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Estimating the Region of Attraction on Controlled Complex Networks
With Time-Varying Delay

Shuaibing Zhu , Member, IEEE, Jin Zhou , and Jun-An Lu

Abstract—The importance of estimating the region of attraction
(ROA) on complex networks has drawn attention very recently.
However, challenging problems arise when applying the existing
theory to networks with delay. In this article, we estimate the
ROA on controlled complex networks with time-varying delay. A
delay-independent ROA estimation method is derived at first. This
method can deal with general delay and is convenient to use due to
its independence of the delay. Accordingly, it may cause conserva-
tiveness. To further reduce the conservativeness, delay-dependent
ROA estimation is established for networks with small delay by
developing a new technique of dealing with the delay. Numerical
simulations are provided to verify the theoretical results.

Index Terms—Complex network, equilibrium point, region of at-
traction (ROA), synchronization, time-varying delay.

I. INTRODUCTION

Since the pioneering work of Watts and Strogatz [1], complex
networks have drawn much attention in the past two decades as they
can well describe the real world. A body of work [2]–[9] on complex
networks has been reported, including synchronization, statistical me-
chanics, controllability, and topology identification.

A complex network realizes synchronization if the state difference
among the nodes vanishes as time approaches to infinity. In reality, many
networks cannot realize synchronization by themselves, so external
control is generally added to drive all the nodes to a desired state, which
could be an equilibrium, a periodic orbit, or a chaotic orbit. When the
desired state is an equilibrium of the node system, the synchronized
state is an equilibrium of the entire network.

As a fundamental problem of network science, the synchronization
of networks has been extensively investigated. Global synchronization
criteria [10]–[14] rely heavily on the global Lipschitz condition (GLC),
which requires that the nonlinear node system should show weak
nonlinearity and behave like linear systems. It should be highlighted
that many nonlinear systems, such as ẋ = −x+ x2, do not satisfy
the GLC. In the literature, local synchronization criteria [15]–[17]
without the GLC are relatively rare, and they neglect the importance
of the initial conditions in determining whether a network can realize
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synchronization. Focusing on synchronization toward an equilibrium, it
is meaningful to estimate the region of attraction (ROA), which is the set
of the initial conditions that admit network synchronization towards the
equilibrium [18].

In 2019, Zhu et al. [18] investigated the ROA estimation problem for
complex networks without delay. During the transmission of signals,
the time delay is hardly avoidable due to the finite transmission speed.
It is noteworthy that the existing results on ROA estimation cannot
address general time-varying delay. In contrast to the popularity of the
ROA estimation of linear systems with various constraints [19]–[21]
and nonlinear systems without delay [22]–[24], the ROA estimation
of nonlinear systems with delay [25]–[28] receives much less atten-
tion. In [25]–[27], the ROA estimation of nonlinear systems with
constant delay is established by constructing complicated Lyapunov–
Krasovskii functionals. The Lyapunov–Krasovskii approach is also
used in [28] to deal with time-varying delay. However, the condi-
tions therein are quite restrictive, since the delay τ(t) should sat-
isfy τ(t) ∈ [h, 2h] and τ̇(t) < 1, where h > 0. In engineering, the
analytical expression of the delay is hardly precisely known, not to
mention the differentiability. To this end, it is of practical importance
to deal with the ROA estimation problem of networks with general
delay.

Motivated by the above discussions, this article investigates the ROA
estimation problem for controlled complex networks with time-varying
delay. The main contributions are as follows.
1) By adopting the Razumikhin technique, a differential inequality is

established (in Lemma 2) to estimate the ROA of general nonlinear
systems with time-varying delay.

2) For networks with general delay, delay-independent ROA esti-
mation is derived in virtue of the differential inequality that we
establish. For networks with small delay, delay-dependent ROA
estimation is established by developing a new technique of deal-
ing with the delay, which is less conservative than the presented
delay-independent estimation.

3) To our best knowledge, it is the first time that nondifferentiable
time-varying delay has been addressed for the ROA estimation
of nonlinear systems. Compared to the existing results (such as
[25]–[28]), our results are much easier to use for estimating the
ROA.

The rest of this article is organized as follows. Section II presents
some preliminaries. Section III presents the main results on estimating
the ROA of controlled complex networks with time-varying delay.
Section IV provides numerical simulations to verify the theoretical
results. Section V gives the conclusion.

