strict cold
start nodes are meaningless, since no interaction is observed
to train their preference embedding. We will discuss the
solution to this problem later.

Inspired by [43], we capture the high-order attribute inter-
actions with a Bi-Interactive pooling operation, in addition to
the linear combination operation. To be specific, let vi and vj
be the embedding vector for the ith and jth type of attribute in
the multi-hot attribute encoding a 2 RK , respectively, the Bi-
Interactive and linear combination operation are defined as

fBIðaÞ ¼
XK
i¼1

XK
j¼iþ1

aivi � ajvj; fLðaÞ ¼
XK
i¼1

aivi; (2)

where � denotes the element-wise product.
Finally, a fully connected layer is added on both the sec-

ond-order interaction and linear combination to learn the
high-order feature interactions

fFCðaÞ ¼ LeakyReLUðWð1Þ
fc fBIðaÞ þW

ð0Þ
fc fLðaÞ þ bfcÞ; (3)

where Wfc;bfc; LeakyReLU are weight matrix, bias vector,
and activation function, respectively.

We can then get the attribute embedding xu and yi for a
user u and for an item i by feeding their respective attribute
encoding au and ai into the fFC function, i.e.,

xu ¼ fFCðauÞ; yi ¼ fFCðaiÞ: (4)

Next, we fuse the preference embedding and attribute
embedding into the node embedding such that each node
contains both historical preferences and its own attributes.

pu ¼Wu½mu; xu� þ bu; qi ¼Wi½ni; yi� þ bi; (5)

where ½; � denotes vector concatenation operation, WuðiÞ, buðiÞ
are weight matrix and bias vector. For strict cold start nodes

without any interactions, we will generate preference embed-
dings for them in this layer. Wewill detail our solution to this
strict cold start problem in a separate subsection later.

3.3.3 Injected eVAE Structure in Attribute

Interaction Layer

The strict cold start problem is caused by the lack of any
interactions/links for the new nodes in the test phase. We
view this as a missing preference problem. Unlike the meth-
ods in [23], [52] which reconstruct the same node embed-
ding with the dropout or mask technique, we aim to
reconstruct the node’s missing preference embedding from
its attribute embedding.

Basically, one specific type of users might be interested in
the similar items, and vice versa. For example, animation is
the mainstream entertainment among teenage children (the
users have the similar age attribute). This indicates that the
attribute and preference embeddings are not only close to
each other in the latent space but also have the similar distri-
bution. Hence we tackle the missing preference problem by
employing the variational auto-encoder structure to recon-
struct the preference from the attribute distribution.

Our proposed extended VAE structure is shown in
Fig. 3b, which contains three parts: inference, generation,
and approximation. The first two parts are the standard
VAE and the third one is our extension. Take the strict cold
start user node u as an example. In the generation part, u is
given a latent variables zu. The reconstructed embedding x0u
is generated from its latent variables zu through generation
network as MLP parameterized by u [36]

x0u � puðx0ujzuÞ: (6)

In the inference part, variational inference approximates
the true intractable posterior of the latent variable zu by
introducing an inference network parameterized by f [36]

qfðzuÞ ¼ N ðmmu; diagðss2
uÞÞ; (7)

The objective of variational inference is to optimize the free
variational parameters so that the KL-divergence KLðqðzuÞ
k pðzujxuÞÞ is minimized. With the reparameterization trick
[36], we sample �� � Nð0; IÞ and reparameterize zu ¼

Fig. 3. The left is the framework of our model; and the right is an illustration the eVAE structure.
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mfðxuÞ þ ��� sfðxuÞ. In this case, the gradient towards f can
be back-propagated through the sampled zu.

In the approximation part, we constrain the reconstructed
embedding x0u to be close to the preference embedding mu.
This is practical because the system should have collected a
certain amount of interactions in reality. During the training
phase, the nodeswith historical ratings actually have the pref-
erence embeddings. Such information can be explored to
improve the VAE. Hence we require the reconstructed
embedding x0u to be similar with both the preference embed-
ding (by the constraint) and the original attribute distribution
(by the standard VAE). To summarize, the reconstruction loss
function in our proposed eVAE is defined as follows.

Lrecon ¼�KLðqfðzujxuÞkpðzuÞÞ
þ EqfðzujxuÞ½log puðx

0
ujzuÞ� þ kx0u �muk2;

(8)

where the first two terms are same as those in standard
VAE, and the last one is our extension for the approxima-
tion part. The strict cold start item i’s preference embedding
ni can be generated similarly from its attribute embedding
y0i, and thus we havemu � x0u and ni � y0i.

