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ABSTRACT
Signed directed networks with positive or negative links convey
rich information such as like or dislike, trust or distrust. Existing
work of sign prediction mainly focuses on triangles (triadic nodes)
motivated by balance theory to predict positive and negative links.
However, real-world signed directed networks can contain a good
number of “bridge” edges which, by definition, are not included in
any triangles. Such edges are ignored in previous work, but may
play an important role in signed directed network analysis.

In this paper, we investigate the problem of learning representa-
tions for signed directed networks.We present a novel deep learning
approach to incorporating two social-psychologic theories, balance
and status theories, to model both triangles and “bridge” edges in a
complementary manner. The proposed framework learns effective
embeddings for nodes and edges which can be applied to diverse
tasks such as sign prediction and node ranking. Experimental re-
sults on three real-world datasets of signed directed social networks
verify the essential role of "bridge" edges in signed directed network
analysis by achieving the state-of-the-art performance.
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1 INTRODUCTION
Recent years have witnessed the proliferation of online signed
directed networks. For example, the consumer review sites like
Epinions allow members decide whether to trust each other; the
e-commerce websites such as Amazon let members express their
likes and dislikes toward the purchased products. In these networks,
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the relations between entities convey rich information and are
signed positively or negatively. The positive signs may show trust
and agreement while negative ones may represent distrust and
disagreement.

It may be essential to identify the positive or negative relation-
ship between two users. For example, when recommending friends
for a user u in a social network, it is a good idea not to list u’s foes as
candidates. The task of sign prediction aims to infer the unobserved
attitudes among users, and can be formalized as predicting the sign
of an edge in the network.

(a) (b)

Figure 1: A triangle and a “bridge” edge

Table 1: Fractions of “bridge” edges in three online networks

Dataset Slashdot Epinions Wikirfa

Fraction 47.90% 20.43% 6.45%

Sign prediction underlies many applications like recommenda-
tion, advertisement, and community detection. Most efforts [7, 10,
13, 19, 23] are devoted to exploring properties of triangles (triadic
nodes) following balance theory [6] to predict positive and negative
links. Figure 1a shows an example of sign prediction in a triangle.
Given that u2 likes u3 and u3 likes u1, what’s the sign of −→e12? The
triangles are effective in capturing relationships among three users.
However, in reality, there often exist a good number of “bridge”
edges which are not included in any triangles like −→e45 in Figure 1b.

Assuming we have a signed directed graph G(V , E) with no self-
loops, where V and E denotes the node and edge set, respectively,
the “bridge” edge set Ebr i consists of the edges whose adjacent
nodes do not share any common neighbors.

Ebr i = {
−→ei j |N (vi ) ∩ N (vj ) = ϕ}, (1)

where N (vi ) is the set of neighbor nodes, i.e., all nodes linking to or
being linked by vi . Meanwhile, the “triangle” edge set Etr i consists
of the edges whose adjacent nodes share at least one common
neighbor.

Etr i = {
−→ei j |N (vi ) ∩ N (vj ) , ϕ}, (2)

By definition, the “bridge” edge set Ebr i is the complement of
the “triangle” edge set Etr i , i.e., Ebr i

⋃
Etr i = E. While most of

edges in the signed directed network can be included in triangles,
the “bridge” edges are globally present as well. Table 1 shows such
evidence of “bridge” edges in three online signed directed networks.
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The nodes in a triangle are connected with each other and the
sign prediction for edges in a triangle can be effectively conducted
based on balance theory. For example, the sign of edge −→e12 in Fig. 1a
can be inferred based on the principle of “a friend of my friend is my
friend” in balance theory. In contrast, the “bridge” edges lack the
triangle information, and cannot be modeled using balance theory.
Hence the sign prediction for “bridge” edges is a challenging task.
To the best of our knowledge, none of existing methods considers
“bridge” edges in signed network analysis.

In this paper, we study the problem of signed directed network
embedding. We are particularly interested in how to model “bridge”
edges in addition to triangles modeled by balance theory [6] and
how they can be combined. To this end, we resort to status the-
ory [5, 14] for directional edges to model “bridge” edges. We further
design a deep neural network to incorporate “bridge” and triangle
edges in a complementary manner. Our framework simultaneously
learns embeddings for nodes and edges. With these embeddings,
various social computing tasks such as sign prediction and node
ranking can be carried out effectively. We conduct extensive experi-
ments on three online networks. Results demonstrate that modeling
bridge edges can help sign prediction and node ranking tasks by
the performance improvements over the state-of-the-art baselines.
The main contributions of this paper are as follows.

• We propose a novel signed directed network embedding
model which incorporates both balance and status theories
in a complementary manner.

• Ourmodel leverages “bridge” edges in the absence of triangle
information to learn effective representations for them.

• The embeddings for nodes and edges are applicable to diverse
tasks such as sign prediction and node ranking.

The rest of the paper is structured as follows. In Section 2, we
present the related work. In Section 3, we introduce our BESIDE
model. In Section 4, we show the experimental evaluation on sign
prediction. In Section 5, we conduct experimental evaluation on
node ranking. We conclude the paper in Section 6.

2 RELATEDWORK
We discuss the related work in two areas: network embedding
approaches, and methods for sign prediction and node ranking
tasks.

