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ABSTRACT

Complex networks have become an important tool for investigating epidemic dynamics. A widely concerned research field for epidemics is to
develop and study mitigation strategies or control measures. In this paper, we devote our attention to ring vaccination and targeted vaccination
and consider the combination of them. Based on the different roles ring vaccination plays in the mixed strategy, the whole parameter space can
be roughly divided into two regimes. In one regime, the mixed strategy performs poorly compared with targeted vaccination alone, while in
the other regime, the addition of ring vaccination can improve the performance of targeted vaccination. This result gives us the more general
and overall comparison between targeted and ring vaccination. In addition, we construct a susceptible–infected–recovered epidemic model
coupled with the immunization dynamics on random networks. The comparison between stochastic simulations and numerical simulations
confirms the validity of the model we propose.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048457

To develop and study mitigation strategies and control mea-
sures for an epidemic is an important research field of epidemic
dynamics. Until now, a lot of mechanisms have been investigated.
However, every method has its own advantages and shortcom-
ings. Given this fact, in this paper, we consider the combination
of two kinds of immunization strategies: targeted vaccination and
ring vaccination. The results show that, located in the different
regions of parameter space, ring vaccination plays two distinct
roles in the mixed immunization strategy. In addition, the com-
parison between stochastic simulations and numerical solutions
confirms the validity of the model we propose.

I. INTRODUCTION

Complex networks have become an important tool for investi-
gating epidemic dynamics.1 The introduction of complex networks
gives rise to a series of important issues such as the modeling of epi-
demic dynamics on complex networks and the studying of evolution
spreading in complex networks.2,3 Moreover, to develop and study

mitigation strategies and control measures for epidemics is also a
focus of research.4 Although some achievements have been attained,
a lot of work remains to be proceeding.

In this paper, we focus our attention on immunization strategy.
As summarized in Refs. 4 and 5, some early mechanisms in the lit-
erature mainly include random vaccination,6 targeted vaccination,6

and acquaintance vaccination.7 All the three possess one com-
mon characteristic: the immunization process has been conducted
before the outbreak of disease. So, this type of immunization strat-
egy can also be referred to as static immunization. On the other
hand, several novel immunization schemes have been investigated
in recent decades. Ruan et al. proposed an information-driven vac-
cination strategy.8 Whether one susceptible individual receives a
vaccine or not depends on the information collected from the neigh-
bors. Another scheme, called contact immunization by Wu et al.,
is aimed at a certain set of individuals, not all individuals, of the
population, who get vaccinated with a rate if contacting at least
one infected neighbor.9 Furthermore, some authors introduced the
observer nodes as the warning roles. Once any neighbor of an
observer is infected, the observer will inform the other neighbors
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of taking the immunization measure.10 To distinguish from static
immunization described above, we call these strategies as dynamic
immunization collectively.

At the same time, another method, named ring vaccination,
received the researchers’ attention long ago because of its wide appli-
cability to some real diseases.11,12 One advantage of ring vaccination
is that the susceptible individuals in contact with at least one infected
neighbor are the targets of ring vaccination, and, once immunized
successfully, those individuals can thus directly block the transmis-
sion of the disease.5,13 The actual performance of ring vaccination
is, however, influenced by many factors. For example, the newly
infected individuals are not usually been identified in time, and, as
a result, the susceptible neighbors are likely to be infected before
immunization.12 By comparison, although there are a lot of short-
comings, static immunization has its own advantage. For instance,
the implementation of static vaccination does not need to know
the states of nodes. Alvarez-Zuzek et al. compared the performance
of targeted vaccination with the one of ring vaccination on par-
tially overlapped multiplex network.5 In this paper, we concentrate
our attention on considering the combination of targeted and ring
vaccination on a single random network, which has received little
attention before. What we mainly care about is that does the mixed
vaccination strategy exhibit better performance than one isolated
vaccination strategy? The answer can tell us the more general and
overall comparison results between targeted and ring vaccination,
which has important practical significance for the formulation of the
immunization strategy.

The remaining part is organized as follows. In Sec. II, we
develop a system of ordinary differential equations for describing
a susceptible–infected–recovered (SIR) epidemic model under the
mixed immunization strategy on random networks. The details of
stochastic simulations are presented in Sec. III. We show the main
results of this paper in Sec. IV. Finally, we give our discussions in
Sec. V.