3.3.4 Gated-GNN Layer

Intuitively, different neighbors have different relations to a
node. Furthermore, one neighbor usually has multiple
attributes. For example, in a social network, a user’s neigh-
borhood may consist of classmates, family members, col-
leagues, and so on, and each neighbor may have several
attributes such as age, gender, and occupation. Since all
these attributes (along with the preferences) are now
encoded in the node’s embedding, it is necessary to pay dif-
ferent attentions to different dimensions of the neighbor
node’s embedding. However, existing GCN [54] or GAT
[55] structures cannot do this because they are at the coarse
granularity. GCN treats all neighbors equally and GAT dif-
ferentiates the importance of neighbors at the node level. To
solve this problem, we design a gated-GNN structure to
aggregate the fine-grained neighbor information.

Our proposed gated-GNN structure is shown in Fig. 4. It
contains an aggregate gate (denoted as agate) and a filter gate
(denoted as fgate). In order to better capture the homophily
phenomenon in networks, the agate controls what informa-
tion should be aggregated from neighbors to the target
node, while fgate controls what information in the target
node should be filtered out if it is not consistent with that in
the neighbors. These two gates work as follows.

Given a user node u, its node embedding pu, its neighbor
set Nu, and the node embedding pfi

u for the ith neighbor fi
in Nu, we first apply agate to the neighbors to obtain the
aggregated representation pu Nu

u by selectively passing the
neighbor embeddings to the target node u.

a
fi
gate ¼ sðWa½pu; pfi

u � þ baÞ; (9)

pu Nu
u ¼ 1

jNuj
XjNuj

i¼1
ðpfi

u � a
fi
gateÞ; (10)

where Wa;ba; s are weight matrix, bias vector, and the sig-
moid activation function.

Homophily is a fundamental characteristic in social net-
works. Known as “birds of a feather flock together” [56],
homophily has been observed in many online social net-
works [57], [58], [59]. In this section, we propose to reflect
the homophily phenomenon by applying the filter gate fgate
to the target node u, such that the node u’s information
which is inconsistent with the averaged representations of
the neighbors will be filtered out. More formally,

fgate ¼ s Wf ½pu;
1

jNuj
XjNu j

i¼1
pfi
u � þ bf

 !
; (11)

p�u ¼ pu � ð1� fgateÞ; (12)

where p�u is the node u’s remaining representation after the
filtering operation.

Combining the aggregated representation pu Nu
u and the

remaining representation p�u together, we can get the user
node u’s final embedding epu as follows:

epu ¼ LeakyReLUðp�u þ pu Nu
u Þ: (13)

The item i’s final embedding, denoted as eqi, can be
obtained from the item attribute graph in a similar way.

3.3.5 Prediction Layer

Given a user u’s final representation epu and an item i’s final
representation eqi after the gated-GNN layer, we model the
predicted rating of the user u to the item i as

R̂u;i ¼MLP ð½epu; eqi�Þ þ epueqT
i þ bu þ bi þ m; (14)

where the MLP function is the multi-layer perception imple-
mented with one hidden layer, and bu, bi, and m denotes
user bias, item bias, and global bias, respectively. In
Eq. (14), the second term is inner product interaction func-
tion [2], and we add the first term to capture the compli-
cated nonlinear interaction between the user and the item.

3.4 Loss

The overall loss function for training is defined as

L ¼ Lpred þ � Lrecon; (15)

Fig. 4. The gated-GNN structure.
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where Lpred is the task-specific rating prediction loss, Lrecon

is the reconstruction loss defined in Eq. (8), and � is a con-
stant weighting factor.

For the rating prediction loss, we employ the square loss
as the objective function

Lpred ¼
X

u;i2T ðR̂u;i �Ru;iÞ2; (16)

where T denotes the set of instances for training, i.e., T =
{(u, i, ru;i, au, ai)}, Ru;i is ground truth rating in the training
set T , and R̂u;i is the predicted rating.

4 EXPERIMENTS

In this section, we evaluate our model by comparing it with
the state-of-the-art baselines. We begin with the experimen-
tal setup, and then analyze the experimental results.

4.1 Experimental Setup

4.1.1 Datasets

We use three real-world datasets to evaluate our proposed
AGNNmodel in this section.

MovieLens1 is a widely used movie rating dataset. We
employ the ML-100K and ML-1M versions. We take catego-
ries, stars, directors, writers, and countries as movie fea-
tures, and gender, age, and occupations as user features.
Since the original datasets do not provide sufficient item
attributes, we extend them by crawling stars, directors, writ-
ers, and countries from IMDb2 according to the movie title
and release year. We will release these two extended data-
sets to the public.3

Yelp4 is adopted from the 2017 edition of the Yelp chal-
lenge. Wherein, the local businesses like restaurants and
hotels are viewed as the items. Since the raw Yelp data is
extremely large and sparse, we preprocess this dataset by
removing nodes with less than 20 ratings following the set-
tings in [60], [61]. Note that such a pre-processing does not
contradict to the target of strict cold start evaluation, as we
will remove the interactions of strict cold start nodes from
training set. That is to say, these nodes have never been
seen before the test phase, just like the newly-released mov-
ies, nor they have any interactions.

