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The increasing proliferation of location-based social networks brings about a huge volume of user check-

in data, which facilitates the recommendation of points of interest (POIs). Time and location are the two

most important contextual factors in the user’s decision-making for choosing a POI to visit. In this article,

we focus on the spatiotemporal context-aware POI recommendation, which considers the joint effect of time

and location for POI recommendation. Inspired by the recent advances in knowledge graph embedding, we

propose a spatiotemporal context-aware and translation-based recommender framework (STA) to model the

third-order relationship among users, POIs, and spatiotemporal contexts for large-scale POI recommendation.

Specifically, we embed both users and POIs into a “transition space” where spatiotemporal contexts (i.e., a

<time, location> pair) are modeled as translation vectors operating on users and POIs. We further develop

a series of strategies to exploit various correlation information to address the data sparsity and cold-start

issues for new spatiotemporal contexts, new users, and new POIs. We conduct extensive experiments on two

real-world datasets. The experimental results demonstrate that our STA framework achieves the superior

performance in terms of high recommendation accuracy, robustness to data sparsity, and effectiveness in

handling the cold-start problem.
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1 INTRODUCTION

Location-based social networks (LBSN) like Foursquare, Yelp, and Facebook Places have prolifer-
ated over the last one or two decades. Many users on LBSN like to share their experiences with
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their friends about points of interest (POIs), e.g., restaurants and museums. The huge volume of
user check-in data has been collected by the providers of location-based services. This greatly
facilitates the recommendation of POIs to help users to explore new places. The POI recommenda-
tion is of high value to both the users and businesses, and thus has attracted much attention from
researchers in both academia and industry in recent years (Chang et al. 2018; Chen et al. 2015;
Cheng et al. 2016; Gao et al. 2015b; Griesner et al. 2015; Hu and Ester 2014; Liu et al. 2011, 2016;
Qiao et al. 2018; Wang et al. 2018; Zhu et al. 2015).

The task of POI recommendation is to provide personalized recommendations of places of in-
terest to users at a certain time and location. Different from the traditional recommendation tasks
like music or movie recommendation, POI recommendation is highly spatiotemporal dependent. For
example, a student may go to a school cafeteria or a food court in a shopping mall at lunch time
depending on whether he/she is on campus or shopping. This shows the joint spatiotemporal ef-
fect on a user’s visiting behaviors. Similar results can be observed for the cases with the same
location but different times. For example, on weekends, a user may go to a restaurant at noon and
visit a bar at night near his/her home. Therefore, the time and location together play an impor-
tant role in POI recommendation. However, modeling the joint effects of time and location faces a
severe challenge from the extreme sparsity of users’ check-in data. Usually, there are millions of
POIs in the location-based social networks, but a user can only visit a very small number of the
POIs. A statistic about the Foursquare dataset (Liu et al. 2013a) shows that the user-POI check-in
count matrix has a sparsity of 99.87%. It has been proven that the data sparsity has been the most
significant factor that limits the performance of recommender systems (Ye et al. 2010, 2011b).
Some existing studies on POI recommendation have exploited spatial or temporal influences

with memory-based collaborative filtering (CF) (Ye et al. 2011b; Yuan et al. 2013) and Markov tran-
sition approaches (Cheng et al. 2013). Due to the sparsity of user generated check-in records at a
specific spatiotemporal context, it is hard to find similar userswith exactly the same spatiotemporal
context or calculate the transition probability. Hence, the memory-based CF andMarkov transition
approaches are not suitable for modeling the spatiotemporal effects in POI recommendation. As
model-based CF techniques such as Matrix factorization (MF) methods are able to overcome the
sparsity of user-POI matrix to some extent, they have been extended for POI recommendation by
integrating the temporal effect and geographical influence (Cheng et al. 2012; Griesner et al. 2015;
Lian et al. 2014; Liu et al. 2014b). However, all of them adopted the dot product as the similarity
measure and are not metric learning approaches because dot product does not satisfy the crucial
triangle inequality. Therefore, these MF-based methods cannot further alleviate the data sparsity
issue due to their limited generalization (He et al. 2017a; Hsieh et al. 2017).

Cold start is another challenge in POI recommendation. Cold start is a critical problem in the
domain of recommendation systems, and consists of the cold-start item problem and the cold-start
user problem. Items that have not received any rating or interaction are called cold-start items.
Similarly, users who have not rated any item are called cold-start users. Being different from the
traditional recommendation problem, there is a new type of cold-start problem emerging in our
problem, called cold-start spatiotemporal contexts, which refer to the spatiotemporal contexts where
there is not any check-in record. Although both cold-start user and cold-start item problems have
been studied in some recent POI recommendation works (Gao et al. 2012, 2015a; Xie et al. 2016;
Ye et al. 2011b), we are the first to propose and explore the problem of cold-start spatiotemporal
context.
The problem of POI recommendation in the spatiotemporal context can be viewed as a special

type of context-aware recommendation (CAR) (Adomavicius et al. 2011; Liu et al. 2013b), where the
recommendation process takes one of the following three forms, contextual prefiltering, contextual
postfiltering, or contextual modeling. Essentially, our POI recommendation model can be classified
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into the category of contextual modeling, i.e., the spatiotemporal contextual information is used
directly in the modeling process.
Although a few recent studies used the embedding techniques for POI recommendation (Chang

et al. 2018; Feng et al. 2015; Hang et al. 2018; He et al. 2017a; Liu et al. 2016; Xie et al. 2016), these
methods either do not model the joint spatiotemporal effects (Chang et al. 2018; Feng et al. 2015; He
et al. 2017a), or cannot address the sparsity or cold-start problems (Feng et al. 2015; He et al. 2017a;
Liu et al. 2016; Xie et al. 2016). In this article, we propose a novel spatiotemporal context-aware
and translation-based recommender framework (STA) to overcome these issues, inspired by the
outstanding performance of the translation-based knowledge graph embedding models in over-
coming the data sparsity and scalability as well as their most powerful expressive abilities (Bordes
et al. 2014; Lin et al. 2015; Wang et al. 2014). Generally, the translation-based embedding models
perform metric learning, which meets the condition of the triangle inequality that is the most cru-
cial to alleviating the data sparsity issue. Specifically, our STA model takes the location and time
as a whole context <time, location> to determine a user’s choices of POIs. Both users and POIs
are embedded as vectors in a latent “translation space,” and each spatiotemporal context is repre-
sented as a “translation vector” in the same space. Then, a user’s check-in behavior is modeled a
spatiotemporal translation operation on the embeddings of the user and the corresponding POI.
Furthermore, we present a series of strategies to exploit and integrate various correlation informa-
tion into the translation model so as to learn the approximate embeddings of new spatiotemporal
contexts, new users, and new items.
The main contributions of this article are summarized below:

—To the best of our knowledge, we are the first to adopt the translation-based knowledge
graph embedding techniques to model the spatiotemporal effects in POI recommendation.
The joint modeling of spatiotemporal information also distinguishes our work from existing
studies, which consider this information in a separate way.

—We propose a new type of cold-start problem, cold-start spatiotemporal contexts, and de-
velop effective methods to exploit and integrate various correlation information into the
representation learning of cold-start users, items, and spatiotemporal contexts to address
cold-start problems.

—We conduct comprehensive experiments to evaluate the performance of the proposed STA
model over two real-world datasets. The results show the superiority of our STA model in
POI recommendation by comparing with the state-of-the-art techniques.

