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Abstract— The shortage of labeled data has been a
long-standing challenge for relation extraction (RE) tasks. Semi-
supervised RE (SSRE) is a promising way through annotating
unlabeled samples with pseudolabels as additional training data.
However, some pseudolabels on unlabeled data might be erro-
neous and will bring misleading knowledge into SSRE models.
For this reason, we propose a novel adversarial multi-teacher
distillation (AMTD) framework, which includes multi-teacher
knowledge distillation and adversarial training (AT), to capture
the knowledge on unlabeled data in a refined way. Specifically,
we first develop a general knowledge distillation (KD) technique
to learn not only from pseudolabels but also from the class
distribution of predictions by different models in existing SSRE
methods. To improve the robustness of the model, we further
empower the distillation process with a language model-based
AT technique. Extensive experimental results on two public
datasets demonstrate that our framework significantly promotes
the performance of the base SSRE methods.

Index Terms— Adversarial training (AT), knowledge distilla-
tion (KD), relation extraction (RE), semi-supervised learning.

I. INTRODUCTION

RELATION extraction (RE) aims to discover the semantic
relations between/among entities from a piece of text,

e.g., a sentence or a document. RE tasks can be classified into
sentence-level RE [1] and document-level RE [2] types, where
two entities belong to one sentence or document, respectively.
In this work, we concentrate on the sentence-level RE task.
For example, given a sentence “He threw wood into the
bonfire” and two entities “e1: wood” and “e2: bonfire,” we
aim to distinguish the “entity:destination (e1, e2)” relation
between two entities. RE facilitates transforming massive,
unstructured text into structured factual knowledge and has
been an active research field due to its broad applications
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in many machine learning and natural language processing
tasks such as knowledge graph construction [3] and biomedical
knowledge discovery [4].

The existing RE studies have achieved great success
in supervised scenarios by leveraging a huge amount of
high-quality labeled data. However, the acquisition of reliable
and high-quality labeled data is difficult, expensive, or time-
consuming. If only a few labeled data are available, it is a
challenge to train a successful RE model. Previous methods for
solving the problem of limited labeled data mainly adopt dis-
tant supervision (DS) [5] or semi-supervised learning (SSRE)
methods [6], [7], [8].

DS has been a hot research topic in recent years. The basic
idea of DS is to use a large knowledge base (KB) that stores
pairs of entities for various relations to automatically obtain
relation labels. It assumes that if two entities belong to a
certain relation in KB, all the sentences mentioning these
entities indicate the relation. The improvements brought by
DS mainly come from expensive KBs. However, it is hard
to directly apply the DS RE methods in many applications.
This is because DS may bring noisy information, and how to
remove the noise is still an unsolved problem, and also because
not all the entity pairs can be found in existing KBs.

Another line of research to tackle the problem of insufficient
labeled data is semi-supervised relation extraction (SSRE).
The SSRE methods follow an essential prerequisite, i.e.,
“self-training assumption” [9], where the predictions of self-
training models, especially those with high confidence, are
prone to be correct. Based on this assumption, the existing
methods gradually augment the labeled data by iteratively
annotating samples with the pseudolabels produced by self-
training models. The training does not stop until unlabeled
data are exhausted.

The main drawback in early SSRE methods is that the
predictions on the unlabeled data might be incorrect, and
the problem will be extremely serious when the number of
labeled data is limited. To overcome this problem, late SSRE
methods often use multiple models [6], [10], [11], which use
different seeds for initialization, different parameter spaces for
training, or different modules to complement each other. The
multiple models collaborate by taking the intersection set of
their prediction results to generate high-quality labels. The
intuition is that multiple models provide different perspectives
on the labeled data, and the labeling bias on augmented
data can be partially solved via the collaboration of these
models.
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Fig. 1. Quality of augmented data. (a) Precision of the data selected in each
iteration. (b) Convergence curve of test F1 score for different methods. The
improvement of the models gradually stagnates with the increased number of
iterations in training.

Although these late methods have shown improvements over
traditional ones, the incorrect pseudolabels on the unlabeled
data are inevitable. As shown in Fig. 1, the existing methods
using pseudolabels tend to generate low-precision augmented
data with the increased number of iterations. While obtaining
more reliable labels, current SSRE methods discard the differ-
ence set of the prediction results where multiple models assign
different labels. This incurs a big information loss. On one
hand, the class distribution in the difference set of prediction
results may still contain correct information. On the other
hand, even if none of the results is correct, the predictions
convey rich intra- and interclass distribution information.

In this article, we rethink the value of pseudolabels and
that of the class distribution and propose a novel framework
to address the problem of unreliable pseudolabels on unlabeled
data. First, we first introduce the knowledge distillation (KD)
technique to exploit the probability distribution over classes in
the teacher model to guide the training of the student model.
Second, to use the soft label information more accurately,
we use a multi-teacher knowledge distillation technique as
the backbone of our framework. The ensemble of multiple
teachers from different models in SSRE can avoid the bias
from a single teacher and help the student model achieve
better performance. Third, the teachers’ prediction results
are used to distinguish the quality of pseudolabels, and the
pseudolabels that the teachers agree on are considered high-
quality. These pseudolabels will be used for training the
student model. Finally, to debias the knowledge learned by
the student model and improve the generalization ability of
the student, we introduce the adversarial distillation (AD)
technique, which uses adversarial examples that are mixed
with small perturbations. Such adversarial examples can make
the student model adapted to the changes and better absorb
the knowledge from teachers. The final proposed framework
is called the adversarial knowledge distillation framework.