We take categories, located states, and located cities as
item features. Due to the lack of user profile information on
Yelp, we use social links as user-user graph and also as
attributes for users. Specifically, we take each row of the
social matrix as the user’s attribute encoding, where each
dimension of the social vector represents an attribute value.
The statistics of the datasets are shown in Table 1.

4.1.2 Baselines

We choose the following twelve comparative methods as
our baselines. All these methods leverage side information
or attributes. Moreover, many of them are specially
designed for addressing sparsity or normal/strict cold start

problem. Finally, these methods cover the state-of-the-art
models with conventional techniques and those with graph
neural networks.

� NFM [43] combines factorization machines with neu-
ral networks for rating prediction under sparse set-
tings. It projects the user and item features into a
dense vector, and then uses a multi-layered neural
network to model feature interactions.

� DiffNet [20] fuses user and item features with the free
node embedding. It contains a GCN-alike layer-wise
diffusion procedure to model dynamic diffusion on
user-user social graph for recommendation.

� DANSER [21] is a GAT-based method to incorporate
multifaceted social effects. It employs users’ social
relations as user-user graph and builds item-item
graphs using a similarity coefficient between items
clicked by a same user.

� sRMGCNN [31] employs multiple GCNs on user-
user, item-item, and user-item graphs for matrix
completion. It builds user-user and item-item graphs
using a k-nearest neighbor strategy on the attributes.

� GC-MC [17] includes side information in the form of
user and item feature vectors which are later com-
bined into the node representation. It applies a GCN
framework to user-item graph formatrix completion.

� STAR-GCN [23] adopts the stacked GCN on user-
item interaction graph. It concatenates the feature
embedding and free embedding to represent a node.
It alleviates the normal cold start problem by apply-
ing mask technique to node embeddings.

� MetaHIN [13] combines meta-learning and meta-
path methods for normal cold start recommendation
on heterogeneous information networks.

� IGMC [11] constructs enclosing user-item subgraphs
and learns local graph patterns via relational graph
convolutional operator for inductive matrix comple-
tion. It is developed to address normal cold start issues.

� DropoutNet [52] incorporates content and preference
information with a DNN model. It presents a drop-
out technique to tackle the strict cold start issues.

� LLAE [53] develops a linear low-rank denoising auto-
encoder to reconstruct a user’s behaviors from this
user’s attributes for strict cold start recommendation.

� HERS [24] employs users’ social relations as user-user
graph and builds item-item graph based on the com-
mon tags between two items. It aggregates user and
item relations for addressing strict cold start issues.

� MetaEmb [51] is a meta-learning approach to address
strict cold start problem. It trains an embedding genera-
tor for new IDs through gradient-basedmeta-learning.

We partition the baselines into three parts. The first part
(from NFM to GC-MC) includes the methods designed for

TABLE 1
Statistics of the Datasets

Datasets #Users #Items #Ratings Sparsity

ML-100K 943 1,682 100,000 93.70%
ML-1M 6,040 3,883 1,000,209 95.74%
Yelp 23,549 17,139 941,742 99.77%

1. https://grouplens.org/datasets/movielens/
2. https://www.imdb.com
3. Both the code and the data are available at: https://github.com/

NLPWM-WHU/AGNN
4. https://www.yelp.com/dataset_challenge
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warm start. The second part (from STAR-GCN to IGMC)
includes the methods developed for normal cold start. The
third part (from DropoutNet to MetaEmb) includes the
methods that can deal with the strict cold start problem.

4.1.3 Evaluation Metrics

We use Rooted Mean Square Error (RMSE) and Mean Abso-
lute Error (MAE) as the evaluation metrics, which are both
widely used for rating prediction tasks [21], [35], [43], [62],
[63]. The definition of RMSE and MAE are as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
u;i

ðR̂u;i �Ru;iÞ2
s

; (17)

MAE ¼ 1

N

X
u;i

jR̂u;i �Ru;ij; (18)

where N is the total number of data points being tested, R̂u;i

is the predicted rating and Ru;i is the ground truth.

4.1.4 Settings

For strict cold start, we randomly choose 20 percent items
(or users) along with their interactions as test set, and the
remaining interactions as training set. For warm start, we
randomly choose 20 percent user-item interactions as test
set and the remaining 80 percent as training set. The differ-
ence is that for strict cold start nodes, their interactions are
totally removed from testing.

For our AGNN, we set the batch size = 128, slop of Lea-
kyReLU = 0.01, the initial learning rate = 0.0005, and we use
Adam [64] as optimizer to self-adapt the learning rate. We
also set the hyper-parameters as follows: the embedding
dimension D = 40, the threshold p = 5 for the candidate set
in graph construction, and the weighting factor � = 1. We
will investigate the impacts of these hyper-parameters later.

For the baselines, we follow the same hyperparameter
settings if they are reported by the authors and we fine tune
the hyper-parameters if they are not reported. The baselines
designed for top-N recommendation are revised to optimize
RMSE scores. We implement sRMGCNN with its public
source code, but it cannot scale to large dataset like Yelp.