Network Embedding Approaches: Network embedding aims
at learning a low-dimensional dense vector for each node in the
network. The representation can be applied to many different
tasks of network analysis like node classification [1], link predic-
tion [15] and community detection [16]. A number of methods have
been developed in this area, including DeepWalk [17], LINE [20],
Node2Vec [4], and GCN [11]. Due to the power of deep neural net-
work, these approaches show significantly better performance than
the traditional methods. All above approaches are developed for un-
signed network. SNE [27], SiNE [23], SIDE [10], and Sign2Vec [7]
learn embeddings for signed network. These methods show im-
provements on signed network analysis, but they all have some
drawbacks. SNE utilizes log-bilinear with random walk sampling
to generate embeddings, but it does not exploit any social theory
of signed networks. SiNE is guided by balance theory and aims to
reflect the relationships among users, their friends and foes, but it

is devised for undirected signed networks. SIDE and Sign2Vec both
combine balance theory with specialized random walk sampling
techniques in directed signed networks. However, they neglect the
special structural property, i.e., the existing of “bridge” edges, in real
networks. In contrast, our framework takes both the “bridge” edges
and triangles into consideration and connects them with balance
and/or status theory.

Social Computing Tasks - Sign Prediction and Node Rank-
ing: Sign prediction and node ranking are two of the most impor-
tant social computing tasks in signed network analysis. For the sign
prediction task, all signed network embedding methods SNE [27],
SiNE [23], SIDE [10] and Sign2Vec [7] carry out this experiment.
In addition, FExtra [13] is a feature-engineering method focused
on the structure of signed network, it chooses 23 features for each
edge in the triangles representing balance and status theories. Sev-
eral other approaches are developed for signed network with extra
information [22, 26]. The problem investigated in our paper has
the same setting with that in FExtra [13], SiNE [23], SIDE [10] and
Sign2Vec [7] which does not require additional information.

For the node ranking task, there are mainly two types of methods.
One modifies traditional ranking methods to signed network. For
example, Exp [21], PageTrust [9], Modified PageRank (MPR) [18]
andModifiedHITS (MHITS) [25] are based on original PageRank [3]
or HITS [12] and take sign links into consideration. The other is to
propose a new model. For example, Prestige [28] combines positive
and negative incoming links together to give each node a prestige
value. Troll-Trust [25] uses a Bernoulli distribution to characterize
each user as either being trustworthy or being a troll. SRWR [8]
introduces the sign information into the random walk process to
get personalized trust or distrust rankings.

The aforementioned methods are either developed for sign pre-
diction or node ranking task. None of them can be directly used to
solve the two problems at the same time. Our proposed approach
can deal with the sign prediction and node ranking tasks simulta-
neously since it learns both the node and edge representations.

3 THE PROPOSED BESIDE MODEL
In this section, we first introduce the balance and status theories.
Then, we present our BESIDE (“Bridge” Enhanced Signed Directed
Network Embedding) model based on these two theories.

3.1 Balance Theory and Status Theory
Balance and status are two fundamental theories in social sciences.
Balance theory is originally defined for undirected networks to
model the relations of likes and dislikes [6]. It implies that “the
friend of my friend is my friend” and “the enemy of my enemy
is my friend”. Status theory [5, 14] is proposed to represent the
social status of the people in directed networks, where the status
may denote the relative prestige, ranking, or skill level. For example,
a positive/negative link from a to b denotes “b has higher/lower
status than a”.

Balance and status theory for “triangle” edges. Balance the-
ory involves three users in the network and is usually modeled with
triads [14, 19]. Status theory normally reflects relations between
two users. However, the status relation should be transitive, which
means that “a person a respected by b should be respected by b’s
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subordinate c”. This indicates that the implicit relationship between
a and c can be derived via their common neighbor b using status
theory. Note that here users a, b, and c also form a triad. Hence
we adopt the triangle representations to infer the sign of the third
edge ei j in a triad using balance and status theory. Figure 2 shows
all the possible types of triads.

Figure 2: 16 types of signed triangles.

We now take T1 in Figure 2 as an example. Balance theory indi-
cates that the sign of edge ei j inT1 should be a “+” (vj isvi ’s friend)
given that vk is a friend of vi and vj is a friend of vk . Similarly,
status theory suggests that the sign of edge ei j should be a “+” (the
status ofvj is higher than that ofvi ) given thatvj has higher status
than vk and vk has higher status than vi .

While in the above triad T1 balance theory agrees with status
theory in predicting the sign of ei j , in some cases balance and
status theory may contradict. For example, ifT6 in Figure 2 satisfies
the status theory, i.e., the sign of ei j is a “-”, T6 will not satisfy
the balance theory because it breaks the principle “the enemy vj
of my enemy vk is my friend” (from vi ’s point of view). Table 2
summarizes the balance and status theory observed in the triangles
and “+” or “-” denotes the satisfied prediction according to the
corresponding theory. We observe that status theory may provide
uncertain answers (shown as “+/-” ). For example, forT3 in Figure 2,
status theory indicates that the status of vi and vj are both lower
than vk , thus either vi > vj (the sign of ei j is “-”) or vj < vi (the
sign of ei j is “+”) is right considering the status relation between
vi and vj . The reason is that if the transitivity property does not
hold, it is unable to derive the sign for the third edge merely using
status theory.

From Table 2, it is also worthy to note that, among the 16 triads,
only 4 of them will make contradictory predictions based on two
theories. We further examine the percentage of triads satisfying
balance and/or status theory on large scale online social networks.
The results are shown in Table 3, where “Consistency”, “Only Bal-
ance”, and “Only Status” denotes both theories, or only one balance
or status theory are satisfied, respectively, and “No Match” refers
no theory satisfied.

From Table 3, it is clear that only a very small fraction of triangles
satisfy neither of two theories, i.e., less than 2% on Slashdot and
Epinions, and about 7% on Wikirfa. In addition, the consistency be-
tween balance and status theories dominates the real world signed
directed networks. Hence it is possible to combine the balance and
status theory in a joint framework despite the small fraction of con-
tradictory cases. More importantly, while balance theory models
the tight relationship among three vertices, the transitivity property
of status theory may capture the relationship between every two
vertices along a long path. This indicates that two theories may
complement each other. We will later show how this characteristic
can be successfully exploited in our proposed framework.