We conduct extensive experiments on two public datasets.
The results demonstrate the superiority of our proposed frame-
work over the state-of-the-art baselines.

In summary, our main contributions are as follows.

1) We frame SSRE within a new paradigm by treating
high-quality and low-quality pseudolabels in a separate
way.

2) We develop a multi-teacher knowledge distillation
framework that unifies the existing SSRE methods and
the recently developed KD technique.

3) We empower the multi-teacher distillation (MTD)
method with a language model-based AT technique that
can further improve the robustness of distillation.

II. RELATED WORK

A. Relation Extraction

Supervised RE is generally categorized into two types:
feature-based [12], [13] and kernel-based methods [14]. More
recently, pretrained language model (PLM)-based methods
become the state-of-the-art [15]. While being powerful, super-
vised RE models require large amounts of human-annotated
data. Some researchers propose DS methods to solve the
challenge [16]. Despite their progress, DS methods inevitably
suffer from false-positive and false-negative samples. More-
over, it is hard to apply DS for label generation because of the
sparse matching results and context-agnostic label noises [7].

Recently, researchers develop semi-supervised RE methods
that can alleviate the scarcity problem of labeled data [6].
The motivation behind SSRE is to reduce the manual efforts
and to use the information in unlabeled data that are easy to
obtain [17], [18]. SSRE combines the advantages of both the
supervised and unsupervised paradigms. The main problem in
SSRE is the semantic drift [19], i.e., the predictions on the
unlabeled data might be incorrect. To address this problem,
most SSRE methods adopt an ensemble strategy, where the
simplest way is to select samples in the intersection set of
multiple classifiers. For example, RE-ensemble [10] selects the
samples to expand data based on the agreement of two predic-
tion modules which are independently initialized. DualRE [6]
designs a retrieval module to assist the prediction module in
generating more accurate annotations. All these methods use
pseudolabels to exploit information on unlabeled data.

In this article, we reveal an important low-quality pseu-
dolabel problem of the existing semi-supervised RE methods.
The pseudolabels on a portion of training data tend to be
inaccurate and the low-quality data will misguide the final
model. In other words, the biased label distribution on training
data is inevitably generated in the process of semi-supervised
learning. Hence, we move one step further and weaken the
bias after the last iteration of the semi-supervised process.

B. Knowledge Distillation

KD is originally proposed for model compressing [20],
with the basic idea of transferring the knowledge from the
large teacher model T to the small student model S. KD has
also been successfully applied to various fields, including
computer vision [21], natural language understanding such as
linguistic acceptability and textual entailment [22], [23] and
recommender systems.

KD has not been considered by the existing SSRE methods.
We note that a seminal research [24] named KD4NRE distills
the knowledge from the soft labels for RE. The differences
between our work and [24] are as follows. First, our soft label
information comes from the trained semi-supervised model,
while part of the soft label information of [24] is derived
from statistical information. Second, our method and [24]
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present different distillation methods, i.e., MTD and one-
teacher distillation, respectively. The method in [24] is suitable
for supervised RE tasks. In that scenario, it can use statistics
in sufficient training data as soft labels to help distillation
and produces a better performance. However, such statistics
are unsuitable for semi-supervised relational tasks which have
insufficient training data. In this work, we make the first
attempt at exploiting KD for SSRE.

C. Adversarial Training
Deep neural networks are highly expressive models that

have achieved the state-of-the-art performance in many
research fields. However, some neural networks are particu-
larly susceptible to noises and the neural models are pretty
sensitive to the input. To avoid the problem, AT [25], [26]
was proposed by adding some perturbations to the input while
keeping the output unchanged.

AT can alleviate the limitation of KD on the generalization
ability of the student model [27]. Several methods have
proposed to combine AT with KD to enhance the robustness
of the model. However, few of them have effectively explored
the impact of adversarial examples since the existing methods
usually input the examples into the final model for training.
The adversarial samples are automatically generated and not
real ones, and thus they may drive the model to learn mislead-
ing features. In this article, we develop a new AT method that
confines the influence of adversarial examples in the feature
encoder rather than directly sending them to the final classifier.

III. PRELIMINARY

A. Problem Definition
Definition 1 (RE): Let d = [t1, . . . , tm] be a sentence with

m tokens, and e1 and e2 be two entity mentions in d. R =

{r1, . . . , r|R|} is a predefined relation set. The RE1 task is
formulated as a classification problem that determines whether
a relation r ∈ R holds for e1 and e2.