Please note that all baselines use the same attribute infor-
mation as our model. Consequently, many baselines with-
out specific design to tackle the strict cold start problem can
still be applied to the strict scenario. The attributes are used
to be integrated into the node embeddings, to model the fea-
ture interactions, or to construct graphs. Since there is no
social relationship on ML-100K and ML-1M, we use the
attribute features to initialize the user embeddings for
DANSER and HERS. Such initialization is also done for
item embeddings of DANSER as it is not designed for incor-
porating attributes. Besides, for HERS, we use the common
attributes instead of tags to build item-item graph due to
the lack of tags in our datasets.

As for graph construction for baselines, there is no such
step for NFM, DropoutNet, LLAE, and MetaEmb since they
are not graph based method, and we use the users’ and
items’ attribute for these three baselines as their original
paper does. Meanwhile, DiffNet utilizes user-user graph,

while GC-MC, IGMC, and STAR-GCN employ user-item
graph, and MetaHIN utilizes heterogeneous information
network. Moreover, DANSER, HERS, and sRMGCNN uti-
lize both user-user graph and item-item graph.

When constructing user-user graph, we follow the set-
tings in their original paper. On Yelp dataset, DiffNet,
DANSER, and HERS use the social links to construct user-
user graph. sRMGCNN uses the users’ attribute to construct
user-user graph, and such a construction method is applied
to DiffNet, DANSER, and HERS on Movielens, since there
is no social links on this dataset.

We also follow the original methods in the correspond-
ing paper to construct item-item graph. Specifically,
DANSER constructs item-item relation according to the
similarity coefficient of the number of co-clicked users.
HERS and sRMGCNN construct item-item graph by con-
necting an item with its K-nearest (K=10) neighbors in the
space of item attributes or tags.

The user-item graph can be directly constructed from the
historical interactions. Note that we do not add newly rated
edges to the strict cold start nodes in the testing phase of
STAR-GCN, for a fair comparison with all other methods
and also for simulating the real world strict cold start
scenario.

4.2 Comparison With Baselines

Our model is mainly developed for strict cold start recom-
mendation. However, for a fair comparison with the base-
lines, we examine the model performance in both the strict
cold and warm start scenario in this subsection. The results
of AGNN and the baselines on three datasets are reported
in Table 2.

First, it is clear that our AGNN outperforms all baselines
in the strict cold start scenarios. Its improvements over the
strongest baselines are statistically significant at the 0.01
level. The results verify the superiority of our proposed
architecture by exploring attribute graph for strict cold start
recommendation. Moreover, in the warm start scenario, our
AGNN also yields the best results on Yelp and ML-1M, and
is the second best on ML-100K with a performance slightly
inferior to STAR-GCN (the difference is not statistically
significant).

Second, among five baselines that aremainly designed for
warm start, NFM performs well in some cases due to its abil-
ity to learn high-order feature interactions. DiffNet and
DANSER performs better in many cases of strict cold start
users since they both utilize social graph for recommenda-
tion. Further more, DiffNet combines user embedding with
preference and attribute information. DANSER constructs
item-item graph according to the number of co-purchased
items. This results in its poor performance in strict item cold
start. sRMGCNN is poor since it uses attributes to construct
user-user or item-item graph without including them into
the convolution operation. Moreover, it cannot handle large
dataset like Yelp as its convolution is defined on Chebyshev
expansion. The performance of GC-MC is also limited as it
incorporates content information after the convolution layer.

Third, among three baselines for normal cold start,
STAR-GCN utilizes graph convolutional network on the
user-item graph. It can get the second best performance in

3604 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: Wuhan University. Downloaded on September 11,2022 at 11:47:53 UTC from IEEE Xplore.  Restrictions apply. 



some cases as it integrates the content information into node
embedding and also because it avoids the leakage issue
when convoluting on user-item graph. The performance of
MetaHIN is ordinary since it requires a support set for
adapting the prior knowledge. In this study, we remove the
interactions from support set to query set during testing to
ensure that the links of new nodes is unseen, and thus its
performance drops. This confirms that the optimization
based meta learning is not suitable for the strict cold start
scenario. IGMC is not good due to the fact that it still
requires some interactions to construct subgraph for the tar-
get user-item pairs, whereas the strict cold start user/item
does not have any links at all.

Finally, among four baselines for strict cold start, LLAE
performs extremely poorly because it aims to fit a user’s entire
rating vector over all itemswith the vector reconstructed from
the user’s attributes, whereas the target of rating prediction is
to optimize the rating score for each user-item pair. Note that
LLAE only optimizes the reconstruction function while both
the rating prediction loss and reconstruction loss are included
in our objective function. To exclude the impacts caused by
the loss function, we will further conduct the component
replacement study for LLAE to examine its ability in

addressing strict cold start issues in Section 5.1. DropoutNet is
not good since it requires the content information to approxi-
mate the results ofmatrix factorization, and its performance is
dependent on the pre-trained preference embeddings. HERS
is the best baseline on Yelp in warm-start scenario since this
dataset is very sparse and HERS uses both item and user rela-
tions to alleviate the sparsity problem.MetaEmbperforms rel-
atively well in some cases. It learns the ID embedding
generator by meta-learning which can be adapted to different
cold start scenarios. However, it is still inferior to our AGNN
model because AGNN can exploit the attribute information
with the powerful graph neural networks with injected eVAE
and gated-GNN structures.