Status theory for “bridge” edges. Triads inherently reflects
the property of balance theory and the transitivity of status theory.
However, as we illustrated in the introduction section, there are a
good number of “bridge” edges in social networks which are not
included in any triangles. Balance theory does not apply to the
nodes involved in this type of edges. Status theory, on the other
hand, has a more general application than balance theory as its
target is to explain the local patterns of signed links between two
adjacent users. As long as a user j has higher status or skills than
another user i, there should be a positive out link from i to j. Hence
we adopt status theory to learn effective representations which can
be used for predicting the sign of “bridge” edges.

3.2 Modeling “Triangle” Edges based on
Balance and/or Status Theory

Since the balance and status theories could fit into different triangles
in signed directed networks, we let our model learn from the true
triangles to capture the latent distribution. We take the triad T6 in
Figure 2 as an example to show the detail of the training process.
Given that the sign of eik is “-" and that of ek j is “-”, assume the the
ground truth sign of ei j is “+” which follows the principle of “the
enemy ofmy enemy ismy friend” in balance theory.Mathematically,
taking the sign of three edges together, our goal is to maximize the
following objective function.

J tr iT6 = P(+|ei j ) ∗ P(−|eik ) ∗ P(−|ek j ), (3)

where J tr iT6
is the overall probability for predicting the sign of three

edges in the triad T6. On the other hand, if the ground truth sign
for ei j is “-” which follows the status theory, we can simply replace
the P(+|ei j ) in Eq. 3 with P(−|ei j ) when training the model.

We then take all triangles in the network into consideration,
maximum the likelihood and define the objective function J tr i for
all triangles based on balance and/or status theory as follows.

J tr i =
∏

t ∈Tsam

J tr i (t), (4)

where Tsam is the set of sampled triangles. In order to maximize
J tr i , we use a log loss function Ltr i to measure the difference
between the observation and the prediction, and define Ltr i as:

Ltr i = −loдJ tr i =
∑

t ∈Tsam

−loдJ tr i (t) =
∑

t ∈Tsam

Ltr i (t), (5)

Since a triangle is constructed from three vertices (i , j , k), we further
have:

Ltr i (t) = Ltr ii j + L
tr i
ik (ki) + L

tr i
jk(k j), (6)
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Table 2: Balance and status theory in triangles

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16

Balance Theory + − + − − + − + + − + − − + − +

Status Theory + +/− +/− + +/− − − +/− +/− − − +/− + +/− +/− +

Table 3: The percentage of triads satisfying balance and/or
status theory

Dataset Slashdot Epinions Wikirfa

Consistency 75.05% 76.82% 67.74%

Only Balance 16.62% 15.58% 5.88%

Only Status 6.58% 6.59% 19.25%

No Match 1.75% 1.02% 7.13%

where Ltr ii j is used to measure the difference between the predicted
value P(+|ei j ) and the ground truth value yi j for the sign of the
edge ei j , and it can be defined using a cross-entropy loss function.
Hence we have:

Ltr ii j = −yi j log P(+|ei j ) − (1 − yi j ) log(1 − P(+|ei j )) (7)

Similarly we can define the loss for other edges and get Ltr iik (ki),
Ltr ijk(k j) in Eq. 6.

3.3 Modeling “Bridge” Edges based on Status
Theory

As we illustrated in the previous section, using triangles to model
edges could be effective but there are a number of “bridge” edges in
real-world signed directed networks. In order to avoid the deterio-
ration of the performance caused by the exclusion of “bridge” edges,
we model these edges using status theory from another point of
view.

We take a “bridge” edge a → b as an example. We denote the
status score of node va , vb as Sa , Sb . Given that the sign of eab is
“+”, we have the status relationship of Sa < Sb if we follow the rule
of “the person respected by me should have higher status than me”.
Mathematically, taking the status relationship into consideration,
our goal is to maximize the following objective function:

J s (a,b) = P(Q(a,b)|Sa, Sb ), (8)

where J s (a,b) is the probability of status relationship as Sa < Sb ,
and Q is the ground truth of status relationship between a and b
defined as:

Q(a,b) =

{
1(Sa < Sb ), a → b : +
0(Sa > Sb ), a → b : −

(9)

Taking all the “bridge” edges in the network into consideration, we
can define the following objective function Jsta for these edges.

Jsta =
∏

eab ∈Ebr i

J sab , (10)

where Ebr i is the set of “bridge” edges in a signed directed network.

In order to maximize Jsta , we use a log loss function Lsta to
measure the difference between the observation and the prediction,
and define Lsta as:

Lsta = −loдJsta =
∑

eab ∈Ebr i

Lsab . (11)

Lsab in Eq. 11 is the cross-entropy loss for eab defined as:

Lsab = −Q(a,b)loдP(Q(a,b)|σ (−Sa + Sb ))

− (1 −Q(a,b))loд(1 − P(Q(a,b)|σ (−Sa + Sb ))),
(12)

where we use σ (−Sa + Sb ) as the probability of the status relation-
ship Sa < Sb , and σ is a sigmoid function to normalize the status
difference value −Sa + Sb to the range of (0, 1).