Definition 2 (SSRE): Given a set of labeled and unlabeled
relation mentions DL = {(di , ri )}

|L|

i=1 and DU = {(di )}
|U |

i=1,
respectively, the goal of SSRE task is to train a model that
fits the labeled data DL , and it captures the information in
the unlabeled data DU for augmenting the labeled data. The
trained model is used to predict the relation of the samples in
the unseen test data DT = {(di )}

|T |

i=1.

B. Problem Analysis
The existing SSRE methods under “self-training assump-

tion” [9] are inevitably facing the problem of low-quality
unlabeled data, i.e., the pseudolabels on those data tend to be
wrong. As pointed in [28], labeled samples follow a Borel
probability distribution Pr(d, r), which represents the true
class distribution on test data. There is a simplified assumption
as follows:

Pr(d, r) = P(r |d)P(d)

= {P(r |d L)P(d L
|d) + P(r |dU )P(dU

|d)}P(d).

(1)
1There are three types of RE tasks: sentence-level RE, cross-sentence n-

ary RE, and document-level RE. Since prior SSRE methods are conducted on
sentence-level tasks, we also adopt this setting.

Since the number of labeled and unlabeled data is fixed,
P(d), P(dU

|d), and P(d L
|d) cannot be further optimized. The

key to improving SSRE models is the conditional probabilities
p(r |d L) and p(r |dU ). Under the semi-supervised setting, the
first probability on labeled data p(r |d L) is drawn from PR
and could be learned by a carefully designed model. For the
conditional probability on unlabeled data p(r |dU ), not only the
structure of models but also the labeling information matter.
Using pseudolabels on low-quality data will lead to inaccurate
modeling of conditional probabilities p(r |dU ) because the
pseudolabels on low-quality data are likely wrong. Moreover,
only using pseudolabels on high-quality data may also limit the
model’s capability. Thus, a more refined constructing process
can improve the existing SSRE methods. Based on this obser-
vation, we propose our adversarial MTD (AMTD) framework
that treats high-quality and low-quality more delicately.

IV. METHODOLOGY

In this section, we present our AMTD framework for SSRE.

A. Model Overview

An overview of our AMTD framework is shown in Fig. 2.
It is built upon the existing SSRE methods. We take the models
(usually two) in SSRE methods as multiple teachers and then
conduct adversarial KD. The framework contains three losses,
including a consistency loss of multi-teacher knowledge dis-
tillation, a classification loss on the data with high-quality
pseudolabels, and a consistency loss on adversarial samples.
Specifically, we first use the teachers’ prediction results to
distinguish high-quality pseudolabels from pseudolabels on
unlabeled data, where high-quality pseudolabels are regarded
as real labels and low-quality pseudolabels are abandoned.
Second, the class distributions on the teachers’ predictions
for all the data are used for KD. Finally, a new classifier is
deployed in the student model for adversarial data to improve
the generalization of the student model.

B. Encoder

Before training the models, it is necessary to encode the
tokens in input sentences into latent vectors. A variety of
encoders have been proposed for RE tasks, such as convolu-
tional neural network (CNN) [29], recurrent neural network
(RNN) [13], graph neural network (GNN) [30], and PLM
encoders [15], [31]. Among them, PLM encoders can learn
universal language knowledge from the large corpus and are
beneficial for downstream tasks.

In view of this, we follow the recent practice [15] and
use bidirectional encoder representations for transformers
(BERT) [32] as PLM for all the SSRE methods. In partic-
ular, we insert special tokens “[e1][/e1]” and “[e2][/e2]” at
the beginning and the end of the first and second entities,
respectively. We also add “[cls]” and “[sep]” tokens at the
beginning and the end of the sentence. Given the running
example sentence, its input to the encoder is as follows.

“[cls] The [e1] implant [/e1] is placed into the [e2] jaw
bone [/e2] [sep].”
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Fig. 2. Overview of our AMTD framework for SSRE. Our AMTD framework consists of two parts: the multi-teacher knowledge distillation and the
adversarial training (AT). In MTD, the student model is trained by two losses: a consistency loss with teacher models and a classification loss on high-quality
data. In AT, the student model with classifier2 is trained by the consistency loss on adversarial samples.

We feed the PLM-encoded vectors at the corresponding
positions of “[e1]” and “[e2]” to the bilinear output layer to
obtain the final embedding x of the samples. The process can
be defined as follows:

x = bilinear(hi , h j ) (2)

where i and j correspond to the positions of “[e1]” and “[e2],
respectively.”

C. Multiple Teacher Models
1) Converting Models into Multiple Teachers: In our pro-

posed framework, to be compatible with the existing SSRE
methods (termed as base methods hereafter), we make the least
change to these methods and directly take the multiple models
from the last iteration when training the base methods as the
multiple teachers. In case the base method like self-training [9]
contains one model, we run it two times with different seeds
to get two teacher models.

