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On Applicability of Auxiliary System Approach to Detect Generalized
Synchronization in Complex Network
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Abstract—Generalized synchronization is ubiquitous in nature.
It is well known that the auxiliary system approach has been
widely used to verify the presence of generalized synchronization.
This approach was firstly proposed in a drive-response system,
then extended to the bidirectionally coupled systems and complex
networks. However, the well-known generalized auxiliary system
method lacks a rigorous theoretical basis for its various applica-
tions. Two recent counterexamples indicate us the inapplicability
of this method. Inspired by the counterexamples, we find that it is
interesting to ask the following two fundamental questions: i) Why
is the generalized auxiliary system approach unworkable in the net-
works with bidirectional couplings? ii) Are there any essential con-
ditions for the applications of this approach? This technical note
aims at establishing a rigorous theoretical basis for the applicabil-
ity of auxiliary system approach. That is, the generalized auxiliary
system approach is effective only if there does not exist any path
from nodes to their driving neighbors (who drive these nodes) in a
network. Several representative examples are also given to validate
our theoretical results.

Index Terms—Auxiliary system approach, complex networks,
generalized synchronization.

I. INTRODUCTION

Synchronization is a specific kind of collective behaviors in nature.
Historically, the research of synchronization can track back to the
Huygens pendulum clocks in the 17th century. Among various kinds
of synchronization in complex networks, the identical synchronization
(IS) has been extensively investigated, in which the differences among
their states converge to zero as time approaches infinity [1]–[10].

The generalized synchronization (GS) is another kind of typical
synchronization, where there exists a functional relationship among
interacting nodes [11]–[21], [25]. GS was first investigated between
two unidirectionally coupled systems in 1995 by Rulkov et al., who
presented a mutual false nearest neighbors method to determine the
presence of the functional relation between the states of systems [13].
Compared to the numerical method, later in 1996, Ref. [14] proposed
a mathematical approach to detect the occurrence of GS. At the same
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time, Ref. [15] illustrated the theoretical basis behind the approach.
This effective and simple mathematical approach, which is called aux-
iliary system method thereafter, is quite prevalent to detect the presence
of functional relation when GS is discussed. In 2002, Ref. [16] ex-
tended the auxiliary system method to bidirectionally coupled systems
and complex networks by introducing auxiliary node system for each
original node. Later on, the technique has been extensively applied
to determine the occurrence of GS in bidirectional complex networks
[17]–[20].

Without rigorous certification, however, the extended auxiliary
system method has been widely used. Very recently, Ref. [21] gives
counterexamples to verify the inapplicability of this method in bidi-
rectionally coupled systems and complex networks. These discover-
ies raise intriguing questions: Why is the auxiliary system approach
unworkable in networks with bidirectional couplings? Are there any
conditions for this technique in applications? Motivated by the ques-
tions, we explain the in-depth reason of this inapplicability in general
complex networks from a theoretical angle. We conclude that the gen-
eralized auxiliary system approach is effective only when there is no
path from nodes to their driving neighbors (who drive the nodes) in the
network. In this technical note, we introduce a definition of GS of a
complex network; present a condition under which the auxiliary system
method can be applied to complex networks; give some remarks and
two examples to illustrate our presented results.

The rest of this technical note is organized as follows. Some prelimi-
naries and the network model are introduced in Section II. In Section III,
the main results and some helpful remarks are presented. Generalized
auxiliary system method is recalled in Section IV. Examples and fur-
ther illustration are provided in Section V. Finally, concluding remarks
are given in Section VI.

II. PRELIMINARIES

A. Mathematical Preliminaries

To begin with, some necessary definitions are listed below.
Definition 1 [22]: Denote V (G) and �E(G) as the vertex set and

the directed edge set of a directed graph G, respectively. Let ξ
and ζ be two not necessarily different vertices of G. By a ξ ζ
walk we mean an alternating sequence of vertices and edges, say
ξ1 , η1 , ξ2 , η2 , . . . , ξl , ηl , ξl+1 , such that ξ1 = ξ, ξl+1 = ζ and ηi =
ξi ξi+1 ∈ �E(G), 1 ≤ i ≤ l. A walk is called a path or ξ ζ path if
all its vertices are distinct. The distance between two vertices ξ and ζ ,
denoted by d(ξ, ζ), is the minimum length of a ξ ζ path.