4.3 Parameter Study

In this subsection, we analyze the impacts of three hyper-
parameters in AGNN, including: the latent vector dimension
D, the weighting factor �, and the threshold p for the candi-
date set in graph construction. Figs. 5, 6, and 7 show the results
by varying the dimensionality in the set of f10; 20; 30; 40; 50g,
tuning the weighting factor of reconstruction amongst
f0; 0:01; 0:1; 1; 10g, and varying the threshold in the candidate

TABLE 2
Performance Comparison on Three Datasets for RMSE and MAE, Respectively

RMSE ML-100K ML-1M Yelp

ICS UCS WS ICS UCS WS ICS UCS WS

NFM 1.0416 1.0399 0.9533 1.0403 0.9885 0.9130 1.1231 1.1045 1.0620
DiffNet 1.0418 1.0379 0.9221 1.0363 0.9809 0.8622 1.1072 1.1267 1.0444
DANSER 1.1190 1.0490 0.9823 1.1246 0.9808 0.9797 1.1302 1.0927 1.0525
sRMGCNN 1.1532 1.0479 0.9376 1.2978 1.2118 1.1770 - - -
GC-MC 1.0392 1.0444 0.9106 1.0526 0.9922 0.8656 1.1229 1.1020 1.0254
STAR-GCN 1.0376 1.0428 0.9049 1.0456 0.9878 0.8573 1.1173 1.0988 1.0232
MetaHIN 1.0712 1.1328 0.9955 1.1162 1.0036 0.9870 1.1184 1.1031 1.0252
IGMC 1.1053 1.0589 0.9318 1.1353 1.0453 0.8883 1.0965 1.0994 1.0512
DropoutNet 1.0844 1.0654 0.9428 1.1008 1.0396 0.9254 1.1891 1.1724 1.1524
LLAE 3.3700 3.2653 3.1786 3.3169 3.3223 3.3384 3.8057 3.8416 3.8008
HERS 1.1027 1.0493 0.9344 1.1219 0.9823 0.9137 1.1977 1.1596 1.0240
MetaEmb 1.0432 1.0408 0.9427 1.0290 0.9863 0.8648 1.0869 1.0928 1.0265
AGNN 1.0187* 1.0208* 0.9078 1.0091* 0.9743* 0.8533y 1.0749* 1.0657* 1.0106*
Improvement 1.82% 1.65% -0.32% 2.62% 0.67% 0.47% 1.10% 2.47% 1.23%

MAE ML-100K ML-1M Yelp

ICS UCS WS ICS UCS WS ICS UCS WS

NFM 0.8525 0.8404 0.7565 0.8478 0.7934 0.7221 0.9077 0.8832 0.8372
DiffNet 0.8476 0.8380 0.7250 0.8349 0.7884 0.6760 0.9012 0.9144 0.8241
DANSER 0.9414 0.8542 0.7830 0.9434 0.7863 0.7847 0.9095 0.8818 0.8319
sRMGCNN 0.9434 0.8411 0.7458 1.0685 1.0012 0.9790 - - -
GC-MC 0.8470 0.8647 0.7150 0.8615 0.8030 0.6847 0.9111 0.9235 0.8205
STAR-GCN 0.8440 0.8596 0.7116 0.8494 0.7975 0.6705 0.9088 0.9162 0.8201
MetaHIN 0.8946 0.9309 0.8321 0.9266 0.8348 0.8218 0.9150 0.9196 0.8222
IGMC 0.9299 0.8495 0.7298 0.9256 0.8615 0.7036 0.8983 0.8844 0.8403
DropoutNet 0.8722 0.8571 0.7399 0.8866 0.8398 0.7296 0.9628 0.9624 0.9254
LLAE 3.1749 3.0701 2.9797 3.1047 3.1453 3.1280 3.6300 3.6702 3.6237
HERS 0.8745 0.8572 0.7360 0.8923 0.7878 0.7236 0.9691 0.9289 0.8056
MetaEmb 0.8457 0.8504 0.7495 0.8330 0.7971 0.6842 0.8929 0.8823 0.8102
AGNN 0.8171* 0.8198* 0.7138 0.8093* 0.7794* 0.6677y 0.8715* 0.8586* 0.7945*
Improvement 3.19% 2.17% -0.31% 2.85% 0.89% 0.42% 2.40% 2.63% 3.12%

The best performance among all is in bold while the second best one is marked with an underline. ICS, UCS, and WS are the abbreviations for the strict cold start
item, strict cold start user, and warm start, respectively. The last row indicates the percentage of improvements gained by our proposed AGNN model compared
with the best baseline. * and y denote the statistical significance between each pair of our AGNN and the best baseline at p < 0:01 and p < 0:05 level,
respectively.
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set of f1; 5; 10; 15; 20g on three datasets, respectively. Due to
the space limitation, we only report the RMSE results. Note
that the smallest score is the best for RMSE.