2) Discerning High-/Low-Quality Data: We use the teach-
ers’ prediction results to judge the quality of pseudolabels. The
pseudolabels with the same annotated labels by different teach-
ers are treated as high-quality, and the data with high-quality
pseudolabels or labels are called high-quality data. Formally,
we define high-quality data DA as follows:

DA = DL ∪DI (3)

where DL is the original labeled data, and DI is composed
of unlabeled data on which multiple teachers assign the same
label. The data except DA are regarded as low-quality data
DB . Formally, we define low-quality data DB as follows:

DB = D −DA (4)

where D is all the data including labeled and unlabeled data.
As illustrated in Fig. 3, high- and low-quality data are jointly
determined by the teachers. If two teachers reach a consensus
prediction on a sample, it will be added to the high-quality
dataset. Otherwise, it is added to the low-quality dataset.

3) Processing on Different Data: To promote performance,
the existing SSRE methods trade off between multiple models
and choose the high-confidence label to augment the training
data. However, the pseudolabels on high- and low-quality data

Fig. 3. Illustration of multi-teacher knowledge distillation in our framework.
The prediction of teacher models generated from the basic SSRE models
is treated as soft labels. MTD loss (the consistency loss) refers to the
Kullback–Leibler divergence between the student’s predictions and the soft
labels on all data, and the CE loss (the classification) is on the high-quality
data. Note the green and white dots denote the high- and low-quality samples,
respectively.

are dissimilar. Therefore, we propose refined processing on
unlabeled data in our AMTD framework by discarding the
unreliable pseudolabels on low-quality data.

We construct two losses (classification and consistency
loss) on high-quality data and one loss (consistency loss)
on low-quality data. Specifically, on high-quality data,
since the pseudolabels are reliable and helpful for train-
ing, we adopt the classification loss for them. Furthermore,
we leverage dark knowledge (soft label information) from
the predictions on high-quality data. The rationale is that
the predictions reflect the judgments of two teachers and
contain rich intra- and interclass distribution information.
For example, the relationship between “per:city_of_death”
and “per:country_of_death” is closer than that between
“per:city_of_death” and “org:founded_by.” On low-quality
data, the pseudolabels might produce misleading knowledge.
Such data lie near the decision boundary of models and are
hard to be correctly classified. Therefore, we propose only
using the soft label information instead of pseudolabels on
low-quality data during training.

D. Multi-Teacher Knowledge Distillation
1) Constructing Student Network: The student model S in

our AMTD framework has the same neural architecture as
the teachers. It consists of an encoder to get the feature of
the sentence and a bilinear classifier for prediction. Holding
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the same structure ensures the student model can entirely
capture the knowledge of teachers.

2) Training Student Model: The constructed student net-
work S is also trained on both DA and DB with two objectives.
One is to minimize the consistency loss between teachers and
the student on all data D, i.e., labeled and unlabeled data. The
other is to match the ground-truth hard labels on high-quality
data DA, i.e., the classification loss. Formally, we define the
loss for training the student network as follows:

LS =

|DA|∑
i=1

Li
S,CE + λ

|DA+DB |∑
i=1

Li
MTD (5)

where LS,CE denotes the classification loss using one-hot hard
labels on high-quality data DA. Note that the predictions on
samples in the high-quality set are also treated as one-hot hard
labels. LMTD denotes the consistency loss (the distillation loss)
using multiple teachers’ soft labels, and λ is the hyperparam-
eter to trade off LCE and LMTD.

The classification loss LCE is defined as the cross entropy
(CE) between the student’s predictions and the ground-truth
labels

LS,CE =

|DA |∑
i=1

CE(G(i), P̃S(i)) (6)

where G(i) and P̃S(i) denote the i th element of the
ground-truth labels and the student’s predictions, respectively.

The consistency loss LMTD is defined as the
Kullback–Leibler (KL) divergence between the student’s
predictions P̃S and the soft labels by each of multiple (two)
teachers

LMTD =

|D|∑
i

∑
m∈{T 1,T 2}

K L
(
P̃m

T ||P̃S
)

=

|D|∑
i

∑
m∈{T 1,T 2}

P̃m
T (i) log

(
P̃m

T (i)
/

P̃S(i)
)

(7)

where P̃m
T denotes the probability distribution output by the

teacher m.
Note that the teacher network generates a soft class proba-

bility with a converting operation, i.e., raising the temperature
of the final softmax layer until the teacher produces a suitably
soft set of targets

P̃T = softmax(Z̃T /τ) (8)

where Z̃T is the logits produced by the teacher network. τ is
the temperature, and a higher value for τ produces a softer
probability distribution over classes.

E. Adversarial Training

In MTD, the teachers’ knowledge on the training set
(labeled and unlabeled data) is distilled to the students.
However, the student may still perform poorly on data that
do not appear in the training set because the teachers are
trained with limited labeled data in the SSRE scenario. Even
small changes in samples (changes that do not affect labels)

Fig. 4. Illustration of the adversarial sample generation process for one
sentence. To generate adversarial samples, the model will replace or insert a
special “[mask]” token into the original sample and generates a token for it
by the MLM.

may mislead the student. To enhance the model robustness,
we propose to combine the AT technique with distillation
in SSRE, which consists of one adversarial data generation
process and one AT process. There are several differences
between our approach in this article and adversarially robust
distillation (ADR) [27]. First, our motivation is different. Our
method aims to leverage the knowledge learned by multi-
ple teachers to enhance the performance of student mod-
els, whereas ADR focuses on improving the knowledge and
robustness of a single complex teacher network. Second, the
tasks and domains we consider are different. Our approach
focuses on SSRE, while ADR is primarily applied to image
classification.