II. PRELIMINARIES

A. Notations and Problem Formulation

First, some notations are introduced. Rn and Rn×m denote the
n-dimensional Euclidean space and the set of all the (n×m)-
dimensional real matrices, respectively; R+ is the set of nonnegative

0018-9286 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on November 07,2023 at 08:47:34 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4801-8969
https://orcid.org/0000-0002-8607-8268
https://orcid.org/0000-0001-5109-739X
mailto:zhushuaibing@whu.edu.cn
mailto:zhushuaibing@whu.edu.cn
mailto:jalu@whu.edu.cn
mailto:jzhou@whu.edu.cn
https://doi.org/10.1109/TAC.2022.3142132


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 1, JANUARY 2023 517

real numbers; the superscript T represents the transpose of a vector
or a matrix; ‖ · ‖ denotes the two-norm of a vector or a matrix;
λmax(·) denotes the maximum eigenvalue of a symmetric matrix; In
is the identity matrix of dimension n. For a square matrix A, define
As = (A+AT )/2. For a continuous function ψ, define ‖ψ‖t,h =
maxθ∈[t−h,t] ‖ψ(θ)‖, where h is a positive constant.

Consider a controlled complex network consisting of N identical
systems with time-varying delay⎧⎨
⎩ ẋi(t) = f(xi(t)) + c

N∑
j=1

aijg(xj(t− τ(t))) + ui(t), t ≥ 0

xi(t) = ϕi(t), t ∈ [−τmax, 0]

(1)

where 1 ≤ i ≤ N, xi ∈ Rn is the state vector of the ith node, f :
Rn → Rn and g : Rn → Rn are continuously differentiable nonlinear
functions, c > 0 denotes the coupling strength,A = (aij)N×N denotes
the weighted outer coupling matrix, τ(t) is the time-varying delay
that satisfies 0 ≤ τ(t) ≤ τmax, τmax is a positive constant, ui(t) is the
control input to the ith node, andϕi : [−τmax, 0] → Rn is a continuous
function that denotes the initial condition of the ith node. If there is an
edge from node i to node j (j �= i), then aij > 0; otherwise, aij = 0;
the diagonal elements of A are defined by aii = −∑N

j=1,j �=i aij .
Remark 1: In network (1), the functions f and g are required to be

continuously differentiable, implying that they are locally Lipschitz.
Therefore, the existence and uniqueness of the solution of network (1)
can be guaranteed (see [29, Th. 2.3] for more details).

Let s be an equilibrium point of the isolated node system ẋ(t) =
f(x(t)). Since f(s) + c

∑N
j=1 aijg(s) = f(s) = 0, the synchronized

state

x1 = x2 = · · · = xN = s

is an equilibrium point of the entire network (1) if ui = 0. Let the
controllers be ui(t) = −dei(t), where d > 0 is the control gain, and
ei(t) = xi(t)− s denotes the synchronization error of the ith node.
Denote e(t) = [eT1 (t), . . . , e

T
N (t)]T and

S = [sT , . . . , sT ]T ∈ RnN . (2)

Since [xT1 , . . . , x
T
N ]T converges to S if and only if x1, . . . , xN

synchronizes to s, the equilibrium S of network (1) is globally (locally)
asymptotically stable if and only if network (1) realizes global (local)
synchronization toward S.

The objective of this article is to estimate the ROA of the equilibrium
S. The ROA includes all the initial conditions starting from which
network (1) can realize synchronization toward S. The exact ROA of
S is denoted as

RA =

{
ϕ

∣∣∣∣ lim
t→+∞

e(t;ϕ) = 0

}

where the function ϕ = [ϕT
1 , . . . , ϕ

T
N ]T is the initial condition of

network (1). In this article, we aim to find an open subset of RA in
the following form:

Rest(r) = {ϕ ∈ RA| ‖ϕ− S‖0,τmax < r} (3)

which means that network (1) can realize synchronization if the bound
of the initial synchronization error is less than r. The radius r of the
ball-like set Rest(r) is expected to be as large as possible.