3.4 BESIDE Model
Based on the mathematically modeled triangles and “bridge” edges,
we now combine balance and status theory together and propose
a bridge enhanced signed directed network embedding (BESIDE)
model. The entire objective function can be written as:

Lall = Ltr i + Lsta + λr eдLr eд (13)

where Lr eд = | |Θ| |22 is the L2 regularizer for all weight parame-
ters Θ in the neural network and λr eд is the corresponding weigh-
ing factor (λr eд = 0.0001 in our experiments). With the objective
function Ltr i and Lsta given in Eq.5 and Eq.11, our task is to find
a function f to measure the probability P(+|ei j ) or P(−|ei j ) of the
sign of an edge ei j and two functions дsrc and дtar to get the status
score Ssrci , Starj for source node vi and target node vj , respectively.
Motivated by recent advances in deep learning which has been
proven to be powerful in learning nonlinear representations, we
design a novel deep neural network which optimizes the objective
function in Eq. 13 and learns the embedding of nodes and edges as
well as the function f ,дsrc ,дtar . Figure 3 shows the architecture
of our model.

The architecture in Figure 3 consists of two components, i.e., the
BESIDE_tri component modeling triangles using balance and/or
status theory and the BESIDE_sta component modeling “bridge”
edges using status theory. The input to BESIDE_tri is a set of triplets
(xi, xj, xk) denoting the embedding of nodes in triads extracted from
the signed directed network. Starting from the node embedding
layer of a triad, the BESIDE_tri component aims to optimize the
relationships in a triangle in next layers. More formally, we define
the probability P(+|ei j ) of the sign of an edge ei j as:

P(+|ei j ) = f (xi, xj) = f (eij) = σ (eijW1 + b1), (14)

where σ is a sigmoid function, W1 and b1 is the weight and bias in
the third layer, respectively, and eij is the embedding of an edge ei j
and defined as:

eij = xiWeh + xjWet + be, (15)
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Figure 3: Architecture of BESIDE model. The component
above the red dash-dotted horizonal line models triangles
while the below one models “bridge” edges. The blue and
green dotted lines are interactions between two compo-
nents.

where Weh and Wet are the weights and be the bias in the second
layer.

The input to BESIDE_sta is a set of tuples (xa, xb) denoting the
embedding of two nodes of a “bridge” edge, and the objective is to
optimize the relationships between two nodes adjacent to a bridge
edge based on a status score. Formally, we define the following
status score function дsrc ,дtar for the node va and vb of a “bridge”
edge a → b as:

Shid
a = xaWsrc + bsrc,

Sa = дsrc (va ) = σ (Shid
a W3 + b3), Sa ∈ (0, 1),

Shid
b = xbWtar + btar,

Sb = дtar (vb ) = σ (Shid
b W3 + b3), Sb ∈ (0, 1),

(16)

where Wsrc, bsrc, Wtar, btar, W3 and b3 are the weights and biases
in the second and third layer. Shid

a and Shid
b are the status embedding

for the nodeva andvb . Sa and Sb are the status score for the source
and target node va and vb , respectively.

To make two components complement each other, we not only
share the node embeddings in the first layer, but also make extra
interactions between them (shown as the blue and green dotted
lines in Figure 3). More formally, for the BESIDE_tri component, we
modify Eq. 15 as follows to borrow information from BESIDE_sta
and replace eij with e′ij:

e′ij = [eij; Shid
i − Shid

j ], (17)

where [; ] is the concatenation operator of two vectors and Shid
i − Shid

j
is the status difference vector calculated from Eq. 16.

Similarly, for the BESIDE_sta component, we modify Eq. 16
as follows to borrow information from BESIDE_tri and replace
Shid

a , Shid
b with Shid′

a , Shid′
b :

Shid′
a = [Shid

a ; xaWeh + be/2]

Shid′
b = [Shid

b ; xaWet + be/2]
(18)

where xaWeh(et) + be/2 (from Eq. 15) is used to enrich the status
vector representation for node va and vb , respectively.

3.5 Training BESIDE
To train our BESIDE model, we use mini-batch stochastic gradient
descent [2] to update the parameters in the neural network. The
training procedure is summarized in Algorithm 1. In line 1 in

Algorithm 1 BESIDE Algorithm

Require: signed directed network G = {V , E}
Ensure: representations for nodes X, status scores for nodes

Ssrc, Star, the relevant weight and bias parameters Ω in the
neural network

1: Prepare triangle samples Tsam (from Eq. 4) and “bridge” edges
set Ebr i (from Eq. 10)

2: Initialize the parameters of neural network
3: repeat
4: for each mini-batch from Tsam do
5: Forward propagation, calculate Ltr i
6: minimize model loss Ltr i , calculate the gradients
7: Back propagation
8: Update the relevant parameters
9: for each mini-batch from Ebr i do
10: Forward propagation, calculate Lsta
11: minimize model loss Lsta , calculate the gradients
12: Back propagation
13: Update the relevant parameters
14: until Convergence
15: return X, Ssrc, Star,Ω

Algorithm 1, we prepare the input for amini-batch training based on
the sampled triangles and “bridge” edges. To reduce time complexity,
we randomly sample one triangle for each edge during each epoch.
The “bridge” edges are those which cannot find any triangles, so the
input number for the BESIDE component is limited to the number
of total “bridge” edges. Thus the total input is restricted toO(|E |). In
line 2, we initialize the parameters for our neural network. Then we
train the target of our model in forward propagation. We calculate
the BESIDE_tri loss Ltr i in Eq. 6 and use stochastic gradient descent
in back propagation to update X and other relevant parameters Ω
in the neural network from line 4 to line 8. For the BESIDE_sta
component, we have a similar procedure from line 9 to line 13.

Given the learnt embeddings for nodes and the weight and bias
parameters, BESIDE_tri component can provide us with edge em-
beddings from the second layer for sign prediction task, and BE-
SIDE_sta component generates status scores from the third layer
for node ranking task, thus the whole BESIDE model could deal
with two tasks at the same time.