1) Adversarial Data Generation: We simply use the pre-
trained mask language model (MLM) BERT [32] to generate
adversarial data. First, we feed the PLM with the original
text replaced or inserted by a special token, “[mask].” Then,
we fix the rest of the sentence and replace those special mask
tokens with the PLM output to construct an AT sample. The
ratio of masks we use is consistent with that used by the
pretrained language model, i.e., 15%. We present an example
of the generation process in Fig. 4.

2) Adversarial Training: We denote the adversarial samples
as DC which are distinct from the real data and may bring
intractable knowledge. For this reason, we develop a spe-
cially designed student model which contains two classifiers,
classifiers 1 and 2. The training on real and adversarial data
goes through classifiers 1 and 2, respectively. By doing this,
adversarial data can enhance the model robustness yet does
not affect the performance. This is because the student model
uses classifier 1 to make the final prediction and the impact
of adversarial data does not go beyond the “Encoder” in the
AT module in Fig. 2.

We use the MTD loss for training DC , and the final loss L
of training is as follows:

L =

|DA|∑
i=1

Li
S,CE + λ

|DA+DB |∑
i=1

Li
MTD + γ

|Dc|∑
i=1

Li
MTD. (9)

V. EXPERIMENTS

We conduct extensive experiments to verify the effective-
ness of our framework. We first introduce the experimental
settings and then present the results and analysis.
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TABLE I
STATISTICS FOR TWO DATASETS

A. Dataset

We evaluate our model on two public datasets:
SemEval (SemEval-2010 Task 8) [33] and TAC RE dataset
(TACRED) [13].

1) SemEval is a standard benchmark dataset containing
19 kinds of relations (including no_relation). Note that
the relations in SemEval are directed. For example,
“entity-destination (e1, e2)” and “entity-destination (e2,
e1)” are different relations.

2) TACRED is a large-scale RE dataset which includes
41 undirected relation types such as “per:age” and an
extra “no_relation.” It is typically used in the annual
TAC KB population competition.

The detailed data statistics along with the splits for SemEval
and TACRED are shown in Table I. The data split follows the
common setting of the existing methods.

B. Compared Methods

To demonstrate the effectiveness of our proposed MTD
and AMTD, we compare them with the following supervised,
semi-supervised baselines, and the upper bound with golden
labels.

The first six methods (1)–(6) are supervised methods.
Neural rule grounding (Nero) framework [34] is a rule-based
one. These models except NERO use CNN [29], recurrent
neural network (RNN) [13], graph convolutional networks
(GCNs) [30], KD [24], and BERT [15] as base models,
respectively, for supervised RE tasks.

The next five methods (7)–(9) are base SSRE methods.
Self-training [9], mean-teacher [11], and RE-ensemble [10]
are all general semi-supervised methods. They do not develop
any special structure on the SSRE task. DualRE [6] and
GradLRE [6] are the state-of-the-art methods on SSRE.
DualRE jointly trains a prediction module and a retrieval
module to select the top-ranked samples in the intersection set
by two modules for data augmentation (DA). GradLRE uses
reinforcement learning to judge the correctness of predictions
and achieves a good result.

Our proposed MTD and AMTD (12)–(13) are all based
on self-training. That is to say, the teacher models in the
frameworks are all trained by self-training.

The last one RE-Gold (14) uses the gold labels of the unla-
beled data and presents the upper bound for SSRE methods
based on BERTEM.

We use the source code provided by the authors of DualRE2

and GradLRE.3 Note we use the pointwise variant for DualRE
as it performs better than the pairwise one. In addition,
we reimplement four base SSRE methods with BERTEM as
the encoder to keep pace with the state-of-the-art PLM-based
methods.

2https://github.com/INK-USC/DualRE
3https://github.com/THU-BPM/GradLRE

C. Setup

Following existing SSRE methods [6], [34], we sample 5%,
10%, and 30% training data in SemEval, and 3%, 10%, and
15% training data in TACRED as the labeled set, respectively.
About 50% training data in SemEval and TACRED are sam-
pled as unlabeled data whose labels are assumed unavailable
for all the models except the BERT with gold labels. For
all the compared methods (supervised and semi-supervised),
we follow the default hyperparameter settings in the original
papers. For all the SSRE methods, we select up to 10%
instances of the unlabeled data in the intersection set for DA
in each iteration and perform text iterations. The learning rate
for the BERTEM encoder and classifier is set to “5e-5” and
“1e-4,” respectively.

The parameter settings of our model are obtained on the
development set. Specifically, the epoch for model training
is set to 10, the batch size is 20, and the temperature of
distillation is 2.4. We use F1 as the main metric, and precision
and recall as auxiliary metrics to evaluate the performance of
all the methods.