II. MODEL

In this paper, we consider a susceptible–infected–recovered
(SIR) epidemic model coupled with the immunization dynamics on
random networks. The basic SIR dynamics is described as follows:
the infectious individuals will infect their susceptible neighbors at a
rate β ; meanwhile, they may recover at a rate γ and then be immune
to future infection. Here, we discuss two kinds of immunization
strategies: targeted vaccination and ring vaccination. We denote by
p the proportion of individuals with the largest degrees who are
vaccinated initially, while we use q to denote the rate at which the
susceptible neighbors of infected individuals get immunized.

First, let us consider the case of the fraction p of individuals
being initially vaccinated. For a network with the degree distribution
pk and the minimum and maximum degrees kmin and kmax, this cor-
responds to a degree threshold kc ∈ [kmin, kmax] and a real number
σc ∈ (0, 1] such that

p =

kmax
∑

k=kc+1

pk + σcpkc .

The “effective” network structure has changed after targeted

vaccination, due to the partly individuals’ immunization and,

consequently, the failure of the partial edges emanating from

them.6,14 Then, the “new” degree distribution can be given by

p′
k = C

[

kc−1
∑

l=k

pl

(

l

k

)

(1 − φ)kφ l−k + (1 − σc)pkc

(

kc

k

)

(1 − φ)kφkc−k

]

,

0 ≤ k ≤ kc,

where φ represents the probability that the any link will be con-
nected with an immunized node, that is,

φ =

∑kmax
k=kc+1 kpk + σckcpkc

∑kmax
k=kmin

kpk

,

and C is a normalization constant. Note that the minimum degree
of the new network becomes 0. This is because one node will “lose”
all its links if its neighbors happen to be the ones with large degrees.

Second, by means of the effective degree model proposed by
Lindquist et al.,15 the dynamics of a SIR-type epidemic under ring
vaccination on the above new network can be described by a system
of ordinary differential equations (ODEs). Let Ssi (Isi) be the number
of susceptible (infectious) nodes with s susceptible and i infectious
neighbors. Then, one has

Ṡsi = −βiSsi + γ [(i + 1)Ss,i+1 − iSsi]

+ [(s + 1)Ss+1,i−1 − sSsi]

∑kc
k=1

∑

j+l=k βjlSjl

∑kc
k=1

∑

j+l=k jSjl

− qiSsi + [(s + 1)Ss+1,i − sSsi]

∑kc
k=1

∑

j+l=k qjlSjl

∑kc
k=1

∑

j+l=k jSjl

, (1)

İsi = βiSsi − γ Isi + γ [(i + 1)Is,i+1 − iIsi]

+ [(s + 1)Is+1,i−1 − sIsi]

∑kc
k=1

∑

j+l=k βl2Sjl

∑kc
k=1

∑

j+l=k jIjl

+ [(s + 1)Is+1,i − sIsi]

∑kc
k=1

∑

j+l=k ql2Sjl

∑kc
k=1

∑

j+l=k jIjl

(2)

for {(s, i) : 0 ≤ s + i ≤ kc, 0 ≤ s, i ≤ kc}. Here, the sign · represents
the time derivative.

For the right-hand side of Eq. (1), the first term represents
the decrease of Ssi at rate βi due to the infection of susceptible
nodes themselves since there are i infected neighbors, the sec-
ond term describes the change of Ssi because of the recovery of
infected neighbors, and the third term accounts for the change of
Ssi caused by the infection of susceptible neighbors, which is pro-

portional to the number
∑kc

k=1

∑

j+l=k βjlSjl of susceptible nodes as

the neighbors of the newly infected nodes per time and the probabil-

ity sSsi/
∑kc

k=1

∑

j+l=k jSjl ((s + 1)Ss+1,i/
∑kc

k=1

∑

j+l=k jSjl) with which

those susceptible nodes belong to class Ssi (Ss+1,i). According to
the above analysis for the infection process, the last two terms,
corresponding to ring vaccination, can be explained in the same way.
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By the definition of Ssi and Isi, the number of susceptible and
infectious nodes are

S =

kc
∑

k=0

∑

j+l=k

Sjl

and

I =

kc
∑

k=0

∑

j+l=k

Ijl,

respectively. Then, the dynamical evolution of the number R of
recovered nodes can be given by

Ṙ = γ I. (3)

Considering the demographic processes, such as birth and death, are
not taken into consideration, we further have

V = N − S − I − R,

where V represents the number of vaccinated nodes and N the size
of the network. It should be noted that V is composed of two parts:
pN based on targeted vaccination and (1 − p)N − S − I − R based
on ring vaccination.