We first fix � to 1 and p to 5 and vary D. We can see from
Figs. 5a and 5b that, with the increase of the dimension of
latent vector, the performance shows a general upward
trend on two MovieLens datasets. This indicates that a
larger dimension could capture more latent factors of users,
items and their respective attributes, which may bring bet-
ter representation capability. However, as is shown in
Fig. 5c on Yelp, when the dimension of the latent vector
exceeds a certain value, e.g., 40, it will cause overfitting and
brings about the decrease of performance.

We then fix D to 40 and p to 5 and vary �. It can be seen
that the weighting factor � is critical in maintaining a bal-
ance between the rating prediction loss and the reconstruc-
tion loss of the eVAE component. As shown in Fig. 6, we
find that the optimal value of � is around 1 on different
datasets. When � is too small, the reconstruction loss
becomes trivial in the model. That is to say, AGNN is unable
to capture the relationship between the preference and attri-
bute information, which leads to the poor performance. On
the other hand, when � is too large, e.g., 10, the model has a
bias target towards the reconstruction loss and thus
destroys the learning process of the rating prediction task.

We finally fix D to 40 and � to 1 and vary p. We observe
from Fig. 7 that the candidate set threshold p does not have
big impacts on the performance. Indeed, the curves are rather
steady with the changing values of p. The reason might be
that when sampling from the candidate set, the top-ranked
samples always have higher probability to be selected though
the larger candidate set can provide more samples. In most
cases, p = 5 can generate good enough results. Hence we
choose this as the setting for p on all datasets.

4.4 Performance w.r.t. Strict Cold Start Ratio

In the strict cold start scenario, a higher ratio of strict cold
start nodes indicates that fewer nodes and user-item

interactions can be utilized for training. This subsection
compares our model with three strongest baselines, i.e.,
DiffNet, STAR-GCN, and MetaEmb, to examine the impacts
of the ratio of strict cold start nodes.

We randomly choose 10, 30 and 50 percent nodes along
with their interactions as test set, and the remaining nodes
and their interactions as training set. Figs. 8a, 8b and 8c
show the results in strict item and user cold start scenario
on ML-100K, ML-1M, and Yelp, respectively. From the
results, we have the following findings.

AGNN consistently outperforms DiffNet, STAR-GCN,
and MetaEmb in different proportions of strict cold start
nodes. This proves that the performance of our AGNN is sta-
ble among various strict cold start settings. When increasing
the ratio of strict cold start nodes, the performance of DiffNet
and STAR-GCN degrades more quickly than that of AGNN.
The main reason is that DiffNet and STAR-GCN are depen-
dent on the user-item interactions, and thus are sensitive to
the number of strict cold start nodes which is proportional to
the number of edges in the user-item graph.

On the other hand, MetaEmb is better than DiffNet and
STAR-GCN with larger ratio of strict cold start nodes yet still
worse than our AGNN. The embedding generator in Meta-
Emb relies on the previously seen users/items, and the
embedding of new users/items in MetaEmb is produced by
feeding their contents and attributes without exploiting the
relations with neighbors in the attribute graph. Consequently,
the high ratio of the strict cold start users/items severely
harms the performance of MetaEmb. In contrast, AGNN
focuses on modeling the attribute graph and is less affected
by the limited number of training nodes and their interactions.

5 ANALYSIS

This section illustrates the detailed analysis on the compo-
nents and computational cost of our model.

5.1 Ablation and Replacement Study

In order to verify the effectiveness of our model, we perform
two types of studies. One is the ablation study which
removes one component from our AGNN. This is used to
show the effects of different components like eVAE and
gated-GNN in our model. The other is the replacement
study which adapts the key technique in baselines such as
mask or dropout to replace the one in our AGNN. This is to
examine the impacts of the specific techniques in baselines
while keeping all other conditions exactly same as ours. The
results for ablation and replacement study are shown in
Tables 3 and 4, respectively.

Fig. 5. Impacts of latent vector dimensionD.

Fig. 6. Impacts of weighting factor �.

Fig. 7. Impacts of neighbor candidate set threshold p.
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5.1.1 Analysis on Ablation Study

In ablation study, we first investigate the impacts of prefer-
ence proximity (PP) and attribute proximity (AP) in
AGNNPP and AGNNAP by using only one proximity. It can
be seen from Table 3 that AP is more effective in measuring
the closeness between two nodes. This is natural since attri-
bute is the inherent property of a user/item, while prefer-
ence is reflected by the user’s behavior which might be
indirect and incomplete.