Definition 2 [23]: Let f be a smooth vector field on a manifold M .
For each p ∈ M , there exists an open interval—depending on p and
written Up —of R such that 0 ∈ Up and a smooth mapping

ϕ : W → M

defined on the subset W of R × M

W = {(t, p) ∈ R × M : t ∈ Up}
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with the following properties
1) ϕ(0, p) = p,
2) for each p the mapping σp : Up → M defined by

σp (t) = ϕ(t, p)

is an integral curve of f ,
3) if μ : (t1 , t2 ) → M is another integral curve of f satisfying the

condition μ(0) = p, then (t1 , t2 ) ⊂ Up and the restriction of σp to
(t1 , t2 ) coincides with μ,

4) ϕ(s, ϕ(t, p)) = ϕ(s + t, p) whenever both sides are defined,
5) whenever ϕ(t, p) is defined, there exists an open neighborhood U

of p such that the mapping ϕt : U → M defined by

ϕt (q) = ϕ(t, q)

is a diffeomorphism onto its image, and

(ϕ−1 )t = ϕ−t .

The mapping ϕt is called the flow of f .
Properties 1)–3) tell us that σp is a unique integral curve of f passing

through p at t = 0. Properties 4) and 5) say that the family of mappings
{ϕt} is group of local diffeomorphisms with parameter t, under the
operation of composition. If the differential equation ẋ = f (x) posses
a unique solution x(t) for a given initial value x(t0 ), then all possible
motions are flows [24].

B. The Network Model and Relevant Concepts

Generally, a complex network model is described by

ẋi = fi (xi ) −
∑

j ∈Ni

cij Hi (xi − xj ), 1 ≤ i ≤ N (1)

where Ni = {j | (j, i) ∈ �E(G)} is the set of node i’s driving neigh-
borhood, the state vector of the i-th node xi ∈ Rn is a smooth
curve, fi : Rn → Rn is a smooth nonlinear vector field, individual
node dynamics is ẋi = fi (xi ), Hi ∈ Rn ×n is the inner-coupling
matrix of node i. The outer-coupling weight configuration matrix is
C = (cij ) ∈ RN ×N , being cij > 0 the weight from node j ∈ Ni

to node i and cij = 0 otherwise.
To investigate GS of network (1), a definition of generalized syn-

chronization of complex networks is introduced.
Definition 3: If there exists a node i (that is not a 0 in-degree

node) in network (1), a subset B = B1 × B2 · · · × BN ⊂ Rn ×
Rn · · · × Rn , a smooth mapping Φ and a manifold

M = {(x1 ,x2 , . . . ,xN ) |xi

= Φ(x1 , . . . ,xi−1 ,xi+1 , . . . ,xN )},M ⊂ B,

such that trajectory of network (1) with any initial states approaches
M when t tends to +∞, network (1) is said to realize generalized
synchronization (GS), M is called GS manifold.
Definition 3 reveals that M is an attracting invariant manifold. On the
GS manifold M, the existence of the smooth mapping Φ guarantees
that one can predict xi by using x1 , . . . ,xi−1 ,xi+1 , . . . ,xN . It is noted
that the definition of GS of a network proposed in [25] is an implicit
form, which is also a broadened definition. To investigate the theory of
auxiliary system method, the explicit form is taken into account.

Definition 4: Let x1 (t) and x2 (t) be two solutions of the system
ẋ = f (x, t). If there exists a region Bx ⊆ Dx , where Dx is the
domain of x, such that for any initial value x1 (t0 ),x2 (t0 ) ∈ Bx we
have lim

t →+∞
[x1 (t) − x2 (t) ] = 0, the system ẋ = f (x, t) is said to

be asymptotically stable.

From Definition 4, the i-th node’s state

ẋi = fi (xi ) −
∑

j ∈Ni

cij Hi (xi − xj ) (2)

is asymptotically stable iff ∀x1
i (t0 ),x2

i (t0 ) ∈ Bi , one has

lim
t →+∞

‖xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x1
i (t0 ),xi+1 (t0 ),

. . . ,xN (t0 )) − xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),

x2
i (t0 ),xi+1 (t0 ), . . . ,xN (t0 )) ‖ = 0

where ‖ · ‖ is any norm of a vector.