The rest of this article is organized as follows. Section 2 reviews the related work. Section 3
introduces the preliminary and problem definition. Section 4 presents ourmodel in detail. Section 5
gives the experimental results. Finally Section 6 concludes the article.

2 RELATEDWORK

In this section, we introduce the related work, organized by the approaches to utilizing the geo-
spatial, temporal information, and embedding learning technique.

2.1 Leveraging Geo-spatial Information

POI recommendation has been an important topic in location-based services. Most existing stud-
ies mainly focused on leveraging spatial information due to the well-known strong correlation
between users’ activities and geographical distance (Cho et al. 2011; Liu et al. 2014a; Ye et al. 2010;
Zheng et al. 2009). For example, Ye et al. (2011b) proposed a Bayesian CF algorithm to explore
the geographical influence. Cheng et al. (2012) captured the geographical influence by model-
ing the probability of a user’s check-in on a location as a multi-center Gaussian model and then
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combined it into a generalized matrix factorization model. Liu et al. (2014b) modeled the geograph-
ical neighborhood of a location from both the instance-level and the region-level. Lian et al. (2014)
adopted a weighted matrix factorization framework to incorporate the spatial clustering phenom-
enon. Wang et al. (2017) exploited the co-occurrence patterns and content of spatial items at a
given time for spatial item recommendation. Wang et al. (2018) investigated the POI-specific geo-
graphical influence by incorporating the geo-influence of POI, the geo-susceptibility of POI, and
their physical distance into the learning framework.

2.2 Exploring Temporal Effects

Time is another important factor in POI recommendation. Ye et al. (2011a) found the periodic
temporal property that people usually went to restaurants around noon and visit clubs at night.
Yuan et al. (2013) developed a CF-based model to integrate temporal cyclic patterns. Gao et al.
(2013) combined different temporal states into a user’s check-in preferences. Cheng et al. (2013)
explored the temporal sequential patterns by using the transition probability of two successive
check-ins of a user. Zhao et al. (2016) designed a time indexing scheme to capture the specific
temporal characteristics for successive POI recommendation.

2.3 Joint Spatiotemporal Effects

Several works (Griesner et al. 2015; Wang et al. 2017; Yin et al. 2016a, 2016b, 2015; Zhao et al. 2016)
examined the joint effects of temporal and spatial information. Griesner et al. (2015) extended ge-
ographical matrix factorization with temporal dependencies by integrating both geographical and
temporal influences into matrix factorization. Zhao et al. (2016) proposed a ranking-based pairwise
tensor factorization framework for successive POI recommendation. Yin et al. (2016a, 2016b, 2015)
exploited the heterogenous semantic, temporal, and spatial information for the problem of real-
time or out-of-town POI recommendation. The ST-SAGE (Wang et al. 2017) presented an additive
generative model to integrate personal interests of the users and the preferences of the crowd in
the target region at the given time. All the successive, real-time, and out-of-town POI problems
are different from the general POI recommendation investigated in this article. More importantly,
the CF, MF, Markov transition, and generative models in these studies are ineffective in dealing
with the extreme sparsity in POI recommendation, especially when considering the joint spatial
and temporal effects.

2.4 Embedding Learning

Several recent works (Chang et al. 2018; Feng et al. 2015; Hang et al. 2018; He et al. 2017a; Liu
et al. 2016; Xie et al. 2016; Yin et al. 2017) investigated how to embed items into a low-dimension
space. Most of these works are based on inner product rather than Euclidian distance, and they
do not follow the triangle inequality, which is critical in addressing data sparsity. For example, the
PRME (Feng et al. 2015), SG-CWARP (Liu et al. 2016), and GE (Xie et al. 2016) methods embedded
both users and POIs in a common latent space, and users’ preference is inferred based on the dis-
tance/similarity between a user and a POI. The SH-CDL model (Yin et al. 2017) performed deep
representation learning for POIs and additive representation learning for users’ spatial-aware per-
sonal preferences. Both PRME (Feng et al. 2015) and SH-CDL model (Yin et al. 2017) ignored to
investigate the impact of time. Although GE (Xie et al. 2016) and EDHG (Hang et al. 2018) included
temporal information, they were modeled with a separate POI-time bipartite graph different from
the POI-Region graph indicating that the spatial and temporal embeddings are in different spaces.
The most recent work related with ours is TransRec (He et al. 2017a), which represents the

user as a relation vector to capture the transition from the previous item to the next item, and
makes recommendations via the nearest neighbor search between the recommended item and the
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candidates. Although both TransRec (He et al. 2017a) and our model are based on the translation
model in knowledge graph completion (Bordes et al. 2014; Lin et al. 2015; Wang et al. 2014), our
model differs from TransRec in the following two aspects. Firstly, we view spatial-temporal effects
as the translation from user to POI. This modeling is critical to POI recommendation since users’
activities are usually influenced by time and location (Gao et al. 2013; Li et al. 2015; Xie et al. 2016;
Ye et al. 2011b; Yuan et al. 2013). In contrast, TransRec does not take the spatial and temporal effects
into consideration. Secondly, we extend the translation model and develop a series of approaches
to explore various correlation information. These approaches are effective in addressing the data
sparsity and cold-start problems, which are not tackled in TransRec.
We also notice several new attempts to integrate other types of information like text contents

(Chang et al. 2018) and daily activities (Hang et al. 2018). However, these types of information are
not always available in POI recommendation and thus are not investigated in our article.

3 PROBLEM DEFINITION AND PRELIMINARY

In this section, we introduce the definitions and preliminaries.

3.1 Problem Definition

Definition 1 (POI). A POIv is defined as a uniquely identified geographical site with some func-
tions (e.g., a museum or a hotel), and we use V to denote a set of POIs, i.e., V = {v}.

Definition 2 (Check-in activity). A check-in activity is a quadruple (u, t , l ,v ), which means a
user u visiting a POI v at geographical region/location l and time t .

Definition 3 (Spatiotemporal context). A spatiotemporal context, denoted as tl , is a combina-
tion of a time slot t and a location l , e.g., <11:00 a.m., Chicago>. Please note that we discretize
timestamps associated with check-in records into time slots, e.g., 24 hours in a day, as many other
works have done. Time and time slot are used interchangeably in this article. Similarly, we divide
the whole spatial space into many geographical regions based on some predefined criteria. We will
not distinguish between locations and regions unless strictly necessary. After the discretization,
the number of spatiotemporal contexts becomes limited.

Definition 4 (TL-translation). We define a TL-translation as a relation between user entity u
and POI entity v , and the “relation” here has the same meaning as in knowledge graphs. More
specifically, a TL-translation means in this context (time u and location l ) u tends to visit v .

For ease of presentation, we summarize the notations in Table 1. The POI recommendation
problem investigated in this article has the same settings as that in Xie et al. (2016). The formal
problem definition is given as follows.
Problem Definition (Location-based Recommendation) Given a dataset D = {d |d = (u, t , l ,v )}

recording a set of users’ activities, and a query q = (uq , tq , lq ), we aim to recommend top-k POIs
in V that the query user uq would be interested in.