D. Main Results

The comparison results on SemEval and TACRED are
shown in Tables II and III, respectively.

It can be observed that our AMTD framework with the
simplest SSRE method self-training as the base model can
achieve significantly better performance than the best baseline
on both the datasets and all the ratios of labeled data. This
clearly proves the effectiveness and generality of our proposed
framework. We see that the trend is more obvious when the
ratio is small. This is a very positive finding since we always
wish to train a better classifier with less training data. We note
that a similar finding also holds for our MTD framework,
showing the effects of multi-teacher knowledge distillation.
Furthermore, as the size of data increases, the improvement
brought by AT gradually decreases. This is reasonable due to
the impact of data amount.

Among the first six supervised methods (1)–(6), BERTEM is
the best, with remarkable enhancement over other supervised
methods. This can be mainly due to the powerful expressive
abilities of PLMs. The KD method KD4NRE performs poorly
when the proportion of labeled data is small, e.g., 5% and
10% on SemEval. The reason is that KD4NRE is designed for
supervised learning and requires statistical information on the
full data. Its performance on TACRED with 3% labeled data is
not that bad because TACRED is much larger than SemEval.
The performance of AGGCN on SemEval is extremely poor
as it is based on the undirected connection graph while the
relations in SemEval are directed. NERO is stable to different
ratios of labeled data since it uses manually specified patterns.

Among the next five semi-supervised methods (7)–(11),
the traditional semi-supervised methods (self-training, mean-
teacher, and RE-ensemble) perform worse than two recent
methods (DualRE and GradLRE) on small-scale datasets,
SemEval. This trend is less obvious on TACRED since the
large dataset will weaken the performance gap among semi-
supervised methods.
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TABLE II
COMPARISON RESULTS ON SEMEVAL. THE BEST SCORES OF ALL METHODS ARE IN BOLD, AND THE BEST BASELINE MODELS ARE UNDERLINED.

ALL RESULTS ARE THE AVERAGE SCORES OF FIVE RUNS WITH A RANDOM SEED. “‡” INDICATES THE STATISTICALLY SIGNIFICANT

IMPROVEMENTS (I.E., TWO-SIDED t -TEST WITH p < 0.01) OVER THE BEST BASELINE

TABLE III
COMPARISON RESULTS ON TACRED. THE BEST SCORES OF ALL METHODS ARE IN BOLD, AND THE BEST BASELINE MODELS ARE UNDERLINED.

ALL RESULTS ARE THE AVERAGE SCORES OF THREE RUNS WITH A RANDOM SEED. “‡” INDICATES THE STATISTICALLY SIGNIFICANT

IMPROVEMENTS (I.E., TWO-SIDED t -TEST WITH p < 0.01) OVER THE BEST BASELINE

TABLE IV
COMPARISON RESULTS OF DIFFERENT BASE SSRE METHODS ON SEMEVAL AND TACRED. THE RESULTS ON SEMEVAL AND TACRED ARE

AVERAGED OVER FIVE AND THREE RUNS WITH RANDOM SEEDS, RESPECTIVELY. “‡” DENOTES THE STATISTICALLY SIGNIFICANT

IMPROVEMENTS (I.E., TWO-SIDED t -TEST WITH p < 0.01) OVER THE CORRESPONDING BASE SSRE METHOD

We also find that the KD-based method KD4NRE does not
perform well on semi-supervised tasks. Indeed, KD4NRE is
the state-of-the-art method in the supervised RE task. It first
uses large-scale data to train a teacher model, and then the
teacher cooperates with the statistical information on data to
jointly teach a student model. However, in the semi-supervised
RE task, the statistics information on small-scale labeled data
becomes inaccurate, which causes the KD4NRE model to fail.

Our framework is able to be applied to various base SSRE
methods. We show the performance of the framework based
on different SSRE methods in Table IV.

It can be observed that our MTD framework can signifi-
cantly enhance the performance of the base SSRE methods

on both the datasets and all the ratios of labeled data. This
clearly proves the effectiveness and generality of our proposed
framework. Moreover, we see that the trend is more obvious
when the ratio is small. This is a very positive finding since
we always wish to train a better classifier with less training
data.

VI. DEEP ANALYSIS

To get a deep insight into our proposed AMTD framework,
we conduct a series of experiments, including the ablation
study, hyperparameter and loss landscape analysis, case study,
and complexity analysis.
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TABLE V
TEACHER AND STUDENT STRUCTURE ANALYSIS ON SEMEVAL. THE BEST SCORES OF ALL METHODS ARE IN BOLD. ALL RESULTS ARE THE AVERAGE

SCORES OF FIVE RUNS WITH A RANDOM SEED

TABLE VI
ABLATION STUDY ON SEMEVAL AND TACRED. ↓ DENOTES

A DROP OF F1 SCORE

A. Ablation Study

We design two ablation studies, with 10% labeled data on
SemEval and TACRED, to examine the impacts of different
components. All the ablation studies are based on the simple
self-training method.