Finally, the initial conditions of Eqs. (1)–(3) are stated below.16

At the beginning, it is assumed that a small fraction ε of nodes
is infected in the network, not including the ones who have been
immunized before. In view of the small value of ε, there is little
probability that two infected nodes are connected to each other
or that one susceptible node has two or more infected neigh-
bors at t = 0. Thus, Ik0(0) = εNk, k ≥ 0, and Sk−1,1(0) + Sk0(0)
= (1 − ε)Nk, k > 0; S00(0) = (1 − ε)N0, where Nk = p′

k(1 − p)N,
0 ≤ k ≤ kc. Furthermore, it is probability ε with which one sus-
ceptible node is linked to one infected node. Then, Sk−1,1(0) = ε

(1 − ε)Nk, k > 0. To sum up,















Ik0(0) = εp′
k(1 − p)N, 0 ≤ k ≤ kc,

Sk0(0) = (1 − ε)p′
k(1 − p)N, k = 0,

Sk−1,1(0) = ε(1 − ε)p′
k(1 − p)N, 1 ≤ k ≤ kc,

Sk0(0) = (1 − ε)2p′
k(1 − p)N, 1 ≤ k ≤ kc.

According to Refs. 6, 14, 15, and 17, we can derive the dis-
ease threshold condition for SIR epidemic model under the mixed
immunization strategy. For the case of σc = 1, the disease threshold
condition is determined by a parameter

R0 =
β

β + γ + q

〈k2〉c − 〈k〉c

〈k〉c

(1 − φ),

where 〈k〉c and 〈k2〉c are the first and second moments of the original
degree distribution pk with the new cut-off kc − 1, respectively. In

other words, 〈k〉c =
∑kc−1

k=kmin
kpk and 〈k2〉c =

∑kc−1
k=kmin

k2pk. See more

derivation details in the Appendix.
If R0 < 1, the disease can only cause few outbreaks, whereas

if R0 > 1, the disease first invades a fraction of the population and
dies out eventually.

III. STOCHASTIC SIMULATIONS

Random networks used in this paper are generated based on
the configuration model, also called Molloy–Reed algorithm, which
is well-known and widely used to generate random networks with
arbitrary degree distribution.18,19

In this paper, we consider two kinds of networks. The first
shows the homogeneous contact pattern of a Poisson degree distri-
bution,

pk = C1

λk1 e−λ

k1!
, 0 ≤ k1 ≤ k1

max,

as the networks generated by ER or WS model do.20,21 The second
displays the heterogeneous contact structure,

pk = C2k
−τ
2 , 1 ≤ k2 ≤ k2

max,

like the networks generated by BA model feature.22 Here, k1
max and

k2
max are the maximum degrees, and C1 and C2 are normalization

constants.23

The event-driven algorithm developed by Kiss et al.,1 orig-
inated from the Gillespie algorithm,24 is introduced to simulate
the transmission of the disease on random networks. To incor-
porate ring vaccination into epidemic dynamics, we need to add
an immunization process to the original event-driven algorithm.
For every infectious node, each susceptible neighbor may undergo
one of two possible processes: infection and immunization, which
depends on the ordering of three random numbers, all gener-
ated from the exponential distribution with the corresponding
parameters.1,25

Before each simulation, we pick out a fraction p of nodes with
the largest degrees from random networks and immunize them.
Then, a fraction ε of nodes are chosen at random as the initial infec-
tious seeds, except the ones immunized earlier, with the remaining
susceptible.

In the following, unless otherwise specified, we set k1
max

= k2
max = 12, λ = 6, and τ = 0.2, which ensures that two classes

of generated networks have the same average degree 〈k〉 ' 6. In
addition, N = 104, γ = 1.0, and ε = 10−3.

IV. RESULTS

In this section, we first give the comparison results of targeted
vaccination and ring vaccination. Next, we further investigate the
performance of the mixed immunization strategy.