III. MAIN RESULTS

Next, we will discuss why the auxiliary system approach is inappli-
cable to bidirectionally coupled networks. Although [21] gives coun-
terexamples in terms of delay synchronization (an IS counterexample
is exhibited in Section V), rigorous justification remains blank. The
following theorem gives a theoretical answer to this question in the
sense of Definition 3.

Theorem 1: Assume that there exists a node i satisfying d(i, ik ) =
∞ (∀ik ∈ Ni ). Network (1) achieves GS iff system (2) is asymptoti-
cally stable.

Proof “⇒”: If network (1) achieves GS, there exists a node i and
a smooth mapping Φ satisfying

∀xi (t0 ) ∈ Bi , ∀ ε > 0

∃T > 0, s.t. t ≥ T , and

‖xi (t,x1 (t0 ), . . . ,xN (t0 ))

− Φ(x1 , . . . ,xi−1 ,xi+1 , . . . ,xN )‖

<
ε

2
.

Then, for ∀x1
i (t0 ),x2

i (t0 ) ∈ Bi , one has

‖xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x1
i (t0 ),xi+1 (t0 ), . . . ,

xN (t0 )) − xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x2
i (t0 ),

xi+1 (t0 ), . . . ,xN (t0 )) ‖
≤ ‖xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x1

i (t0 ),xi+1 (t0 ), . . . ,

xN (t0 )) − Φ (x1 , . . . ,xi−1 ,xi+1 , . . . ,xN ) ‖
+ ‖Φ (x1 , . . . ,xi−1 ,xi+1 , . . . ,xN ) − xi (t,x1 (t0 ),

. . . ,xi−1 (t0 ),x2
i (t0 ),xi+1 (t0 ), . . . ,xN (t0 ))‖

<
ε

2
+

ε

2
= ε .

Namely, ∀x1
i (t0 ),x2

i (t0 ) ∈ Bi , one obtains

lim
t →+∞

‖xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x1
i (t0 ),xi+1 (t0 ),

. . . ,xN (t0 )) − xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x2
i (t0 ),

xi+1 (t0 ), . . . ,xN (t0 ))‖
= 0 .

“⇐”: The properties of flow are applied in this part. Suppose that sys-
tem (2) is asymptotically stable. Then∀x1

i (t0 ),x2
i (t0 ) ∈ Bi ,∀ ε > 0,
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∃T > 0, s.t. t ≥ T , and

‖xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x1
i (t0 ),xi+1 (t0 ), . . . ,

xN (t0 )) − xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x2
i (t0 ),

xi+1 (t0 ), . . . ,xN (t0 )) ‖
< ε .

Assume that the number of elements in Ni is m. Let Φt
Ni

be the
flow of

ẋik
= fik

(xik
) −

∑

j∈Ni k

cik ,j Hik
(xik

− xj ), 1 ≤ k ≤ m (3)

where t ∈ R, ik ∈ Ni , Φt
i the flow of (2), Φt = (Φt

Ni
, Φt

i ) the flow
of the inter-correlated systems (3) and (2). Then the trajectory starting
at (Φ−t

Ni
((xi1 (T ), . . . ,xim (T ))),xi (t0 )) passes

(
(xi1 (T ), . . . ,xim (T )), Φt

i (Φ
−t
Ni

((xi1 (T ),

. . . ,xim (T ))),xi (t0 ))) .

Since system (2) is asymptotically stable, for the above-mentioned ε
and ∀x1

i (t0 ),x2
i (t0 ) ∈ Bi ,

one gets

‖Φt
i (Φ

−t
Ni

((xi1 (T ), . . . ,xim (T ))),x1
i (t0 ))

− Φt
i (Φ

−t
Ni

((xi1 (T ), . . . ,xim (T ))),x2
i (t0 )) ‖

< ε .

For the arbitrariness of x1
i (t0 ) and x2

i (t0 ), the flow of (2) depends
only on

Φ−t
Ni

((xi1 (T ), . . . ,xim (T ))) .

From d(i, ik ) = ∞ (∀ik ∈ Ni ), we claim that

Φ−t
Ni

((xi1 (T ), . . . ,xim (T )))

is independent on the initial state xi (t0 ). Thus the flow of (2) is not
tied to the initial state xi (t0 ). Then we can define the transform for
GS as

Φ (x1 (T ), . . . ,xi−1 (T ),xi+1 (T ), . . . ,xN (T ))

� Φ̃ (x1 (T ), . . . ,xi−1 (T ),xi (T ),xi+1 (T ), . . . ,xN (T ))

= lim
t →+∞

Φt
i (Φ

−t
Ni

((xi1 (T ), . . . ,xim (T ))),xi (t0 ))

= xi (T ) .