4 EXPERIMENTAL EVALUATION ON SIGN
PREDICTION

We first conduct sign prediction experiments to check whether our
model improves the performance of signed network analysis [23].
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4.1 Datasets
We conduct experiments on three well known and publicly available
signed social network datasets. Slashdot [14] is a technology-related
news website known for its specific user community. Users are
allowed to tag each other as friends or foes. Epinions [14] is an
online social network of a general consumer review site. Members
of the site can decide whether to “trust” each other. Wikirfa [24]
records the voting process during “request for adminship(RfA)”,
where any community member can cast a supporting, neutral, or
opposing vote for a Wikipedia editor. We discard neural votes
and construct a signed network as [24] did. The statistics of three
datasets are summarized in Table 4.

Table 4: The statistics for datasets

Dataset Node Edge +Edge(%) -Edge(%)

Slashdot 82,140 549,202 77.40 22.60

Epinions 131,828 841,372 85.30 14.70

Wikirfa 11,258 179,418 77.92 22.08

4.2 Baselines and Settings
For this prediction experiment, we use a number of the state-of-
the-art baselines and one variant of our method.

DeepWalk(DW) [17] is a network embedding method based on
language model skip-gram. Since this method cannot distinguish
between positive and negative edges, all the train edges are actually
seen as positive edges to construct the graph for it to do the random
walk. In case that some nodes have no edges in the training set, we
add a self-loop edge for each of them so that all nodes can get their
embeddings.

LINE [20] is a network embedding method considering first-
order and second-order proximity. It cannot handle negativeweights
on edges, so we do preprocessing similarly to that in DeepWalk.

Node2Vec(N2V) [4] is also a network embedding methods for
unsigned network. It uses two hyper-parametersp andq to generate
random walks with the idea of breadth-first search and depth-first
search. We use its recommended parameters and tune the p and q
follow its paper’s steps. Other preprocessing steps are similar to
that in DeepWalk.

FExtra [13] is a feature-engineering method in view of balance
and status theory. It adopts 7 degree based features in conjunction
with 16 social theories based features to model the signed social
network. Since FExtra differs from the network embeddingmethods,
we follow the same approach in [13] to obtain the edge features.

SNE [27] is a signed network embedding method which utilizes
log-bilinear model with random walk sampling. However, it does
not exploit any social theories for signed networks.

SiNE [23] is a signed network embedding method focused on
network structure information. It assumes “users should sit closer
to their friends (or users with positive links) than their foes” as the
balance theory and uses a deep learning framework to optimize this
relation. Since this method is developed for undirected network,
we follow its sampling method and adjust it to generate batches
on three directed signed networks without changing the neural
network model.

SIDE [10] is a signed network embedding method based on ran-
dom walk. It aggregates signs and directions along the path accord-
ing to balance theory and devise a general likelihood formulation
for signed directed connections.

Sign2Vec [7] is similar to SIDE except that it adds a new targeted
node sampling strategy to maintain structural balance in higher-
order neighborhoods.

BESIDE_tri is a component (above the red line) of our proposed
BESIDE framework. It is used to model the triangles in the network.

We first use node representations to compose edge represen-
tations. For DeepWalk, LINE, N2V and SiNE, we use their node
embeddings as their node features. Then we follow the method
in [4] and [7] to get edge features through five operators (aver-
age, Hadamard, weighted-L1, weighted-L2, concatenate) and report
their best results in this paper. For SNE, it differentiates the source
and target node embeddings when constructing edge features. The
node features for SiNE consists of only node embeddings, and SIDE
adds extra bias terms. The node features for Sign2Vec are made
up of node vectors and context vectors. The rest steps to get edge
features for SiNE, SIDE and Sign2Vec are the same with DeepWalk.
We evaluate all methods except FExtra using source codes provided
by their authors. For our BESIDE_tri and BESIDE, we directly use
edge embeddings as defined in Eq. 15.

With the learnt edge features, we then train a logistic regression
classifier on training set and use it to predict the edge sign in test
set. We randomly select 80% edges as training set and the remaining
20% as the test set. We run with different train-test splits for 5 times
to get the average scores. For a fair comparison, we set all the node
embedding dimension to 20 which is as same as that in SiNE [23]
and FExtra [13]. For other parameters in baselines, we follow the
recommended settings in their original papers.

4.3 Results for Sign Prediction
We report the average auc, macro-F1, micro-F1 and binary-F1 as
evaluation metrics as those in [7, 13, 23]. Table 5 shows the results.
Scores in bold denote the highest performance among all methods,
and scores with underlines are the highest among all baselines, i.e.,
those except our BESIDE_tri and BESIDE.

We can observe that our BESIDE model achieves the best perfor-
mance on three datasets. Our BESIDE_tri component already per-
forms pretty well. Since most of triangles satisfy both balance and
status theories, the embeddings of these triangles already contain
effective information. When “bridge” edges are incorporated into
the model, BESIDE could get better performance than BESIDE_tri.

Three unsign network embedding baselines (DeepWalk, LINE
and Node2Vec) are the worst, showing that it is not suitable to
apply unsigned network embedding methods to this problem.