3.2 Preliminary

In this subsection, we introduce the background knowledge on translation-based knowledge graph
embedding.
Knowledge graphs encode structured information of entities and their relations in the form

of triples (head_entity, relation, tail_entity). For simplicity, we use (h, r , t ) to denote a fact in a
knowledge graph. Although a knowledge graph may contain millions of entities and billions of
relational facts between these entities, it is usually far from complete. Recently, the task of knowl-
edge graph completion has attracted much attention, and its objective is to model and predict
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Table 1. Notations Used in This Article

Variable Interpretation
u a user
v a POI
t a time slot
l a location/region
tl a spatiotemporal context <t, l>

�u, �tl , �v embeddings of u, tl , and v
uq , tq , lq query user uq , his/her current time tq , and location lq

vq the POI that query user uq will visit
D a collection of user activity records D = {d |d = (u, t , l ,v )}
T a collection of user activity triples T = {d |d = (u, tl ,v )}
U a set of users
V a set of POIs
TL a set of spatiotemporal contexts

relations between pairs of entities. A promising approach for the task is embedding a knowledge
graph into a continuous vector space while preserving structured information of the graph (Bordes
et al. 2014; Lin et al. 2015; Wang et al. 2014). Bordes et al. (2014) presented a simple yet effective
embedding model TransE, which embeds entities as points in a low-dimensional latent space and
relations as translation vectors such that the relationship between two entities is captured by the
corresponding translation operation. For example, given the fact that Paris is the capital of France
(“capital_of” is the relation between “Paris” and “France”), if we represent “Paris”, “France”, and

“capital_of” with vectors �h, �t , and �r , respectively, then this fact or triple is captured by a transla-
tion operation: the embedding of head entity h, plus the translation vector of relation r , determine

(approximately) the embedding of the tail entity t , i.e., �h + �r ≈ �t . As TransE is problematic in mod-
eling “1-to-N”, “N-to-1”, and “N-to-N” relations, TransH was proposed to enable an entity having
different representations when involved in different relations (Lin et al. 2015).

Both TransE and TransH project all entities and relations into the same space. However, some
entities may have multiple aspects, and various relations focus on different aspects of entities,
which makes a common space insufficient for modeling. It is intuitive that two entities are similar
in some aspects and thus close to each other in these relation spaces, but are different in other
aspects and thus should be far away from each other in the corresponding relation spaces. In light
of this, Lin et al. (2015) proposed the TransR model to build entity and relation embeddings in
separate entity space and relation spaces. Specifically, TransR learns embeddings by first projecting

entities from entity space (�h and �t ) to a relation-specific space ( �hr and �tr ) with relation-specific

projection matrixMr , and then building translations between projected entities, i.e., �hr + �r ≈ �tr .

4 TRANSLATION-BASED POI RECOMMENDER MODEL

In this section, we first intuitively describe our STA model and then formally present the model
optimization. After that, we detail how to provide top-k online POI recommendation based on the
trained STA.

4.1 Model Description and Optimization

We aim to build a model that (1) naturally captures spatiotemporal context-aware user check-
in behavior, and (2) is able to address the issues of data sparsity and cold start. Inspired by the
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Fig. 1. Impacts of spatiotemporal patterns.

outstanding performance of translation-based knowledge graph embedding models in the task
of sparse knowledge graph completion (Bordes et al. 2014; Lin et al. 2015; Wang et al. 2014), we
propose a spatiotemporal context-aware and translation-based POI recommender framework, called
STA.We first combine each time slot and location as a spatiotemporal context < t , l > (tl for short),
and convert the quadruples (u, t , l ,v ) ∈ D into triples (u, <t , l>, v) in T , which are analogous to
fact triples (h, r , t ) in a knowledge graph.
To model the spatiotemporal context-aware check-in behaviors, we represent each spatiotem-

poral context with a translation vector �tl to capture the spatiotemporal effect that influences users
to make choices of POIs to visit. Intuitively, if a POIv is often chosen by users under the spatiotem-
poral context tl , the probability of a query useruq visitingv with the same spatiotemporal context
will be high. On the other hand, users may visit different POIs under different spatiotemporal
contexts. Figure 1 illustrates the spatiotemporal effects.

In Figure 1, the left user Mary may visit different restaurants at noon depending on her loca-
tion, and the right user John, near Times Square, would like to have a cup of coffee at Starbucks
Coffee in the morning and go to the bar at night. This indicates that the time and location jointly
determine the user’s choice. In other words, it is the spatiotemporal context that connects a user to
a POI. Similar to the relation “Paris + Capitalof⇒ France” in the knowledge graph, we represent
the spatiotemporal context < t , l > as a type of relation such that it captures the user’s check-in
behaviors at the specific time and location. Thus, based on the figure, we have:
“Mary + 12:00 P.M. on campus⇒ School Cafeteria”
“Mary + 12:00 P.M. near home⇒ Cheesecake Factory”
and
“John + 10:30 A.M. Times Square⇒ Starbucks Coffee”
“John + 9:30 P.M. Times Square⇒ Hard Rock Cafe”
The above examples illustrate the basic idea of our proposed STA: a user u will reach an inter-

ested POI vq via a translation edge tl , i.e., �u + �tl ≈ �vq . As a user has multiple interests and tends
to show different interests in different spatiotemporal contexts (Yin et al. 2017, 2016b), this makes
a common space insufficient for modeling. Following the idea in TransR model (Lin et al. 2015),
we choose to model user/POI entities and spatiotemporal contexts in distinct spaces, that is one
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common entity space and multiple spatiotemporal context spaces (i.e., spatiotemporal context-
specific entity spaces), and performs translation in the corresponding spatiotemporal context
space. Specifically, for each triple (u, <t , l>, v) in T , the embeddings of user u and POI v are set

as �u, �v ∈ �d , and the embedding of spatiotemporal context tl is set as �tl ∈ �m . Note that, the di-
mensions of user and POI embeddings and spatiotemporal context embeddings are not necessarily
identical. For each spatiotemporal context tl , we assign a projection matrix Mt l ∈ �d×m , which
projects users and POIs from the original common entity space to the spatiotemporal context-
specific embedding space. With the mapping matrix, we define the projected vectors of users and
POIs as �ut l = �uMt l and �vt l = �vMt l in the spatiotemporal context space, and then perform trans-

lation in the corresponding spatiotemporal context space as in �ut l + �tl ≈ �vt l . This indicates that a

POI embedding �vt l should be the nearest neighbor of �ut l + �tl . The score function is then defined
as:

st l (u,v ) =
����ut l +

�tl − �vt l
���
2

2
(1)

To avoid overfitting and learning model parameter values that are too large, we adopt the practice
in Lin et al. (2015) to add constraints on the norms of the embeddings u, v , tl , and the projection

matrices, i.e., for ∀u,v, th, we have ‖ �u ‖2≤ 1, ‖ �v ‖2≤ 1, ‖ �tl ‖2≤ 1, ‖ �ut l ‖2≤ 1 and ‖ �vt l ‖2≤ 1.
Given the score function defined in Equation (1) for a triple (u, tl ,v), the entire objective function

for model optimization is as follows.