Therefore, for the above-mentioned ε and T , when t ≥ T

‖xi (t) − Φ(x1 (t), . . . ,xi−1 (t),xi+1 (t), . . . ,xN (t))‖ < ε.

In other words, network (1) reaches GS. �
Remark 1: For one thing, GS of network (1) requires an attracting

GS manifold M in which

xi = Φ(x1 , . . . ,xi−1 ,xi+1 , . . . ,xN )

holds for any initial state

(x1 (t0 ),x2 (t0 ), . . . ,xN (t0 )) ∈ B .

That is to say, the trajectory

Φt
i (Φ

−t
Ni

((xi1 (T ), . . . ,xim (T ))),xi (t0 ))

is independent on xi (t0 ). For another, system (2) is asymptotically
stable iff the aforementioned trajectory

Φt
i (Φ

−t
Ni

((xi1 (T ), . . . ,xim (T ))),xi (t0 ))

depends only on

Φ−t
Ni

((xi1 (T ), . . . ,xim (T ))) ,

which is not necessarily independent on xi (t0 ). Therefore, the GS of
network (1) and the asymptotic stability of system (2) are not the same
thing. The latter generally involves the possibility that the trajectory

Φt
i (Φ

−t
Ni

((xi1 (T ), . . . ,xim (T ))),xi (t0 ))

depends on xi (t0 ), unless

Φ−t
Ni

((xi1 (T ), . . . ,xim (T )))

is independent on xi (t0 ). The independence of

Φ−t
Ni

((xi1 (T ), . . . ,xim (T )))

on xi (t0 ) is equivalent to

d(i, ik ) = ∞ (∀ik ∈ Ni ) .

More details will be given in Remark 2. As a result, GS of network
(1) implies asymptotic stability of system (2); asymptotic stability of
system (2), together with d(i, ik ) = ∞ (∀ik ∈ Ni ), leads to GS of
network (1).

Remark 2: Recall Remark 1, network (1) achieves GS only when
Φ−t

Ni
((xi1 (T ), . . . ,xim (T ))) is independent on the initial value of xi .

In fact, d(i, ik ) < ∞ means a path existing from node i to ik , and
then the solution of system (3) depends on system (2), accordingly
Φ−t

Ni
((xi1 (T ), . . . ,xim (T ))) depends on the initial value of xi . There-

fore, asymptotic stability of system (2) does not bring about GS of the
network.

Remark 3: For bidirectionally coupled network, d(i, ik )=1(∀ik ∈
Ni ) is clear. According to Remark 2, even if system (2) is asymptoti-
cally stable, GS of network (1) is not necessarily realized.

Remark 4: If there exists a node i in network (1) such that
1) d(i, ik ) = ∞ (∀ ik ∈ Ni ),
2) system (2) is asymptotically stable (which can be verified by the

auxiliary system approach in Section IV),
then network (1) reaches GS in the sense of Definition 3.
To better understand Theorem 1, take directed acyclic networks that

satisfy d(i, ik ) = ∞ (∀ik ∈ Ni ) for example. It is a kind of ubiquitous
networks serving as a platform for data structure, systems engineering,
etc. The graph corresponding to the directed acyclic network is the
so-called DAG (directed acyclic graph). For brevity, we call this kind
of networks as DAG networks. Without loss of generality, assume
that the edges of a DAG network are directed from the nodes with
smaller ordinal numbers to those with larger ones. Accordingly the
outer-coupling weight configuration matrix C is a lower triangular
matrix. Then the following theorem can be deduced from Theorem 1.

Theorem 1’: A DAG network reaches GS, iff there exists a node i
such that

ẋi = fi (xi ) −
∑

j ∈Ni

cij Hi (xi − xj ) (4)

is asymptotically stable, i.e., ∀x1
i (t0 ),x2

i (t0 ) ∈ Bi

lim
t →∞

‖xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x1
i (t0 ))

− xi (t,x1 (t0 ), . . . ,xi−1 (t0 ),x2
i (t0 )) ‖

= 0 .
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Remark 5: In a DAG network, the unidirectivity of information
transmission leads to the driving neighbors’ independent evolutions
on a node. Then Φ−t

Ni
((xi1 (T ), . . . ,xim (T ))) is independent on the

initial value of xi for all i ∈ N . Thus asymptotic stability of system
(2) results in GS of the network, and vice versa.