Among four signed network embedding baselines (SNE, SiNE,
SIDE and Sign2Vec), SNE is not doing well compared to other three.
This can be due to its ignorance of sociopsychological theories.
Sign2Vec generally gets the best performance among these four
baselines. However, it is significantly worse than our BESIDEmodel,
especially on macro-F1. The performance of SIDE is not as good as
that in [10] (We also try to use the original dimensionality (128), but
it does not change much). This can be due to the fact that the results
in [10] are reported on ideal datasets which preprocess 1 degree
and 0 in/out degree nodes, and some of these nodes are ignored
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Table 5: Results for sign prediction

dataset metric DW LINE N2V SNE SiNE SIDE Sign2Vec FExtra BESIDE_tri BESIDE

Slashdot

auc 0.7743 0.5579 0.6318 0.6670 0.8581 0.8495 0.8805 0.8867 0.8759 0.9092

macro-F1 0.5994 0.4368 0.4367 0.4993 0.7512 0.7433 0.7656 0.7390 0.7594 0.7985

micro-F1 0.7779 0.7740 0.7741 0.7785 0.8399 0.8407 0.8438 0.8465 0.8457 0.8649

binary-F1 0.8668 0.8726 0.8727 0.8732 0.8998 0.9015 0.9010 0.9065 0.9035 0.9142

Epinions

auc 0.8170 0.6012 0.7484 0.8424 0.9000 0.8730 0.9182 0.9446 0.9304 0.9439

macro-F1 0.6141 0.4738 0.6265 0.7901 0.8294 0.8223 0.8295 0.8069 0.8478 0.8679

micro-F1 0.8693 0.8543 0.8754 0.9123 0.9232 0.9234 0.9210 0.9213 0.9306 0.9376

binary-F1 0.9279 0.9213 0.9314 0.9503 0.9559 0.9564 0.9544 0.9555 0.9600 0.9638

Wikirfa

auc 0.7337 0.5881 0.6233 0.6909 0.8631 0.7939 0.8765 0.8597 0.8943 0.8976

macro-F1 0.5635 0.4380 0.5200 0.5241 0.7306 0.6801 0.7497 0.7183 0.7678 0.7723

micro-F1 0.7890 0.7795 0.7892 0.7855 0.8329 0.8201 0.8438 0.8323 0.8530 0.8553

binary-F1 0.8773 0.8761 0.8795 0.8768 0.8966 0.8917 0.9032 0.8975 0.9084 0.9097

by SIDE during training. In contrast, all other methods (including
ours) use full datasets and learn representations for all nodes. This
is practically important. For example, in Wikirfa, some voters (1
degree nodes) who vote once are ignored. This will change the
original network structure and reduce the valid voting information
(the number of signed directed edges) to the votees.

The feature-engineering baseline FExtra shows good perfor-
mance when compared with others. The reason may be that its
low-dimension features are carefully designed based on social the-
ories. Note that FExtra outperforms SiNE in our experiments since
our datasets are different from those in [23] although they have
same names of datasets. FExtra could beat our BESIDE_tri compo-
nent in several cases. However, our BESIDE can still have better
results overall due to the enhanced information from “bridge” edges.

Since edge signs in above three networks are overwhelmingly
positive, a totally positive prediction may yield a 80% or so correct
rate. In order to investigate the robustness of our model, we fol-
low the methodology in [5, 13] to create a balanced dataset with
equal numbers of positive and negative edges and conduct the sign
prediction task on this balanced dataset. The results are shown in
Table 6.

From Table 6, we find an overall increasing value for macro-
F1. This is reasonable due to the very nature of balanced dataset
which favors a metric like macro-F1. All the micro-F1, binary-F1,
and auc values decrease on this dataset. However, compared with
baselines, the change ratio of our BESIDE model is the smallest. For
example, the auc value of FExtra on Epinions drops from 0.9446
to 0.9196, showing a 2.64% decrease. In contrast, the auc value of
our model for the full and balanced Epinions dataset is 0.9439 and
0.9437, respectively, almost no change. This clearly proves that the
results for our BESIDE model are much more robust than baselines
whether we use the full or balanced dataset.

4.4 Parameter Analysis
In this subsection, we investigate the effects of two main hyper-
parameters, i.e., the number of iteration epoch and the embedding
dimension d . We select 80% training edges and 20% test edges as
previous subsection does. We set epoch = 10, d = 20 as default
values and change one parameter while keeping the other fixed.
Figure 4 shows the results.

(a) epoch (b) d

Figure 4: Parameter analysis for sign prediction

As shown in Figure 4(a), we could see our method converges
quickly and does not fluctuate a lot when epoch increases. In Fig-
ure 4(b), the performance increases first and becomes almost steady
with the increasing number of dimension d (the numeric change
of macro-F1 is within 1%). Even with 6 embedding dimension, our
model has already achieved pretty good performance. In general,
our method is not sensitive to the hyper-parameters and provides
robust results for the sign prediction task.

5 EXPERIMENTAL EVALUATION ON NODE
RANKING

In this section, we investigate the properties of our status scores
Ssrc, Star from BESIDEmodel. Based on status scores, we can further
get the global ranking for all nodes in the network. Thus we turn
to conduct two types of experiments. Firstly, we apply our status
scores on real-world datasets and compare the status of two linked
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Table 6: Results for sign prediction on balanced dataset

dataset metric DW LINE N2V SNE SiNE SIDE Sign2Vec FExtra BESIDE_tri BESIDE

Slashdot

auc 0.7374 0.5590 0.6529 0.6278 0.8386 0.8415 0.8728 0.8775 0.8398 0.9049

macro-F1 0.6893 0.5393 0.6115 0.5870 0.7747 0.7755 0.7932 0.7929 0.7671 0.8248

micro-F1 0.6908 0.5393 0.6129 0.5870 0.7748 0.7755 0.7933 0.7944 0.7673 0.8248

binary-F1 0.6681 0.5430 0.5878 0.5829 0.7780 0.7764 0.7892 0.8106 0.7742 0.8246

Epinions

auc 0.7145 0.5924 0.7442 0.8129 0.8918 0.8673 0.9227 0.9196 0.9109 0.9437

macro-F1 0.6915 0.5664 0.6875 0.7404 0.8229 0.8180 0.8497 0.8366 0.8338 0.8740

micro-F1 0.6921 0.5679 0.6890 0.7405 0.8229 0.8183 0.8497 0.8380 0.8342 0.8741

binary-F1 0.6773 0.5910 0.7093 0.7461 0.8217 0.8255 0.8495 0.8517 0.8417 0.8765

Wikirfa

auc 0.6672 0.5808 0.6287 0.6303 0.8466 0.7715 0.8701 0.8374 0.8668 0.8814

macro-F1 0.6204 0.5574 0.5789 0.5962 0.7772 0.7170 0.7896 0.7815 0.7844 0.8013

micro-F1 0.6205 0.5575 0.5915 0.5962 0.7772 0.7172 0.7897 0.7815 0.7845 0.8013

binary-F1 0.6152 0.5573 0.6514 0.5941 0.7756 0.7236 0.7876 0.7808 0.7826 0.7987

nodes. Secondly, we compute the global ranking value using status
scores and examine its application in an online voting network.