Figure 1 shows the comparison between stochastic simulations
and numerical simulations of Eqs. (1)–(3). From Fig. 1, we find that
when β is relatively small, the size R of infection on the Power-
law network is larger than that on the Poisson network; once β

increases over some certain value, a reverse result is observed. A sim-
ilar phenomenon has been revealed for epidemic dynamics without
the immunization process.23 Furthermore, as shown in Fig. 1(e), for
ring vaccination, there exists a peak of the final fraction V of vac-
cinated individuals along increasing β , i.e., as β increases, the final
fraction V of vaccinated individuals first increases until reaching the
peak and then decreases, which can be attributed to the competi-
tion of two processes: transmission and immunization.5 When β

is large, the individuals under the risk of infection are more likely
to be infected before vaccination, which leads to a decrease in the
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FIG. 1. The final fractions of recovered individuals R and vaccinated individuals V as a function of infection rate β under several combinations of targeted vaccination and
ring vaccination. The blue (dark gray) and magenta (light gray) lines represent the numerical solutions of Eqs. (1)–(3) on the Poisson and Power-law networks, respectively.
Each box plot corresponds to 500 results of stochastic simulation for a certain value of β , 50 independent runs on each of 10 networks, where the black dot inside a circle
denotes the median of the simulation results and the outliers are plotted individually using the “+” symbol. (a) and (e) p = 0.0, q = 0.2; (b) and (f) p = 0.1, q = 0.0; (c) and
(g) p = 0.1, q = 0.2; (d) and (h) p = 0.2, q = 0.8.

number of vaccinated individuals. Compared with low values of p
and q, high values of p and q correspond to the smaller final epi-
demic size R and the higher critical infection rate βc, above which
an epidemic occurs, for both types of networks. In addition, except
for several values close to the critical value βc, we can see that the
numerical solutions agree well with the simulation results for all
the other values of β , which confirms the validity of the model we
develop.

In Fig. 2, we compare ring vaccination with targeted vaccina-
tion. It can be seen from Fig. 2 that, for ring vaccination, when the
rate q increases over a certain value and becomes more and more
high, fewer individuals are vaccinated while fewer individuals are
infected. This result is predictable since ring vaccination is aimed
at the susceptible individuals connected with at least one infected
neighbor, which determines that, for high rate q, ring vaccination
can heavily block the spreading of disease. However, it is impossible
for targeted vaccination: the smaller the final size R of the epidemic,
the larger the initial fraction V of vaccinated individuals. On the
other hand, there exists a critical size of the epidemic, denoted by
Rs

c and Rw
c for the Poisson and Power-law networks, respectively.

When the final sizes of the epidemic under two kinds of vaccination
strategies, respectively, exceed this critical size, targeted vaccination
performs better than ring vaccination, i.e., if the same epidemic sizes
are obtained under two types of vaccination strategies respectively,
fewer individuals are vaccinated based on targeted vaccination. Oth-
erwise, the performance of ring vaccination is better than that of
targeted vaccination. Moreover, Fig. 2 also indicates that, compared
to the Poisson network, the higher critical rate qc is needed in order
to eradicate the disease on the Power-law network, particularly in
the case of large β .

FIG. 2. The comparison between targeted vaccination and ring vaccination. The
panels show the final sizes R of the epidemic vs the final fractions V of vaccinated
individuals under different values of q and, as a contrast, the final fractions R of
recovered individuals as a function of the initial fraction p/V of vaccinated indi-
viduals in four cases: (a) the Poisson network and β = 0.4; (b) the Power-law
network and β = 0.4; (c) the Poisson network and β = 0.8; and (d) the Pow-
er-law network and β = 0.8, respectively. The cyan (light gray) lines correspond
to targeted vaccination and the colored (graduated gray) ones ring vaccination.
All values of q are mapped into the colormap. In each panel, under certain values
of p and q, the final sizes R of the epidemic, denoted by Rs

c and R
w
c for the Poisson

and Power-law networks, respectively, are the same as well as the final fractions
V of vaccinated individuals.
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Next, we consider the epidemic dynamics with the mixed
immunization process. Figure 3 depicts the final fractions of recov-
ered individuals R and vaccinated individuals V with respect to
the whole population under various combinations of targeted vac-
cination and ring vaccination for β = 0.8, respectively. Accord-
ing to the findings in Fig. 2, the entire parameter space can be
divided into two regimes: I and II, where the partition lines, the
black solid lines in Fig. 3, capture the cases of the final epidemic
sizes R being the critical values Rs

c and Rw
c for the Poisson and

Power-law networks under different choices of the mixed strat-
egy, respectively. To explore the roles ring vaccination plays in
the mixed strategy in regime I and II, respectively, taking the case

of the Power-law network as an example, we show two exam-
ple cases of R ' 0.5 and R ' 0.05 in Fig. 4. From Fig. 4, we
can see that, for all possible choices of the mixed strategy, under
which the final sizes of the epidemic are approximately equal to
0.5, the red dashed lines in Figs. 3(c) and 3(d), the choice with
a higher rate q of ring vaccination brings about a larger pro-
portion V of vaccinated individuals; conversely, for the case of
R ' 0.05, the blue dotted lines in Figs. 3(c) and 3(d), the choice
with a higher rate q corresponds to a smaller fraction V. The
above-mentioned statements are also applicable to the case of β =