We then examine the impacts of gated-GNN structures.
Specifically, AGNN�gGNN removes the entire gated-GNN,
while AGNN�agate and AGNN�fgate removes aggregate gate
and filter gate from the original gated-GNN structure,
respectively. The removal of gated-GNN incurs the worst
results since it contains the complete functionality of the
gate mechanism. Furthermore, the removal of two fine-
grained gates results in the decrease of performance on dif-
ferent datasets. This verifies the significance of key design
in our gated-GNN, where agate regulates how the neighbor
information spreads out and fgate controls how the homoge-
neous information is reserved. Finally, the downward trend
of AGNN�agate is more obvious than AGNN�fgate. This is
consistent with our assumption that agate enhances the abil-
ity of information propagation and thus it well leverages the
power of GNN architectures.

We finally show the impacts of eVAE structure in the last
two rows in Table 3. AGNN�eVAE removes the entire eVAE
structure fromAGNNwhile AGNNVAE removes the approxi-
mation part in eVAE and degrades to a standard VAE. It can
be seen that the removal of eVAE greatly harms the perfor-
mance. Especially on the sparse Yelp dataset, AGNN�eVAE is
the worst in the strict item cold start scenario. Moreover, the
performance of AGNNVAE also decreases a lot compared to

standard AGNN. This reveals that the approximation part is
essential to our eVAE structure. Without the the approxima-
tion, the normal VAE is unable to generate the mapping from
attribute to preference and thus loses the ability to well utilize
the attribute information.

Overall, all the above variants perform worse than the
complete AGNN model, showing that each component is
essential to the proposed framework.

5.1.2 Analysis on Replacement Study

In replacement study, we first show the influence of the
graph construction methods in RMGCNN [31] and
DANSER [21]. Specifically, AGNNknn constructs user-user
and item-item graph by choosing 10-nearest neighbors in
the user and item attribute space [31]. AGNNcop constructs
item-item graph according to the number of co-purchased
items [21]. The user-user graph is constructed in a similar
way if social links are not available. Since there is no com-
mon tags between items in our datasets, the graph construc-
tion method in HERS [24] which is now based on the
common attributes between items, becomes identical to that
in RMGCNN. Hence we omit the replacement experiment
for HERS.

As shown in Table 4, the performance of AGNNcop

declines dramatically on Movielens since there will be no
neighbor for strict cold start items using only the co-pur-
chase information. Its performance for strict cold start users
does not change much on Yelp because social links already
form the user-user graph and serve as the users’ attribute.
Furthermore, the superior performance of AGNN over
AGNNknn demonstrates that both attribute and preference
information are useful for graph construction. Finally,

Fig. 8. The performance comparison with varying percentage of testing data in strict cold start scenario on different datasets.

TABLE 3
Results for Ablation Study

ML-100K ML-1M Yelp

ICS UCS ICS UCS ICS UCS

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AGNN 1.0187 0.8171 1.0208 0.8198 1.0091 0.8093 0.9743 0.7794 1.0749 0.8715 1.0657 0.8586
AGNNPP 1.0667 0.8722 1.0322 0.8406 1.0310 0.8391 0.9877 0.8014 1.0842 0.8878 1.0770 0.8702
AGNNAP 1.0271 0.8288 1.0250 0.8229 1.0156 0.8200 0.9770 0.7849 1.0768 0.8729 1.0695 0.8628
AGNN�gGNN 1.0357 0.8410 1.0328 0.8305 1.0193 0.8259 0.9868 0.8013 1.0785 0.8803 1.0869 0.8866
AGNN�agate 1.0284 0.8275 1.0284 0.8298 1.0182 0.8187 0.9788 0.7884 1.0766 0.8668 1.0702 0.8551
AGNN�fgate 1.0230 0.8262 1.0264 0.8196 1.0175 0.8220 0.9760 0.7819 1.0754 0.8696 1.0680 0.8520
AGNN�eVAE 1.0263 0.8302 1.0253 0.8306 1.0269 0.8320 0.9829 0.7924 1.0924 0.8894 1.0724 0.8707
AGNNVAE 1.0252 0.8241 1.0240 0.8250 1.0238 0.8310 0.9839 0.7972 1.0936 0.8873 1.0729 0.8621
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AGNN benefits from its dynamic construction strategy as it
allows to access diversified neighbors, and thus yields bet-
ter performance than two variants with the fixed neighbors.

We then examine how the performance changes if the
gated-GNN is replaced by the conventional GNN struc-
tures. To this end, AGNNGCN employs an ordinary GCN
used in GC-MC [17], i.e., aggregating all neighbors’ repre-
sentations with a summation operation. AGNNGAT adopts
the graph attention technique in DANSER [21], i.e., using an
attention layer to learn the weight of each neighbor before
aggregation. As can be seen, AGNNGCN is inferior to
AGNNGAT in many cases, indicating that attention mecha-
nism can improve the performance. Moreover, they are
both worse than our AGNN. This verifies that differentiat-
ing the importance of each dimension of the node can fur-
ther enhance the performance since it greatly enlarges the
model capacity.