5.1 Baselines
For this ranking experiment, we use the following six baselines and
one variant of our BESIDE model.

PageRank [3] is a classic algorithm designed for ranking nodes
in unsigned networks. We apply it to the positive subgraph G+ to
obtain the global ranking values as [25] does.

MPR [18] modifies PageRank [3] by applying it separately on
positive subgraph G+ and negative subgraph G−. Then the final
reputation score is computed as r+i − r−i , where r+i and r−i are
ranking scores calculated from the previous step.

MHITS [25] is a modified version of HITS [12]. Similar to that
in [25], we run HITS on G+ and G− separately and combine each
node’s authority value a+i − a−i as its node representation.

Prestige [28] simply combines positive and negative incoming
links to give each node a prestige value. If a node receives many
positive/negative incoming links, it should have a high/low prestige.

Exp [21] is based on an exponential variation of the PageRank. It
assumes a node with a negative reputation is partially trustworthy.

Troll-Trust [25] uses a Bernoulli distribution to characterize
each user as either being trustworthy, or being a troll, and constructs
a probabilistic model in terms of the links between various users.

BESIDE_sta is a component (below the red line) of our proposed
BESIDE framework. It focuses on status theory tomodel the “bridge”
edges.

5.2 Status Comparison on Three Real-World
Networks

According to the status theory in signed directed network, the status
score of each node can be interpreted as “the person respected by
me should have higher status than me”. To derive insights into the
property of such status scores in real-world signed social network,
we design a status comparison experiment: we take the test edges

as the ground truth, and compare the status between two adjacent
nodes by their status scores. For example, a positive(negative) edge
vi → vj can be transformed into a status comparison Si < (>

)Sj based on status theory. In this way, we can measure how the
status scores generated by different methods are consistent with
the ground truth.

We conduct the status comparison experiments on the Slashdot,
Epinions andWikirfa datasets. We use 80% edges as training set and
20% edges as test set and use accuracy as evaluation metric follows
[18, 25]. For Troll-Trust, we try different combinations of β = [0.01,
0.1, 0.2, 0.5, 0.9] and λ1 = [0.1, 0.5, 1.0, 5.0, 10.0, 100.0] and choose
the best results for Slashdot, Epinions and Wikirfa, respectively.
For other baselines, we follow the settings in Troll-Trust [25]. For
our BESIDE model, we simply get the status scores Ssrc, Star from
the model trained in the sign prediction task and apply them to this
task to see whether Ssrc(i) < (>)Star(j) satisfies positive(negative)
vi → vj relation. The results are shown in Table 7.

BESIDE well captures the status property and it achieves the best
performance among all methods on three networks. This could be
attributed to that our BESIDE is motivated by social-psychological
theory and thus the status scores agree fairly well with the human
behaviors in real-life networks. Another interesting finding would
be the significant improvements of BESIDE over BESIDE_sta on
Epinions and Wikirfa, which proves that the BESIDE_tri compo-
nent in our framework provides the BESIDE_sta component with
additional information and helps enhance its performance. We also
observe a small raise on Slashdot. The reason may be that Slashdot
contains nearly half of bridge-edges, and it is hard for BESIDE_sta
to benefit from BESIDE_tri on this dataset.

5.3 Global Ranking on Wikirfa Network
In order to investigate whether our status score could help find
something specific to signed directed networks, we analyse the
top 10 nodes ranked by various methods. For all baselines which
are originally designed for the node ranking task, the nodes in the

Session 5C: Machine Learning 1 CIKM’18, October 22-26, 2018, Torino, Italy

780



Table 7: Accuracy for status comparison on Slashdot, Epinions and Wikirfa

dataset

method
Prestige PageRank Exp MPR MHITS Troll-Trust BESIDE_sta BESIDE

Slashdot 0.4619 0.6273 0.5920 0.5815 0.5518 0.5915 0.8595 0.8611

Epinions 0.5134 0.6515 0.6457 0.6503 0.5883 0.6424 0.8559 0.9131

Wikirfa 0.6397 0.6629 0.6770 0.6744 0.6363 0.6783 0.7779 0.8276

network can be directly ranked using their ranking scores. Since
our proposed BESIDE differentiates the positive and negative status
scores, it is necessary to combine them together to get an integrated
ranking score. To this end, we refer to the definition of PageRank [3]
and propose the global ranking score for BESIDE as the combination
of positive and negative score normalized by the number of out
links from the source node. The definition is as follows:

Ri =
∑

j∈In+(i )

S′src(j)
|Out (j) |

−
∑

j∈In−(i )

S′src(j)
|Out (j) |

(19)

where Ri is the ranking score of nodevi , In+(i) and In−(i) denoting
the nodes pointing positively or negatively to node vi , |Out(j)|
denoting the out degree of node vj , and S′src(j) is the normalized
source status score of node vj in the range of [0, 1].