IV. THE AUXILIARY SYSTEM APPROACH

According to Theorem 1, if node i in network (1) satisfies d(i, ik ) =
∞ (∀ik ∈ Ni ), network (1) achieves GS iff system (2) is asymptot-
ically stable. Arbitrariness of initial value of system (2) allows us to
construct an auxiliary system (5), which is identical to system (2) (but
evolve with different initial values lying in the same basin of attraction
if chaos is considered), to identify GS of the network. The auxiliary
system for the ith node is described by [16]–[20]

˙̂xi = fi (x̂i ) −
∑

j ∈Ni

cij Hi (x̂i − xj ). (5)

If x̂i identically synchronizes with xi , GS of network (1) is assumed to
occur. As soon as all nodes show identical behavior with their auxiliary
counterparts, network (1) is said to achieve GS.

For bidirectionally coupled network,

d(i, ik ) = 1 (∀ ik ∈ Ni )

leads to the dependence of

Φ−t
Ni

((xi1 (T ), . . . ,xim (T )))

on the initial condition of xi . Recalling Remark 1 again, even if x̂i and
xi demonstrates identical behavior, we claim the asymptotic stability
of system (2) rather than GS of network (1) in the sense of Definition 3.
This is consistent with the numerical results in [21].

V. EXAMPLES

A. Bidirectionally Coupled Network

Example 1: Assume that two nodes are bidirectionally coupled,
where each node dynamics is an ordinary differential equation with
one-order

{
ẋ1 (t) = f (x1 (t)) − c[x1 (t) − x2 (t)]

ẋ2 (t) = f (x2 (t)) − c[x2 (t) − x1 (t)]
(6)

where f (x) = x. By applying auxiliary system method in the bidirec-
tional network, we introduce the two auxiliary nodes:

{ ˙̂x1 (t) = x̂1 (t) − c[x̂1 (t) − x2 (t)]
˙̂x2 (t) = x̂2 (t) − c[x̂2 (t) − x1 (t)].

Denoting the differences d1 � x̂1 − x1 , d2 � x̂2 − x2 , we have the
error systems:

ḋ1 (t) = (1 − c)d1 (t) (7)

ḋ2 (t) = (1 − c)d2 (t). (8)

Lyapunov Exponents (LEs) [26], [27] of the above error systems are
shown in Fig. 1(a). On the basis of the stability theory [26], [27],
nonnegetive LE cannot bring the stability of the zero solutions of
system. Thus if the coupling strength c ≤ 1, the zero solutions of
systems (7) and (8) won’t be stable, and accordingly each node won’t
synchronize with their auxiliary partner. According to the results in
Ref. [16]–[20], GS is unachievable when c ≤ 1. However, when c =
0.6, 0.8 and 1, the two nodes in network (6) identically synchronize

Fig. 1. (a) Lyapunov exponents of error systems (7) and (8).
(b) Difference between node 1 and node 2 in network (6).

as shown in Fig. 1(b). The nodes in network (6) attain GS since IS is
undoubtedly a special case of GS.

Theoretically, introducing d̃ � x2 − x1 , we have ˙̃
d = (1 − 2c) d̃.

Obviously, if c > 1
2 , x2 and x1 in network (6) identically synchro-

nize to each other. Especially when c = 1, two special solutions of
system (6)

[
x1

x2

]
=

[
et

et

]

and
[

x1

x2

]
=

[
e−t

−e−t

]

are linearly independent. Thus, the general solutions of the two-node
system are

x1 = θ1e
t + θ2e

−t

and

x2 = θ1e
t − θ2e

−t ,

where θ1 and θ2 are determined by the initial values. Say, given x1 (0) =
0, x2 (0) = 1, the special solution is

[
x1

x2

]
=

⎡

⎣
1
2 et − 1

2 e−t

1
2 et + 1

2 e−t

⎤

⎦ .