L =
∑

(u,t l,v )∈S

∑

(u′,t l,v ′)∈S ′
max (0, st l (u,v ) + γ − st l (u ′,v ′)), (2)

wheremax (a,b) is used to getting the maximum between a and b, γ is the margin, and S and S ′
are the sets of positive and corrupted triples, respectively. The corrupted triples are generated by
replacing the head and tail entities in positive triples with the dissimilar user and POI.
We adopt stochastic gradient descent (SGD) (in mini-batch mode) to minimize the objective

function in Equation (2). A small set of triples are first sampled from the training data. For each
sampled positive triple, we generate the corresponding corrupted triples. All the positive and cor-
rupted triples are put into a mini-batch. We compute the gradient and update the parameters after
each mini-batch. When the iteration reaches a predefined number, we learn all the embedding for
users, POIs, and spatiotemporal contexts.
Algorithm We now describe the optimization procedure of our STA model in Algorithm 1.

Lines 1–4 initialize the embeddings for users, POIs, spatiotemporal contexts, and projection matrix
using the random procedure as that in Glorot and Bengio (2010). In each main iteration, lines 5–16
are used for updating parameters in the model. Specifically, lines 6–8 normalize the embedding
vectors. Line 9 samples a small set of triplets from the training set. These triplets are used as the
positive training triplets of the mini-batch. Lines 11–13 sample a single corrupted (negative) triplet
for each positive triplet and compose a pair of (positive, negative) samples. Line 15 updates the
parameters by taking a gradient step.
Discussion about the advantages of our STAmodelAs the score in Equation (1) is computed

using the Euclidean distance, our STA model learns a metric space where neighborhood of a point
p (i.e., the set of points whose distances to p are less than a predefined threshold) captures the
notion of similarity, and translation encapsulates the spatiotemporal transition relation between
users and POIs.
There are a number of distance metrics such as discrete metric, Euclidean metric, and Graph

metric, and we adopt Euclidean distance. In the Euclidean space �k , the Euclidean distance d
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ALGORITHM 1: Learning STA

Require: Training set S = {(u, tl ,v )}, user, POI, and spatiotemporal context sets U , V , and TL,
projection matrixMt l , margin γ , embeddings dimension k .

1: initialize tl ← uniform(− 6√
k
, 6√

k
) for each tl ∈ TL

2: u ← uniform(− 6√
k
, 6√

k
) for each user u ∈ U

3: v ← uniform(− 6√
k
, 6√

k
) for each POI v ∈ V

4: Mt l ← identity matrix
5: loop

6: tl ← tl/‖tl ‖ for each tl ∈ TL
7: u ← u/‖u‖ for each entity u ∈ U
8: v ← v/‖v ‖ for each entity v ∈ V
9: Sbatch ← sample (S,b) // sample a mini-batch of size b
10: Tbatch ← ∅ // initialize the set of pairs of triplets
11: for each (u, tl ,v ) ∈ Sbatch do
12: (u ′, tl ,v ′) ← sample (S ′

(u,t l,v )
) // sample a corrupted triplet

13: Tbatch ← Tbatch
⋃{((u, tl ,v ), (u ′, tl ,v ′))}

14: end for

15: Update embeddings w.r.t
∑

((u,t l,v ), (u′,t l,v ′))∈Tbatch ∇[st l (u,v ) + γ − st l (u ′,v ′)]+
16: end loop

between two objects u and v is defined as:

d (u,v ) =‖ �u − �v ‖2= �
�

k∑

i=1

|ui −vi |2�
�

1/2

(3)

To avoid computing the square root, we further adopt the squared Euclidean distance as shown in
Equation (1). Unlike the dot product, which has been used in many previous studies, the Euclidean
distance satisfies the triangle inequality. Dot product cares about the magnitudes and angles of
two vectors. In some cases, it has the disadvantages that two similar objects represented by two
vectors have to be positioned far away from each other. Please refer to the illustration example in
He et al. (2017b). In contrast, if two similar objects are treated as two points in the same space and
their distance is measured by the Euclidean distance, then the triangle inequality will ensure the
closeness of these two objects.
The inherent triangle inequality assumption plays a key role in overcoming the data sparsity

and improving model generalization, as it does in canonical metric learning scenarios (He et al.
2017a). For instance, if a spatiotemporal context tl tends to transition from users to two POIsv and
v ′ (which means that many users tend to visit bothv andv ′ in the spatiotemporal context tl ), then
our model STA will also put v close to v ′ in the tl-specific space. This is a desirable property for
addressing the data sparsity since our model STA can infer that a user u who often visits v in the
spatiotemporal context tl will be also most likely to visit v ′ in the same spatiotemporal context,
which significantly improves the model generalization.

4.2 Recommendation Using STA

Once we have learned the embeddings, given a query user uq with the query time tq and location
lq , i.e., q = (uq , tq , lq ), we first combine tq and lq as a joint spatiotemporal context tlq , and then we
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can get the embedding of the ideal POI vq using Equation (4).

�vq = �uqMt l +�tlq (4)

For each POIv ∈ V , we compute its distance to the ideal POIvq in the tl-specific space as defined
in Equation (5), and then select the k POIs with the smallest distances as recommendations.

d (v,vq ) =‖ �vMt l − �vq ‖22 (5)

It should be noted that the abovemethod for producing top-k online recommendation is different
from the conventional recommendation methods such as Lin et al. (2015) and Xie et al. (2016). First,
we can generate an explicit representation of an ideal POIvq in the latent space through the specific
spatiotemporal translation of the user’s embedding. Second, since the embeddings for POIs in V
are also from the same space, we can choose the ones that are the closest neighbors of vq in this
space. This indicates that our recommended POIs are semantically consistent with the ideal POI
vq .

5 COLD-START POI RECOMMENDATION

Cold-start problems create severe challenges for POI recommendation. Recent studies incorpo-
rated the side information into CF, MF, and graph embedding approaches to address both cold-
start users and cold-start items (Gao et al. 2012; Lian et al. 2014; Xie et al. 2016; Ye et al. 2011b).
However, no effort has been made along the direction of the translation-based model in POI
recommendation. Besides, there does not exist any work on cold-start spatiotemporal contexts.
In this section, we present a set of strategies to exploit various correlations between cold-start
users, POIs, spatiotemporal contexts, and their warm-start counterparts. Then, for these cold-start
users, POIs, and spatiotemporal contexts, we leverage the check-in records associated with their
most similar/dissimilar warm-start counterparts to generate additional training data to learn their
embeddings.

5.1 Exploiting Spatiotemporal Correlation

The cold-start spatialtemporal contexts refer to those new time-location pairs that have never
appeared in the training dataset. By investigating multiple check-in datasets, we find that almost
all individual spatial and temporal contexts are not new although their combinations are cold start.
In order to build the embedding for an unseen check-in τ =< t , l > at the specific time t and

location l, we leverage the contexts for finding its nearest and farthest neighbors. One way to
exploit the contextual information between two check-ins is based on their spatial and temporal
similarity. More specifically, we propose to define the temporal similarity simt based on users’
check-in activities on time ti and tj .

simt (ti , tj ) =

∑
u ∈U

�ai ·�aj
| |�ai | |2 | |�aj | |2
|U | , (6)

where �ai and �aj are the vector of POIs visited by the same user u at time ti and tj , respectively. We
further define the spatial similarity siml as the check-in probability under the geographic distance
between li and lj . As pointed out in Ye et al. (2011b), the check-in probability may follow the
power-law distribution. Thus, we use power law distribution to model the check-in probability to
the distance between two POIs visited by the same user.