0.4.
In addition, we also present two examples approaching Rw

c , one
from the left and the other from the right in Fig. 4. One interesting

FIG. 3. The performance of the mixed immunization strategy. The final fractions of recovered individuals R and vaccinated individuals V are plotted as a function of p and
q for β = 0.8, respectively. Panels (a) and (b) represent the case of the Poisson network, and panels (c) and (d) the case of the Power-law network. Corresponding to the
case of the final fractions of recovered individuals being the critical value Rs

c ' 0.130 (the Poisson network) or Rw
c ' 0.090 (the Power-law network) under various choices

of p and q, the black solid lines divide the whole parameter space into two regimes: I and II. The red dashed and blue dotted lines in the bottom panels show the case of the
final epidemic sizes being 0.5 and 0.05, one above Rw

c and the other below Rw
c , respectively.
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FIG. 4. The four examples for interpreting the difference between regime I and II shown in Fig. 3. The final sizes R of the epidemic and final fractions V of vaccinated
individuals are plotted against the left and right y-axes under different choices of p and q, respectively, where each choice is chosen such that the final size R of the epidemic
is close to one target value. In this figure, four target values are discussed: (a) 0.50, (b) 0.05, (c) 0.100, and (d) 0.080.

phenomenon appears: in both cases, with the rate q increasing in
the mixed strategy, the final fraction V undergoes a change of falling
first and then rising. One possible explanation for this is that, for
targeted vaccination, compared with the nodes with large degrees,
the immunization of the nodes with low degrees will be of less bene-
fit. Therefore, when the mixed strategy approaches the critical case,
a portion of targeted vaccination can be compensated by ring vac-
cination with an appropriate rate in a cost-effective way; however,
ring vaccination cannot keep this advantage for a larger extent of
the replacement of targeted vaccination.

V. DISCUSSION

In this paper, we have compared two kinds of immunization
strategies: ring vaccination and targeted vaccination. The results

show that only if the rate of ring vaccination is large enough is
the performance of ring vaccination better than that of targeted
vaccination. Further, we have investigated the performance of the
mixed strategy. Based on the roles ring vaccination plays in the
mixed strategy. The whole parameter space can be approximately
divided into two regimes: in one regime, the mixed strategy per-
forms poorly compared with targeted vaccination alone; in the
other regime, the addition of ring vaccination can improve the
performance of targeted vaccination.

The results obtained from this paper provide us with some
guidance on the formulation of the immunization strategy when
faced with a disease. As indicated in Figs. 3 and 4, for a disease, if
the sick cannot be diagnosed or the neighbors of the sick cannot be
recognized in time, which means a low rate of ring vaccination, tar-
geted vaccination should be the prime option. However, once the
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outbreak of disease can be governed below a certain critical level
under the combination of targeted vaccination and ring vaccination,
the importance of ring vaccination should be stressed, even in the
case of a low rate of ring vaccination.

On the other hand, in realistic scenes, the implementation of
ring vaccination and targeted vaccination is still confronted with
a lot of challenges. For example, the accurate and quick recog-
nition of the individuals with a large number of neighbors and
with the infectious neighbors heavily determines the performance
of targeted vaccination and ring vaccination, respectively. Further-
more, the individuals’ or population’s vaccination behavior is often
influenced by other dynamics.4 How to understand the interaction
between vaccination behavior with other behaviors, such as adaptive
and collective behaviors,26–28 remains to be investigated.
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APPENDIX: DERIVATION OF DISEASE THRESHOLD

Following the procedure in Ref. 15, we derive the disease
threshold condition of the system of Eqs. (1) and (2) by studying
the stability of the disease free equilibrium, i.e., Isi = 0 for all s and i;
Ssi = 0 for all i ≥ 1, and Ss0 = Ns for all s.