1) MTD uses classification loss and consistency loss on
high-quality data, i.e., we remove the AT process.

2) MTD_B uses cross-entropy loss on high-quality data
and MTD loss on low-quality data under the MTD
framework. In this case, only the knowledge on
low-quality data is modeled. Through this experiment,
we wish to see whether soft labels on high-quality data
contain useful information.

3) Intersection trains a separate model based on pseudola-
bels predicted by two teacher models on the high-quality
data DA (the intersection set) without the MTD loss.

4) Distilation_O uses one teacher for distillation and trains
a model based on pseudolabels predicted by the teacher
model on all the labeled and unlabeled data, i.e., we keep
the partial distillation by treating one teacher’s predic-
tions as soft labels to demonstrate the effect of multi-
teacher techniques.

5) Self-Training is the original SSRE method which con-
tains only one model.

The results for ablation studies on SemEval and TACRED
are shown in Table VI. We make the following notes for these
results.

First, all the variants with reduced components cause per-
formance drops. This demonstrates that all the components
contribute to the entire framework. For example, the better per-
formance of “AMTD” than “MTD” proves the impact of AT.

Second, by comparing results for “AMTD” and “MTD” with
those for other methods, the effects of distillation can be con-
firmed by the superior performance of these two models which
both contain the complete distillation component. Moreover,
“MTD” outperforms “MTD_B” because soft label information
on high-quality data contains interclass information that can
help improve models.

TABLE VII
IMPACTS OF THE NUMBER OF TEACHERS ON 10% SEMEVAL. THE BEST

SCORES OF ALL METHODS ARE IN BOLD

Third, “Intersection” produces a good performance, show-
ing that the models from two SSRE modules can provide
high-quality labeling information. “Distilation_O” is worse
than the complete MTD framework, showing that the knowl-
edge distilled from one teacher is less effective than that from
two teachers.

We also see that “Distilation_O” is a bit inferior to “Inter-
section” on SemEval but it is better on TACRED. This can
be due to the property of the two datasets. Taking a close
look at the data, we find that the proportion of intersection
data to unlabeled data is 83.56% on SemEval and 91.22% on
TACRED, while the ratio of negative (no_relation) samples is
14.65% in SemEval and 82.89% in TACRED. This suggests
that the intersection set in SemEval contains more high-quality
samples.

B. Analysis on Teachers and Students Structure
We design experiments to discuss the effects of the teachers’

configuration on students, including the impact of different
teacher network structures, and the number of teachers.

First, to examine the influence of network structure on the
model, we increase the number of layers, attention heads,
and dimensions of the encoder. The basic encoder is changed
from the “Bert-base” to the “Bert-large” model. The results
are shown in Table V. We see that a more complex model
structure can improve the performance of the teachers. We can
also find the influence of better teachers on students. There is
no doubt that good teachers can also improve the performance
of student models. Interestingly, more complex student struc-
tures do not improve the student’s performance. It infers that
the current structure of “Bert-base” is sufficient to learn the
knowledge of teachers, and a more complex structure will not
bring further improvement under the same teachers.

Second, we also examine the effect of the number of teacher
models on student models in Table VII. A too large teacher
number (e.g., 5) may degrade the performance due to the
decreased number of samples in the intersection set and it
also increases the complexity.

C. Analysis on AD
To better understand the advantages of AD, we compare

our proposed AD with the traditional DA. In this experiment,
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Fig. 5. Visualization of the loss landscape. (a) Self-training. (b) Intersection_S. (c) Distillation_O. (d) Self-training + MTD. (e) Self-training + AT.
(f) Self-training + AMTD.

TABLE VIII
COMPARISON RESULTS OF AD AND DA ON 10% SEMEVAL. THE BEST

SCORES OF ALL METHODS ARE IN BOLD

AD and DA use soft labels and hard labels, respectively,
to help train the student model. As shown in Table VIII, the
performance of DA is worse than that of AD, which means that
the DA can improve the generalization performance of models
without introducing new knowledge, while AD methods can
improve more with knowledge from teachers.

D. Analysis on Loss Landscape

A recent study [35] shows that the loss landscape can
support the analysis of KD methods. We use the state-of-
the-art landscape visualization technique [36] to plot the loss
surface of four representative methods and their variants. The
results on SemEval are shown in Fig. 5.

It is clear that our self-training + MTD produces the most
flatter surface around the local minima among the first four
methods [Fig. 5(a)–(d)]. Distillation_O has similar results.
Meanwhile, the surfaces for two methods without distillation
(self-training and intersection_S) are much sharper. These
results show that the distillation can produce a better loss land-
scape. This may be caused by the rich interclass relationships
contained in KD.

For two methods using AT [Fig. 5(e) and (f)], the height
of their loss landscape becomes a bit larger due to AT.

TABLE IX
TEMPERATURE FACTOR ANALYSIS BASED ON MULTI-TEACHER. THE

BEST SCORES OF ALL METHODS ARE IN BOLD

Fig. 6. Impacts of the hyperparameter λ. (a) SemEval. (b) TACRED.