siml (li , lj ) = a ∗ (d (li , lj ))b , (7)

where the d (., .) denotes the geographic distance, and a and b (a > 0,b < 0) are the coeffi-
cients of a power-law distribution, which can be determined by a linear curve fitting method
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(Ye et al. 2011b). We then use a linear combination method to combine the spatial and temporal
similarities between two spatiotemporal contexts τi =< ti , li > and τj =< tj , lj >.

simt l (τi ,τj ) = α1 · simt (ti , tj ) + α2 · siml (li , lj ), (8)

5.2 Exploiting User Correlation

Normally, users who have not visited any POIs are called cold-start users. However, different from
the data investigated in Liu and Xiong (2013), Yin et al. (2013), and Gao et al. (2015b), which have
users’ comments or tweets, the two datasets used in our experiments do not contain any additional
content information for users.
More formally, the problem of cold-start user is defined as: given a cold-start user uq , his/her

friend set N (uq ), and his/her current time tq and location lq , the goal is to recommend the most
likely POIs to uq . We propose two geo-social correlation measures to incorporate a user’s social
and geographical contexts.

simu (uq ,uk ) = λ1 · simsoc (uq ,uk ) + λ2 · simдeo (uq ,uk ) (9)

We employ the normalized ratio of common friends in two users’ social circles as the similarity
metric of social influence.

simsoc (uq ,uk ) =
|N (uq )

⋂
N (uk ) | + 1

∑k= |N (uq ) |
k=1

( |N (uq )
⋂

N (uk ) | + 1)
, (10)

The geographical similarity simдeo is similar to the definition in Equation (7). The only difference
is that li and lj here denote the current location of user uq and the home location of uk . Note the
home location is not presented in our data. However, for a normal user uk who has check-in
records, we define it as the average position of check-ins in the 25km by 25km cell with the most
check-ins (Scellato et al. 2011).

5.3 Exploiting POI Correlation

The cold-start POIs refer to those containing geographic and content (tag) information but do not
have any check-ins (Xie et al. 2016). For evaluation, cold-start POIs are defined as those visited by
less than five users (Yin et al. 2016b). The problem of cold-start POI is defined as: given a cold-start
POI pq , its tag set T (pq ), and its location lq , the goal is to learn the latent vector for pq , which
can be used in making recommendations to users who may prefer it according to its semantic and
geographical attributes.
We propose two geo-semantic correlation measures to incorporate the semantic and geograph-

ical contexts of a POI.

simp (pq ,pk ) = γ1 · simsem (pq ,pk ) + γ2 · simдeo (pq ,pk ) (11)

We once again adopt Equation (7) to compute the geographical similarity simдeo (pq ,pk ) between
the locations of two POIs. The semantic similarity simsem is defined as the Jaccard coefficient
between the tag set T (pq ) and T (pk ) for POI pq and pk .

simsem (pq ,pk ) =
|T (pq )⋂T (pk ) |
|T (pq )⋃T (pk ) | (12)

5.4 Learning Embedding in Cold-Start Setting

We incorporate the contextual information into representation learning via positive and nega-
tive sampling to help address the sparsity and cold-start problems. The intuition is that when we
encounter the unseen check-ins or the cold-start problems, we sample from the most similar or
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dissimilar examples instead. We here take the process for handling new < t , l > spatiotemporal
contexts as an example.
Based on the similarity function in Equation (8), we define the nearest and farthest spatiotem-

poral contexts τnm and τ
f
m of a new spatiotemporal context τm = tlm .

τnm = max
τ im

simt l (τi ,τm ),

τ
f
m = min

τ im

simt l (τi ,τm )
(13)

We then extend our basic STA model to learn the embeddings for new spatiotemporal contexts.
For a cold-start spatiotemporal context τm , we first find its nearest and farthest warm-start spa-

tiotemporal contexts (e.g., τnm and τ
f
m ) as well as their associated check-in records, and then use

τm to replace τnm and τ
f
m in these associated check-in records to form new positive and negative

examples in the training dataset, respectively.
We finally train on this new training data using the same method as basic STA, and we can

get the embedding for the new spatiotemporal context tlm . Similar procedure can be applied to
building the embedding for the cold-start user uq and the cold-start POI pq .

We have six coefficients in Equations (8), (9), and (11), where α1 and α2, λ1 and λ2, and γ1 and
γ2 ∈ [0, 1] control the relative importance of the spatial and temporal, the social and geographic,
and the semantic and geographic similarities, respectively. For simplicity, we just set them to the
same value 0.5. We support the fine tuning of arbitrary values of these parameters.
For the approaches to dealing with unseen check-ins and cold-start problem, we call them STA-

C-TL (STA for cold-start check-ins), STA-C-U (STA for cold-start users), and STA-C-P (STA for
cold-start POIs), respectively, and we include the strategy for addressing new spatiotemporal con-
texts into the STA model due to its generalizability to basic settings.
Our STA-C-TL model can address the problem of cold-start spatiotemporal contexts. This issue

has not been tackled in the previous study.
We notice several related works have been proposed to incorporate social network into POI

recommendations (Gao et al. 2012; Li et al. 2016; Ye et al. 2010). Our STA-C-U is different from these
studies in that the social connections are only used to compute the user’s representation in our
model, the recommendation of POI is computed based on this user’s current time and location. In
contrast, existing approaches directly leverage the historical check-ins of their friends. Moreover,
while all these methods incorporate geographic information, none of them has considered the time
factor for POI recommendation.
Our STA-C-P model proposed for dealing with cold-start POIs can also be applied to the nor-

mal POI recommendation problem. However, it requires that those POIs should contain content
information. For the recommendation on datasets like Gowalla, STA-C-P is not valid. Hence, we
treat it as an extended model. Please also note that it is STA-C-P that uses the same information as
GE (Xie et al. 2016) does. Our standard STA model, on the other hand, uses less information than
GE as it does not include the contents of POIs.

6 EXPERIMENTS

In this section, we first introduce the experimental setup and then compare our experimental re-
sults with the baselines. Finally, we show the performance of our method in addressing the data
sparsity and cold-start problem.
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Table 2. Statistics of Two Datasets

Foursquare Gowalla

# of users 114,508 107,092
# of POIs 62,462 1,280,969
# of check-ins 1,434,668 6,442,892
#std time slots 24 24
# of locations 5,846 200
# of < t , l > contexts 28,868 3,636

6.1 Datasets

We evaluate our methods on two real-life LBSN datasets: Foursquare and Gowalla. A number of
researchers have conducted experiments on the data collected from these two social networks
(Chen et al. 2015; Gao et al. 2015b; Xie et al. 2016; Yin et al. 2016b; Yuan et al. 2013). However,
many of them are collected from various regions or in different time spans. In this article, we use
the publicly available version1 provided by the authors of Xie et al. (2016).
The two datasets have different scales such as geographic ranges, the number of users, POIs,

and check-ins. Hence, they are good for examining the performance of algorithms on various data
types. Their statistics are listed in Table 2.
Each check-in is stored as user-ID, POI-ID, POI-location in the form of latitude and longitude,

check-in timestamp, and POI-content (only for Foursquare). In order to get the spatiotemporal
contexts < t , l > in Table 2, we use the same discretization method as that in Gao et al. (2013) and
Xie et al. (2016), i.e., dividing time into 24 time slots that correspond to 24 hours, and the whole
geographical space into a set of regions according to 5,846 administrative divisions (for Foursquare)
and 200 regions clustered by a standard k-means method (for Gowalla). We finally get 28,868 and
3,636 < t , l > pairs on Foursquare and Gowalla, respectively.