Clearly, one has

lim
t →+∞

[ x1 (t) − x2 (t) ] = 0 .
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Thus nodes in the bidirectionally coupled network (6) reach GS (ac-
tually IS) by rigorous justification. This conclusion, however, con-
tradicts with the results obtained by the extended auxiliary system
method. Recall the method again, the error systems are identical to
ḋi (t) = 0 (i = 1, 2), then the differences between nodes and their aux-
iliary partners remain constants. Given distinct initial values of a node
and its auxiliary counterpart, the difference remains and then GS fails.

B. DAG Network

Example 2: For further illustration, a DAG network coupled with
100 nodes is taken as an example, in which the in-degrees obey a
power-law distribution. Assume that the network model is depicted by

ẋi = fi (xi ) − c
∑

j ∈Ni

aij (xi − xj ), 1 ≤ i ≤ N (9)

where the adjacency matrix is A = (aij ) ∈ RN ×N . If there is a link
from node j ∈ Ni to node i then aij = 1, otherwise aij = 0. We
choose Chua circuit as the individual dynamics

⎧
⎪⎨

⎪⎩

ẋ = −α(x − y + g(x))

ẏ = x − y + z

ż = −βy

where g(x) = bx + 0.5(a − b)[|x + 1| − |x − 1|], the parameters are
(α, βi , a, b) = (9, 100/7 + 0.01 i,−8/7,−5/7) (1 ≤ i ≤ 100).

Consider the auxiliary system of node i as

˙̂xi = fi (x̂i ) − c
∑

j ∈Ni

aij (x̂i − xj ). 1 ≤ i ≤ N (10)

Denoting di � x̂i − xi (1 ≤ i ≤ N ) as the differences, we plot the
difference norms of the ith node vs. time t in Fig. 2. Nodes in Fig. 2(a)
are in their original sequence, and nodes in Fig. 2(b) in the descending
order by in-degrees. Fig. 2(b) shows that, on the whole, higher in-degree
nodes reach GS first and lower ones reach successively. It is seen from
Fig. 2(a) that the original order of nodes has no serious influence on the
speed of GS. In a word, in-degree outweighs the direction of paths in
a DAG network when it comes to GS. The reason lies in the following
fact. To investigate GS of network (9), subtracting it from (10), one has
the error systems

ḋi = fi (x̂i ) − fi (xi ) − c
∑

j ∈Ni

aij di

= fi (x̂i ) − fi (xi ) − c kin
i di , 1 ≤ i ≤ N (11)

where kin
i is the in-degree of node i. GS of network (9) is achieved iff

the zero solution of system (11) is asymptotically stable. Choosing a
Lyapunov candidate as Li = 1

2 d�
i di , one has

L̇i = d�
i (fi (x̂i ) − fi (xi ) ) − c kin

i d�
i di . (12)

Based on the Lyapunov’s second method for stability [26], the zero
solution of system (11) is asymptotically stable if L belongs to the
set {L | L̇i ≤ 0; L̇i = 0 iff ‖di‖ = 0}. Because higher in-degree has
priority to stabilizing the the zero solution according to (12), the speed
of GS in the DAG network grows in proportion to the node in-degree
roughly [28], [29]. The reaching time is inversely proportional to the
node in-degree “roughly” rather than “exactly” due to that besides kin

i ,
individual dynamics xi has influence on the speed of GS. While xi

is affected by the function fi (·), coupling strength c and the entire
network topology A.

Fig. 2. Difference norms ‖di ‖2 = ‖x̂i − xi‖2 of the ith node (1 ≤
i ≤ 100) versus time t in a DAG network coupled with 100 Chua cir-
cuits. (a) Nodes in the original sequence. (b) Nodes in their descending
in-degree order.

VI. CONCLUSION

In summary, we have investigated the criterion on which the auxil-
iary system method can be applied to complex networks [30], [31]. By
rigorous theoretical certification, we have concluded that the method
is effective to complex systems only when there is no path from nodes
to their driving neighbors. According to our main results, the auxil-
iary system approach should not be applied to bidirectionally coupled
systems. In addition, we have found that, roughly speaking, higher
in-degree nodes reach GS first and lower ones reach successively in a
DAG network. Actually it may be a universal phenomenon in general
complex networks. Although our results are far from systematically
uncovering the essence of GS in systems with interacting units, it
should be fundamental and treated as a first step to exhaustively ex-
plore GS behavior of complex networks. Future work includes studying
generalized synchronizability of complex networks, discussing testing
methods for GS in bidirectionally coupled networks, and so on.
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