We conduct the ranking experiment onWikirfa network because
it is the only dataset where the ranking of nodes can be implicitly
reflected by the voting results (being elected as an administrator or
not). This dataset also contains textual contents which can provide
insightful analysis. During the RfA (request for adminship) process
initiated in 2003 through May 2013, there were 189,004 distinct
voter/votee pairs among which 3,494 users ran for elections. Among
these users, 1,591 ones were never elected, and 1,885 and 18 users
were elected once and twice, respectively.

Intuitively, the win/loss of the election reflects a user’s status of
being trusted, and 18 twice-elected users should have the highest
status while 1,591 none-elected users should be the lowest. We
run different methods on Wikirfa and show twice, once, and none
elected users in Table 8. We adopt the conventional top-10 metric in
information retrieval and recommender systems to present results.

In Table 8, the green (also in italic), black, and blue (also in bold)
colored users were never elected, elected once, or elected twice,
respectively. Note that the results for Prestige are not presented
because it cannot distinguish its top nodes. All nodes with only
positive in-links will get the same top ranking scores 1.0, and thus
Prestige is not suitable for this task at all. We have the following
important notes for Table 8.

• PageRank selects “ProtectionBot” into the top-10 list as this
user has many in-links (> 150 support votes in training data).
However, this user has never been elected as the administra-
tor during the entire period. This indicates that the method
like PageRank which does not take negative edges into con-
sideration may make a mistake for the node ranking task in
signed directed networks.

• Troll-Trust is the second worst since all users in its top-10
list are elected only once. A close look at the selected top-10
users reveals that they do not have any negative in-links.

This indicates that Troll-Trust is too strict to include nodes
with negative links.

• MPR and MHITS are similar. Nine users are elected as ad-
ministrators once and one user is elected twice. These two
methods model negative links to some extent, but positive
in-links still play the leading role. The average number of
negative in-links in training data for top-10 users is 7.0 and
1.9 in MPR and MHITS, respectively, while that for the posi-
tive ones is over 100.0 for both methods.

• Exp finds two twice-elected users. The average number of
negative in-links for the top 10 users for Exp is higher than
that for MPR and MHITS. This infers that the inclusion of
more negative links can be helpful in finding more twice-
elected users.

• BESIDE achieves the best performance in that it selects the
most twice-elected users among all methods. The twice-
elected users “HJ Mitchell” and “PeterSymonds” partially
overlap with MPR, MHITS, or Exp. In addition, BESIDE finds
an extra node “Everyking”: a very special user with more
than 300 positive in-links as well as 200 negative ones but
still being elected twice.

In looking at why “Everyking” can be elected twice, we find that
this is a highly controversial user. During his first election, voters
are predominantly in support for him. They thought he was “very
active”, and “filling important gaps with good articles, especially
on African politcs”. However, the second win of his election was
dramatic. Many opponents criticized him as “wrote a lot of cruft
articles” and “overblown edit war on [[Ashlee Simpson]]”. These
opponents formed negative links to “Everyking”. However, the firm
supporters thought he was “One of the most prolific and produc-
tive contributors in the history of the project” and “who is clearly
working to make the encyclopedia better”. Meanwhile, some of sup-
porters argued that “committee found no actual misuse of the tools”
and “contributed well later”. The opponents seemed overwhelmed
by his supporters and “Everyking” was elected successfully.

In summary, our proposed BESIDE model computes ranking
scores based on status theory, leveraging both negative and positive
links. This allows for finding more twice-elected users than other
methods. Moreover, in Table 8, we observe most of once-elected
users in BESIDE overlap with those in different approaches. It has
5 once-elected users in common with Exp, and 2 and 1 in common
with Troll-Trust and MHITS, respectively. The consistency in once-
elected users further proves the soundness of our BESIDE model.
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Table 8: Global ranking results on Wikirfa. Green-colored (also in italic) users were never elected as administrator, black-
colored users were elected once and blue-colored (also in bold) users were elected twice.

rank

method
PageRank Exp MPR MHITS Troll-Trust BESIDE

1 West.andrew.g Werdna Anomie PeterSymonds SarahStierch Can’t sleep...

2 Cobi Can’t sleep... Legoktm Carcharoth Dabomb87 SarahStierch

3 ProtectionBot PeterSymonds Mkdw Newyorkbrad Soap Phaedriel

4 Anomie Phaedriel West.andrew.g Jake Wartenberg BD2412 DerHexer

5 Jason Quinn Newyorkbrad Tom Morris Jbmurray Persian Poet Gal Alex Bakharev

6 RedirectCleanupBot Cobi Arsenikk Tinucherian Boing! said Zebedee Werdna

7 lustiger seth Drmies HJ Mitchell Scarian Jake Wartenberg HJ Mitchell

8 Dinoguy1000 Crzrussian MGA73 John Carter Carcharoth Everyking

9 Bellhalla SarahStierch Drmies Soap Berean Hunter Dabomb87

10 TommyBoy Nev1 Rambo’s Revenge Phaedriel John Carter PeterSymonds

6 CONCLUSION
In this paper, we propose a novel BESIDE model to learn effective
representations for signed social networks. We first point out that
there exist a good number of “bridge” edges that differ from triangles
in the network. We then mathematically model “bridge” edges
using status theory and model triangles using balance and/or status
theory. We next design a novel deep neural structure to combine
“bridge” edges and triangles that work in a complementary manner.
Based on the deep network, we learn the node embedding and
edge embedding denoting the status of a node and the sign of
an edge, which can facilitate diverse social computing tasks like
status comparison, node ranking, and sign prediction. We conduct
extensive experiments on three real-world signed social networks.
The results demonstrate that the BESIDE model achieves the state-
of-the-art performance, which evinces the need for incorporating
“bridge” edges in the signed directed network embedding.

In the future, we plan to investigate how the learnt representa-
tions can be used in other applications like community detection
or recommendation. We are also interested in making connections
between our model and the social properties of real world networks.
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