6.2 Evaluation Metrics

To thoroughly evaluate the models, we use two widely-used metrics, i.e., recall (Rec@k) and nor-
malized discounted cumulative gain (NDCG@k). While recall indicates the ratio of recovered POIs
to the visited locations, NDCG measures the ranking quality, which assigns higher scores to POIs
at top position ranks. We do not include the precision into the evaluation scheme because preci-
sion is not a suitable performance measure in the field of POI recommendation. As pointed out in
Wang et al. (2015), Precision@k takes the zero entries into consideration. However, a zero entry
may be due to the fact that the user is not interested in the POI, or that the user is totally not aware
of its existence. Thus, it is most likely for Precision@k to underestimate the real recommendation
accuracy. Besides, the measure Precision@k naturally favors users with many POIs in the test set,
as it is easier for the recommender model to achieve higher precision values for those users with
more POIs in the test set than the users with less POIs.
To produce a top-k recommendation list for a query user, we compute a preference score for

each POI and sort them by score. The recall@k for each user is defined as:

Rec@k =
tp

tp + tn
, (14)

1https:/sites.google.com/site/dbhongzhi
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where tp is the number of POIs visited by a user u and also in the top-k recommendations, and tn
is the number of POIs visited by u but not in the top-k recommendations.
The NDCG@k for each user is defined as:

NDCG@k =
DCG@k

IDCG@k
, (15)

where

DCG@k =
k∑

i=1

2r eli − 1
loд2 (i + 1)

, (16)

and reli refers to the graded relevance of the result ranked at position i .We use the binary relevance
in our work, i.e., reli = 1 if the result is in the test set, and 0, otherwise. IDCG@k is the DCG@k
value when the recommended POIs are ideally ranked.
The average of recall and NDCG values over all users are reported as the final Rec@k and

NDCG@k (k = {5, 10, 20, 30, 50}). These two metrics are both in the range [0, 1] and a higher value
means better results.

6.3 Comparison Methods

We compare our STA with 10 POI recommendation models in the experiment. They represent the
state-of-the-art methods: firstly, they cover four types of popular recommendation techniques, i.e.,
collaborative filtering, matrix factorization, distributed representation, and hybrid model; secondly,
they consider six important factors that influence user decision-making for choosing POIs, includ-
ing user preference, temporal, geographical, social, content, and sequential influence. The baselines
are categorized by the recommendation techniques and listed below.
Collaborative Filtering Baseline—{USG}CF is a traditional andwidely-adopted technique for

recommender systems. USG (Ye et al. 2011b) presents a unified framework to perform collaborative
recommendation, which fuses user preference, social influence, and geographical influence in POI
recommendation.
Matrix Factorization Baselines—{LRT, GeoMF, RankGeoMF} MF is a widely adopted ap-

proach for modeling user preferences to recommendation. LRT (Gao et al. 2013) is selected as a
baseline because it is a time-enhanced MF model which utilizes the temporal properties of user
movement. GeoMF (Lian et al. 2014) is a weighted MF model that integrates the geographical in-
fluence by modeling users’ activity regions and the influence propagation on geographical space.
RankGeoMF (Li et al. 2015) is a ranking based MF model that fits the users’ preference rankings
for POIs to learn the latent factors of users and POIs.
Distributed Representation Baselines—{GE, TransRec, STA-E, STA-H} Distributed repre-

sentation uses low-dimensional dense vectors to represent data points. GE (Xie et al. 2016) adopts
a graph-based embedding framework to integrate the sequential, geographical, temporal cyclic,
and semantic effect into a shared space. TransRec (He et al. 2017a) embeds items into a transition
space where users are modeled as translation vectors operating on item sequences.
Also note that although we choose the TransR technique in knowledge graph embedding to

materialize our STA model, the essence of our proposed framework is to model the spatiotem-
poral context as a translation relation in the embedding space. This indicates that we do not
rely on a specific translation model. Hence, we can use TransE (Bordes et al. 2014) or TransH
(Wang et al. 2014) to realize STA. We denote the resulting methods as STA-E and STA-H baselines,
respectively.
Hybrid Model Baselines—{LORE, MGMPMF} Hybrid models refer to those which combine

the outputs of two or more recommendation methods. For example, MGMPFM (Cheng et al. 2012)
is a fusion model combining the outputs of Poisson factor model and a geographical modeling
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Fig. 2. Comparisons with the baselines on the two datasets in terms of Rec@K.

method. LORE (Zhang et al. 2014) employs additive Markov chain, collaborative filtering, and
kernel density estimation to integrate the sequential, social, and geographical influences for POI
recommendations.

6.4 Experimental Settings

We first organize the quadruples (u,v, t , l ) in each dataset by users to get each user’s profile Du .
We then rank the records in Du according to the check-in timestamps, and finally divide these
ordered records into two parts: the first 80% as the training data, and the remaining 20% of the
data as the test data. Moreover, the last 10% of the check-in records in the training data are used
as a validation set for tuning the hyper-parameters.
We use the default settings in the original TransR (Lin et al. 2015) as the parameter settings for

our STA model. Specifically, we set the learning rate λ = 0.0001, the margin γ = 2, the mini-batch
size B = 4, 800, and the embedding dimensionsm = d = 100, and we traverse over all the training
data for 1,000 rounds. The same settings are also used for STA-E and STA-H models.
The parameters for other baselines are listed as follows. The notations of these parameters cor-

respond to the definitions, and the values are the same as those in their original papers.
GE: d = 100, N = 150M
USG: α = 0.1, β = 0.1, η = 0.05
LRT: α = 2.0, β = 2.0, λ = 1, K = 100, T = 1day
LORE: α = 0.05, T = 1day
TransRec: α = 0.2, K = 10, λΘ = 0.1, ϵ = 0.05
MGMPMF: PMF: α = 20.0, β = 0.2, K = 30, MGM: α = 0.2, θ = 0.02, d = 15
GeoMF: α = 0.01, γ = 0.01, δ = 15, λ = 10, iters = 10, K = 100, L = 50 × 50
RankGeoMF: α = 0.2, ϵ = 0.3, γ = 0.0001, K = 100, C = 1.0, nearestPOIs = 300

6.5 Comparison with Baselines

We present the comparison results on the two datasets in terms of recall and NDCG in Figure 2
and Figure 3, respectively.
From Figure 2, we can make the following important observations.

—Our proposed STA-style models significantly and consistently outperform all baselines in
terms of recall on both datasets. For example, the Rec@5 values achieved by STA, STA-H,
and STA-E on the Foursquare dataset are 0.084, 0.081, and 0.0.082, respectively, much better
than 0.054 for GE, which is the best among other baselines. Our STA model also achieves
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Fig. 3. Comparisons with the baselines on the two datasets in terms of NDCG@K.

approximate 38%, 37%, and 39% relative improvements over two state-of-the-art MF-based
methods, GeoMF and RankGeoMF, and a CF-based method, USG, respectively.

—Among all MF-based methods, LRT performs worst. The reason may be that LRT only con-
siders temporal information but neglects the geographical and social effects. On the other
hand, though the fused method MGMPFM combines geographic and personal interest, its
poor results show that separately modeling two types of influencing factors and then fusing
their outputs does not contribute much to the performance. Similar results can be observed
for LORE on Gowalla dataset. Besides the loss functions used in the matrix factorization
models, LRT and MGMPFM were originally designed for rating prediction rather than top-
k recommendation, which also partly accounts for their poor performance.