To this end, we begin by introducing some approximations
used below since, near the disease free equilibrium, the susceptible
individuals with two or more infectious neighbors are rare, which
implies that

∑kc
k=1

∑

j+l=k βl2Sjl

∑kc
k=1

∑

j+l=k jIjl

≈

∑kc−1
j=0 βSj1

∑kc−1
j=0 Sj1

= β (A1)

and, similarly,

∑kc
k=1

∑

j+l=k ql2Sjl

∑kc
k=1

∑

j+l=k jIjl

≈ q, (A2)

where we have used the balance equality
∑kc

k=1

∑

j+l=k jIjl

=
∑kc

k=1

∑

j+l=k lSjl. Substituting the expressions (A1) and (A2) into

Eq. (2), one thus has

İsi = βiSsi − γ Isi + γ [(i + 1)Is,i+1 − iIsi]

+ β[(s + 1)Is+1,i−1 − sIsi] + q[(s + 1)Is+1,i − sIsi] (A3)

near the disease free equilibrium.
Next, we calculate the Jacobian matrix, written as F − V, at the

disease free equilibrium with respect to Eqs. (1) and (A3), where the
matrix F involves the terms of transferring from class Ss0 to class
Ss−1,1 and the matrix −V the remaining terms. Take variables Ssi and
Isi in the lexicographical order: Ssi first and Isi later; a sequence of
increasing k, i.e., I00; S01, I10, I01; . . . ; Skc−1,1, . . . , I0kc . Here, vari-
ables Sk0, k ≥ 0, are not included because Sk0 does not appear at any

equation except that of Ṡk0. Then, matrix F can be written as

F =
β

∑kc
k=1 kNk











u0

u1

...
ukc











[

vT
0 , vT

1 , . . . , vT
kc

]

, (A4)

where uk, k = 1, . . . , kc, are the (2k + 1) × 1 vectors with kNk

in the first entry and zero elsewhere, vk, k = 1, . . . , kc, are the
(2k + 1) × 1 vectors with (k − 1), 2(k − 2), . . . , s(k − s), . . . ,
(k − 1) in the first (k − 1) entries and zero elsewhere, and u0 = v0

= 0. Matrix V is block upper triangular, where except diagonal
blocks Vii, i = 0, . . . , kc, each lower triangular, and superdiagonal
blocks Vi,i+1, i = 0, . . . , kc − 1, all other blocks are zero matrices.
Notice also that all the entries of V are nonpositive except posi-
tive diagonal ones. Based on these results, it can be easily verified
that matrix F is non-negative and matrix V is a non-singular M-
matrix.29 By Theorem 2 in Ref. 17, for matrices F and V satisfying
the foregoing conditions, one thus has

s(F − V) = 0 ⇔ ρ(FV
−1) = 1,

where s(·) and ρ(·) denote the spectral abscissa and spectral radius
of a matrix, respectively, and V

−1 represents the inverse matrix of V.
So, the problem is now translated into seeking ρ(FV

−1). Note that
all the entries in the first column of Vi,i+1, i = 0, . . . , kc − 1, are zero
and the first (k − 1) entries in the first column of Vii, i = 0, . . . , kc,
are zero except the first positive entry.

Finally, the disease threshold condition is determined by a
parameter

R0 = ρ(FV
−1) =

β

β + γ + q

∑kc
k=1 k(k − 1)p′

k
∑kc

k=1 kp′
k

.

On the other hand, according to Refs. 6 and 14, for
the case of σc = 1, we further know 〈k′〉 = 〈k〉c(1 − φ) and
〈k′2〉 = 〈k2〉c(1 − φ)2 + 〈k〉cφ(1 − φ), where 〈k〉c and 〈k2〉c are the
first and second moments of the original degree distribution pk

with the new cut-off kc − 1, while 〈k′〉 and 〈k′2〉 are the first
and second moments of the new degree distribution p′

k. That is,

〈k〉c =
∑kc−1

k=kmin
kpk and 〈k′〉 =

∑kc−1
k=0 kp′

k. Thus, we further have

R0 =
β

β + γ + q

〈k2〉c − 〈k〉c

〈k〉c

(1 − φ).

In particular, if we do not consider two kinds of immunization
strategies, the above result reduces to a well-known one, i.e., Ref. 15,

R0 = ρ(FV
−1) =

β

β + γ

∑kmax
k=kmin

k(k − 1)pk

∑kmax
k=kmin

kpk

.
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