We finally investigate the impacts of other techniques for
addressing the (strict) cold start issues by replacing eVAE
with mask [23], dropout [52], and denoising autoencoder
[53]. Specifically, AGNNmask randomly masks 20 percent of
the input nodes and adds a decoder after gated-GNN layer
to reconstruct the initial input node embedding. AGNNdrop

has the similar adaption except that it randomly sets 20 per-
cent preference embedding of the input nodes to 0.
AGNNLLAE reconstructs the preference embedding from
the attribute embedding using a denoising auto-encoder
and removes the gated-GNN structure since it is not
included in the original LLAE. AGNNLLAEþ is an enhanced
version which contains gated-GNN to aggregate neighbor
information. Note that both these two variants of LLAE
adopt our optimization objective to exclude the influence
caused by the loss function in the original LLAE [53].

As can be seen, AGNNmask is in general better than
AGNNdrop since it can be viewed as a fine-grained dropout at
the dimension level rather than the node level. Two variants of
LLAE areworse thanAGNNmask andAGNNdrop inmost cases,
showing that the reconstruction of attribute via auto-encoder
does not work well. Moreover, AGNNLLAE is the worst
because it does not make use of neighbor information. Finally,
our AGNN outperforms all four variants. The results clearly
demonstrate that our proposed architecture is more effective
than the mask [23], dropout [52], and the reconstruction [53]
techniques in addressing the (strict) cold start problem.

5.2 Complexity Analysis

In this subsection, we investigate the complexity of pro-
posed AGNN. It is obvious that the aggregation and propa-
gation in Gated-GNN is the main operation. During
training process, we need to update dynamic neighbors of
users and items for each user-item pair, which requires time
complexity OðjRþjjNujjNijDÞ, where jRþj denotes the num-
ber of none-zero entries in user-item interaction matrix, jNuj
and jNij is a small number (=10 in this study) of dynamic
neighbors of target user u and item i, respectively, and D is
the embedding dimension. Therefore, AGNN can scale line-
arly w.r.t the number of user-item interactions.

We plot the curves of training loss in Fig. 9 to reveal the
training process. We show the prediction loss and recon-
struction loss separately in terms of strict item cold start and
strict user cold start, respectively. At the early training
stages, both these losses decrease rapidly. With the training
process forward, the prediction loss declines smoothly and
the reconstruction loss converge gradually at about the 4th
epoch. This proves that ourmodel is stable and easy to train.

6 CONCLUSION

In this paper, we propose a novel model, namely AGNN
for the strict cold start rating prediction tasks. We first high-
light the importance of exploiting the attribute graph rather
than the interaction graph in addressing strict cold start
problem in neural graph recommender systems. We then
present an eVAE structure to infer preference embedding
from attribute distribution. Moreover, we address the key
challenges in aggregating various information in a neigh-
borhood by developing a gated-GNN structure which
greatly improves the model capacity.

TABLE 4
Results for Replacement Study

ML-100K ML-1M Yelp

ICS UCS ICS UCS ICS UCS

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AGNN 1.0187 0.8171 1.0208 0.8198 1.0091 0.8093 0.9743 0.7794 1.0749 0.8715 1.0657 0.8586
AGNNknn 1.0298 0.8357 1.0282 0.8343 1.0149 0.8177 0.9797 0.7901 1.0805 0.8824 1.0762 0.8708
AGNNcop 1.0717 0.8779 1.0310 0.8341 1.0314 0.8381 0.9858 0.7994 1.0788 0.8787 1.0734 0.8658
AGNNGCN 1.0308 0.8343 1.0280 0.8295 1.0165 0.8224 0.9818 0.7919 1.0772 0.8749 1.0766 0.8711
AGNNGAT 1.0262 0.8280 1.0274 0.8289 1.0152 0.8227 0.9785 0.7825 1.0768 0.8752 1.0811 0.8746
AGNNmask 1.0230 0.8298 1.0250 0.8243 1.0176 0.8228 0.9770 0.7831 1.0847 0.8861 1.0687 0.8611
AGNNdrop 1.0256 0.8262 1.0246 0.8247 1.0163 0.8179 0.9816 0.7808 1.0885 0.8831 1.0719 0.8693
AGNNLLAE 1.0399 0.8428 1.0325 0.8344 1.0364 0.8424 0.9872 0.7970 1.1104 0.9193 1.0823 1.0887
AGNNLLAEþ 1.0259 0.8215 1.0259 0.8276 1.0210 0.8240 0.9793 0.7847 1.1033 0.9090 1.0686 0.8688

Fig. 9. Training curves of prediction loss and reconstruction loss on dif-
ferent datasets.
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We conduct extensive experiments on three real-world
datasets. Results prove that our AGNN model significantly
outperforms the state-of-the-art baselines in strict cold start
recommendation. It also achieves the best or the second-
best performance in warm start scenario.
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