—Although TransRec is a translation-based method, its performance is significantly worse
than our STAmodel. Thismight be due to their differentmodeling strategies. TransRec takes
the previous item (POI) as the critical factor in determining user’s next activity. This may
be appropriate for basket recommendation like buying a mouse after a desktop. However,
in POI recommendation, time and location play more important roles. Our STA model is
preferable than TransRec for the task of POI recommendation due to its ability in joint
modeling spatiotemporal contexts.

While our STA model shows drastic improvements over baselines in terms of Rec@k on both
Foursquare and Gowalla datasets, its NDCG@5 value (0.055) is slightly lower than that of GeoMF
(0.056) and RankGeoMF (0.058) on Foursquare in Figure 3(a). (Detailed values are shown in Table 3).
However, it still outperforms all other baselines for NDCG@5. In addition, for other NDCG@k
(k = 10, 20, 30, 50), STA model gets the best performance. More importantly, in terms of NDCG
metric on Gowalla dataset in Figure 3(b), our model significantly outperforms all baselines by a
large margin for all k settings. For instance, in terms of NDCG@5, STA gains an improvement
of 9%, 13%, and 15% over RankGeoMF (GeoMF), USG, and GE, respectively, which are the top-3
among all baselines.

6.6 Sensitivity to Data Sparsity

To investigate the sensitivity of STA and other methods to data sparsity, we conduct extensive
experiments to evaluate their performance on two datasets by reducing the amount of training
data. Specifically, we keep the testing dataset unchanged and reduce the training data randomly
by a ratio of 5% to 20% stepped by five. For clarity, we only present the results on Foursquare and
Gowalla by reducing 20% training data in Table 3 and Table 4, respectively, and the trends with
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Table 3. Sensitivity to Data Sparsity on Foursquare (- for 20% Less Training Data)

k

Rec M USG LORE GeoMF RankGeoMF TransRec GE STA

USG USG- LORE LORE- Geo Geo- Rank Rank- Trans Trans- GE GE- STA STA-

5 0.051 0.048 0.034 0.026 0.052 0.048 0.053 0.047 0.047 0.043 0.054 0.051 0.084 0.082*

10 0.079 0.077 0.052 0.045 0.081 0.075 0.083 0.076 0.072 0.065 0.085 0.083 0.103 0.101*

20 0.107 0.105 0.087 0.072 0.122 0.114 0.128 0.115 0.095 0.076 0.129 0.125 0.151 0.148*

30 0.151 0.148 0.108 0.093 0.152 0.144 0.163 0.146 0.144 0.119 0.163 0.160 0.186 0.182*

50 0.193 0.190 0.146 0.124 0.200 0.190 0.215 0.195 0.186 0.159 0.216 0.212 0.224 0.220*

k

NDCG M USG LORE GeoMF RankGeoMF TransRec GE STA

USG USG- LORE LORE- Geo Geo- Rank Rank- Trans Trans- GE GE- STA STA-

5 0.052 0.050 0.035 0.028 0.056 0.051 0.058 0.050 0.051 0.045 0.054 0.051 0.055 0.053*

10 0.046 0.046 0.031 0.025 0.048 0.044 0.049 0.043 0.044 0.038 0.047 0.043 0.049 0.047*

20 0.037 0.035 0.026 0.022 0.039 0.036 0.041 0.036 0.036 0.030 0.039 0.036 0.041 0.040*

30 0.031 0.029 0.022 0.019 0.034 0.032 0.036 0.032 0.030 0.021 0.032 0.029 0.037 0.035*

50 0.025 0.023 0.019 0.016 0.028 0.026 0.030 0.026 0.023 0.015 0.027 0.024 0.032 0.030*

Table 4. Sensitivity to Data Sparsity on Gowalla (- for 20% Less Training Data)

k

Rec M USG LORE GeoMF RankGeoMF TransRec GE STA

USG USG- LORE LORE- Geo Geo- Rank Rank- Trans Trans- GE GE- STA STA-

5 0.042 0.040 0.030 0.024 0.043 0.038 0.043 0.037 0.041 0.038 0.044 0.040 0.051 0.050*

10 0.067 0.063 0.045 0.037 0.068 0.063 0.071 0.062 0.063 0.057 0.072 0.068 0.084 0.082*

20 0.104 0.099 0.064 0.052 0.106 0.099 0.113 0.102 0.095 0.084 0.113 0.108 0.136 0.134*

30 0.133 0.129 0.076 0.060 0.138 0.129 0.146 0.133 0.131 0.121 0.145 0.141 0.163 0.162*

50 0.179 0.173 0.090 0.070 0.186 0.175 0.195 0.180 0.175 0.152 0.197 0.193 0.226 0.224*

k

NDCG M USG LORE GeoMF RankGeoMF TransRec GE STA

USG USG- LORE LORE- Geo Geo- Rank Rank- Trans Trans- GE GE- STA STA-

5 0.060 0.058 0.049 0.039 0.063 0.055 0.063 0.052 0.057 0.052 0.059 0.056 0.069 0.067*

10 0.052 0.050 0.042 0.033 0.054 0.048 0.055 0.047 0.051 0.045 0.052 0.049 0.061 0.060*

20 0.045 0.043 0.033 0.027 0.046 0.041 0.047 0.041 0.043 0.037 0.044 0.041 0.053 0.051*

30 0.036 0.034 0.029 0.023 0.041 0.037 0.042 0.037 0.036 0.031 0.038 0.034 0.050 0.048*

50 0.031 0.030 0.023 0.018 0.035 0.032 0.036 0.032 0.030 0.025 0.033 0.030 0.042 0.040*

other ratios are quite similar. We also omit the results for LRT and MGMPFM, which are two of
the worst baselines, as well as those for our own STA-E and STA-H variants.
The best results for the original and reduced datasets are presented in bold and bold* in Tables 3

and 4, respectively. We then have the follow interesting observations.

—With the reduction of training data, the Rec@k and NDCG@k values for all approaches
decrease. However, our STA model always achieves the best results on the two datasets
and in both metrics. In particular, on the original Foursquare, STA achieved the third best
performance in terms ofNDCG@5, but it becomes the best one on the small training dataset.
Furthermore, our STA model gains more significant improvements over baselines in terms
of Rec@k on the reduced data than on the original data.

—Although RankGeoMF is the best for NDCG@5 on the original Foursquare dataset, its per-
formance drops quickly when the data becomes sparse. The reasonmay be that RankGeoMF
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Fig. 4. Changes with the reduction of training data (smaller change ratios are better).

ranks the positive samples higher than the negative ones. However, in the reduced sparse
dataset, there are not enough positive examples for RankGeoMF to learn the correct rank-
ings and this consequently deteriorates the performance.

To have a close look at the trends with the reduction of training data, we further present the
change ratios in Figure 4. Obviously, the decrease of recall and NDCG values for our STAmodel are
significantly smaller than any other approaches. For instance, the Rec@5 values of GE, RankGe-
oMF, and GeoMF show a 10%, 14%, and 12% drop, respectively. In contrast, our STA model only
has a 2% change. This strongly demonstrates that our model is most robust to the data sparsity.
On the other hand, we note that LORE and TransRec are quite sensitive to the number of training

data, while USG is the second robust. This is because USG well explores the rich side information,
while TransRec does not utilize any social or geographic information and LORE does not directly
model user preference. Moreover, both LORE and TransRec rely heavily on the sequential infor-
mation. When check-in data becomes sparse with a low sampling rate, their performances will
significantly decrease.