However, their curvature remains to be smooth, showing better
generalization ability.

It can be found that the optimal setting for λ is about
0.3 on SemEval and 0.5 on TACRED. When λ is set to 0,
the distillation loss for soft labels does not work. In such a
case, the framework degenerates into a simple model using
only the ground-truth hard labels for training. When λ is set
to 1, the framework is equivalent to a variant using only the
soft labels for training. Both these can hurt the performance
of the model.

E. Analysis on Hyper-Parameter

In the framework, the temperature τ and λ are critical. τ

can affect the distribution of soft labels and will further affect
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TABLE X
CASE STUDY. THE RED AND BLUE TOKENS DENOTE THE SUBJECT (e1) AND OBJECT (e2) ENTITY, RESPECTIVELY. THE TOP THREE PREDICTIONS ARE

PRESENTED IN AN ASCENDING ORDER FOR TEACHER AND STUDENT MODELS, AND THE GROUND-TRUTH LABELS ARE UNDERLINED

the model performance. λ is used for balancing the loss of
hard labels and that of soft labels.

To analyze temperature as comprehensively as possible,
we first remove the influence of soft labels on multiple teachers
and only use the soft labels of a single teacher. In this
way, we can find the optimal temperature in the case of a
single teacher, and then assign the optimal temperature to
each teacher, and further observe whether setting the optimal
temperature for each teacher will bring improvement to the
MTD. As shown in Table IX, temperature factors can affect
student performance, but setting the optimal temperature for
each teacher will not improve student performance in AMTD.

We show the impacts of the hyperparameter λ on SemEval
and TACRED with 10% labeled data in Fig. 6. To highlight
the impacts of distillation parameters, we remove the effect of
AT in our framework.

F. Case Study

We perform a case study by presenting the soft label output
from the teacher models and the prediction results of the
student model on several test samples from SemEval and
TACRED. The results are shown in Table X.

The first two instances I1 and I2 in Table X are from
SemEval. In I1, the teacher T1 assigns the wrong label “Entity-
Origin(e1,e2)” with a low confidence. Meanwhile, T2 assigns
the correct label “Message-Topic(e1,e2)” with a very high
confidence. In I2, both T1 and T2 successfully identify the
“Component-Whole” relation. However, T2 assigns a wrong
direction and the correct prediction ranks second. In both
the instances, the student S can make the correct prediction,
indicating the effects of distillation from two teachers. If there
is only one teacher, it might be hard for S to acquire sufficient
knowledge. If only T1 or T2 is chosen as the teacher model,
it might be hard for S to acquire the correct label.

The last instance I3 in Table X is from TACRED. In I3,
both teachers T1 and T2 make wrong yet different predictions.
However, their second highest scores are the same and correct.
The trained student network S inherits the knowledge distilled
from teachers and then surpasses the teachers.

In summary, the student model in our proposed framework
learns both the common and different knowledge from the
two teacher models. From the view of framework structure,

TABLE XI

COMPLEXITY ANALYSIS. h = hour, M = 1 × 106

the reason for the correct judgment predicted by the student
model can be due to multiple teachers’ collaboration.

G. Analysis on Computational Cost
To prove that the improvement of our model does not incur

big computational cost, we perform a complexity analysis. The
results on a 24-GB NVIDIA RTX 3090 GPU are shown in
Table XI.

From Table XI, we can see that self-training has the smallest
time cost because it only trains one model for semi-supervised
learning. Our ST + MTD is the most efficient among all
other methods. Recall that all these SSRE methods except
self-training have two models, and the main time cost is
for the iterative semi-supervised learning while MTD only
needs to train the student model. In addition, we find that
AMTD has the biggest time cost on SemEval due to its AT
procedure. However, on a large dataset like TACRED, it is still
in the middle since other methods require more time to train
their model. Furthermore, mean-teacher and RE-ensemble
consist of two models and adopt various strategies to select
high-confidence augmented data, which leads to their running
time being doubled compared with the self-training method.
DualRE uses various training losses and special structures, and
thus it has a bigger time cost than other models.

As for the running space, we find that the integration of
our MTD and AMTD does not increase the space cost upon
the base self-training method, and it is much small than that
of other SSRE methods. This can be due to the sequential
training of our framework which only contains one model at a
time during training. Concretely, in our proposed framework,
we first run the self-training method twice to obtain two
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teacher models and then save the teacher’s output. During this
process, the space is the same as that of self-training. The
student is directly trained by the saved teacher output without
loading the teacher model. Therefore, the student training does
not require extra space costs.

VII. CONCLUSION

In this article, we propose a novel framework for SSRE. The
key observation is that the existing SSRE methods neglect the
class distribution information hidden in the multiple models’
predictions. Based on this observation, we first design an
MTD framework to transfer the distribution knowledge from
two teacher networks to the student network. MTD is simple
and general, and it can be easily integrated with the existing
SSRE methods. We also develop an AT technique to further
improve the robustness of the distillation process. Extensive
experiments on two popular datasets verify that our framework
can significantly improve the performance of the base SSRE
methods.
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