6.7 Test for Cold-Start Problems

Among the baselines, very few methods can deal with cold-start problems. Specifically, only USG
(Ye et al. 2011b) and GE (Xie et al. 2016) are developed to handle cold-start users and cold-start
POIs, respectively. Hence, we compare our STA-C models with these two baselines. Note that no
existing work is developed for addressing the cold-start spatiotemporal context problem. Since GE
(Xie et al. 2016) also contains the time and location information in two graphs, we modify it and
take this modified version as the baseline for the cold-start spatiotemporal context problem.
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Fig. 5. Test for cold-start spatiotemporal contexts.

6.7.1 Test for Cold-Start Spatiotemporal Contexts. This experiment evaluates the performance
of our proposed STA-C-TLmodel and themodifiedGE (Xie et al. 2016) for cold-start spatiotemporal
contexts. To test the recommendation performance for the cold-start spatiotemporal contexts, we
choose the check-inswith less than 10 occurrences in a user’s records. These check-ins are removed
from the training data and used as the ground truth for test data. Note that the single time slot
and location still appear in the training data, and their combinations with other locations and time
slots are used as the training set. This also ensures GE can utilize such single time and location
information in the POI-Time and POI-Location graphs. The comparison results between our STA-
C-TL model and GE are shown in Figure 5.
It is clear that our proposed STA-C-TL model outperforms GE in almost all cases. The only

exception is Rec@50 on Gowalla dataset, where the score for our model is 0.035 and that for GE
is 0.036. This result is reasonable yet not important. On one hand, our STA-C-TL model uses less
information than GE as it does not take the semantic tag information into consideration. GE can
find more POIs by using the tags and accordingly increases its recall performance. On the other
hand, even with the help of additional tag information, all other Rec@k (k=5, 10, 20, 30) scores for
GE are inferior to those for our model. In reality, the results by smaller k are always more useful
to users. Furthermore, our STA-C-TL model performs better than GE in terms of all NDCG@k
values.

6.7.2 Test for Cold-Start Users. This experiment evaluates the performance of our proposed
STA-C-U model and the USG (Ye et al. 2011b) for cold-start users. To test the recommendation
performance for cold-start users, we choose users with less than 10 check-ins as cold-start users,
following the work of Yin et al. (2017). For those cold-start users, we remove their check-ins from
the training dataset and take them as the test set, and use the check-in records generated by the
other users as the training set. The comparison results are shown in Figure 6.
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Fig. 6. Test for cold-start users.

We can see that our proposed STA-C-U model outperforms USG in terms of both metrics. For
example, the NDCG@5 of USG on Foursquare is 0.016 and that of our STA-C-U model is 0.019,
showing an 18.75% improvement. Similarly, STA-C-U outperforms USG by 13.04% in terms of
NDCG@5 on Gowalla.
Overall, we use the same types of social and geographical information as USG does, but our STA

model achieves better performance than USG. This demonstrates the superiority of our model in
dealing with cold-start users.

6.7.3 Test for Cold-Start POIs. In this experiment, we further compare the effectiveness of our
extended STA-C-P model with GE (Yin et al. 2016b) in addressing the cold-start POIs. We first
choose POIs with less than 10 check-ins as cold-start POIs, and then select users with at least one
cold-start check-in as test users. To simulate a more real cold-start scenario, we remove all check-
in records associated with these selected POIs. For each test user, we first choose her/his check-ins
associated with cold-start POIs as the test set, and the remaining check-ins as the training set. Our
aim is to measure whether the cold-start POIs in the test set can be ranked in the top-k results.
Since there is no content information for POIs in Gowalla, we conduct experiments, just as GE did,
only on Foursquare. The results for cold-start POI recommendation are shown in Figure 7.
From Figure 7, it is clear that our proposed STA-C-P model consistently beats GE when rec-

ommending cold-start POIs in both Rec@k or NDCG@k metric. The superior performance of the
STA-C-P model is due to the nearest/farthest neighbor sampling strategy. As long as an existing
POI v shares one tag or is with a short distance to the cold-start POI vc , our STA-C-P model can
get an approximate embedding for vc . In contrast, GE utilizes the bipartite graphs of POI-Word
and POI-Location. The weight of an edge in the graph is calculated by a Term Frequency – In-
verse Document Frequency (TF-IDF) value of the word or the frequency of a location. The edge
weight is proportional to the probability of edge sampling. Since there are few check-in records for
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Fig. 7. Test for cold-start POIs on foursquare.

Fig. 8. Effects of dimensionality.

cold-start POIs, a vc -word and vc -location edge in GE has an extremely rare chance to be selected
and updated. Consequently, the embedding forvc learned by GE is not accurate and it deteriorates
the recommendation performance.

6.8 Effects of Model Parameters

This section investigates the effects of two main parameters involved in our STA model, i.e., the
embedding dimension d and the time interval.
We first take Rec@10 and NDCG@10 as examples to show the effects of embedding dimension

d on Foursquare and Gowalla in Figure 8. From the results, we observe that the performance first
improves with the increase of the embedding dimension d and then the increment becomes negli-
gible. The reason is that d represents the model complexity. Thus, when d is small, the model has
limited ability to describe the data. However, when d exceeds a threshold (say d = 100), the model
is complex enough to describe the structure in the data. At this point, it is less helpful to improve
the model performance by increasing d .
To investigate the effects of time interval, we divide timestamps by three methods, i.e., split-

ting time into 24, 7, and 2 time slots, corresponding to the daily, weekly, and weekday/weekend
patterns, respectively. We depict effects of time interval in Figure 9.
We observe that the impact of the daily patterns is the most significant one on both datasets.

In addition, the weekday and weekend patterns also capture different temporal patterns, which
contribute to POI recommendation. The combination of all is probably much better than only
using a single one. However, we follow the previous studies to divide the time into the same 24
slots as LRT (Gao et al. 2013) and GE (Xie et al. 2016) have done, which are the only two baselines
exploiting and integrating temporal effects.
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Fig. 9. Effects of time interval.

7 CONCLUSION

We present a novel spatiotemporal aware STA model for learning representations of users, spa-
tiotemporal patterns, and POIs. The basic idea is to capture the geographic and temporal effects
using a <time, location> pair, and then model it as a translation connecting users and POIs. We
realize STA using the knowledge graph embedding technique and further extend it to incorporate
correlation information for addressing cold-start problem. Our work makes the following contri-
butions. (1) We learned a metric space and encapsulated the spatiotemporal transition relation as a
translation between users and POIs. (2) The metric learning process followed the inherent triangle
inequality assumption, which helped overcome the data sparsity and improving model general-
ization. (3) We further developed a set of effective strategies to incorporate the side information
into our proposed STA model to address the data sparsity and cold-start problems.
We conduct extensive experiments on two real-life datasets. Our results show that our STA

framework achieves the state-of-the-art performance in terms of recall and NDCG metrics. The
STA model also significantly outperforms the baselines in terms of the effectiveness in addressing
both the data sparsity and cold-start problems.
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