Let F1 = Df(s) and F2 = Dg(s) be the Jacobians of f and g
evaluated at s, respectively. Then

ėi(t) = f(xi(t))− f(s)− dei(t)

+ c
N∑

j=1

aij [g(xj(t− τ(t)))− g(s)]

= (F1 − dIn)ei(t) + c
N∑

j=1

aijF2ej(t− τ(t))

+R
(1)
i (t) + c

N∑
j=1

aijR
(2)
j (t− τ(t)), 1 ≤ i ≤ N (4)

where

lR
(1)
i (t) = f(xi(t))− f(s)− F1ei(t)

R
(2)
i (t) = g(xi(t))− g(s)− F2ei(t). (5)

It follows that ‖R(k)
i (t)‖ = o(‖ei(t)‖). Define

α1(x) =

{
‖f(s+x)−f(s)−F1x‖

‖x‖ , x ∈ Rn\{0}
0, x = 0

α2(x) =

{
‖g(s+x)−g(s)−F2x‖

‖x‖ , x ∈ Rn\{0}
0, x = 0.

Then, there exist nondecreasing and continuous functions φk :
R+ → R+ satisfying φk(0) = 0 and

αk(x) ≤ φk(r), if ‖x‖ ≤ r (6)

which further gives

‖R(k)
i (t)‖ ≤ φk(‖ei(t)‖)‖ei(t)‖, 1 ≤ k ≤ 2. (7)

Remark 2: Since α1 and α2 are continuous at x = 0, we can simply
take φk(r) = max{αk(x)| ‖x‖ ≤ r}, which is nondecreasing and
continuous. Sometimes, it is difficult to solve the exact φk. In this case,
it is better to estimate a φk that is slightly bigger than the exact one.

B. Mathematical Preliminaries

Lemma 1 (see[30]): Let x, y ∈ Rm be constant vectors, where m
is a positive integer. Then, 2xT y ≤ xTPx+ yTP−1y, where P ∈
Rm×m is any positive definite matrix.

Lemma 2: Suppose that h1 : R+ → R+ is a nonincreasing contin-
uous function and h2 : R+ → R+ is a nondecreasing continuous func-
tion. Let v(t) be a nonnegative continuous function on [t0 − τ0,+∞)
such that

v̇(t) ≤ −h1(v(t))v(t) + h2(‖v‖t,τ0)‖v‖t,τ0 , t ≥ t0

where τ0 is a positive constant. Ifh1(0) > h2(0) andM := ‖v‖t0,τ0 <
r0, then

v(t) ≤M exp(−σ(t− t0)), t ≥ t0 (8)

where r0 = sup{r| h1(r) > h2(r)} and σ is the unique positive solu-
tion of the equation σ = h1(M)− h2(M) exp(στ0).

Proof: According to the definition of r0, one has r0 > 0 and
h1(M) > h2(M). Define ρ(ς) = ς + h2(M) exp(ςτ0)− h1(M).
Since ρ is continuous and increasing, ρ(0) = h2(M)− h1(M) < 0,
and ρ(+∞) = +∞, it can be concluded that σ is unique and positive.
In addition, one can select a constant ε > 0 such that α > β, where
α = h1(M + ε) and β = h2(M + ε). Define ε1 = ε(α− β) > 0.

Consider the following comparison system:⎧⎨
⎩
ẇ(t) = ε1 − h1(w(t))w(t)

+ h2(‖w‖t,τ0)‖w‖t,τ0 , t ≥ t0
w(t) = v(t), t ≤ t0.

(9)

We shall prove that

w(t) < M exp(−δ(t− t0)) + ε := h(t), t ≥ t0 − τ0 (10)
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where δ is the unique positive solution of the equation

δ = α− β exp(δτ0). (11)

When t ∈ [t0 − τ0, t0], one has w(t) ≤M < h(t). If (10) is not
true, then

t1 = inf{t > t0| w(t) ≥ h(t)} > t0

is finite. Then, one has w(t1) = h(t1) and

w(t) < h(t), t ∈ [t0 − τ0, t1).

It follows that h1(w(t)) ≥ h1(h(t)) ≥ h1(M + ε) = α for t ∈
[t0, t1). In addition, when t ∈ [t0, t1), there exists a t̂ ∈ [t0 − τ0, t1)
such that ‖w‖t,τ0 = w(t̂). If t̂ ≤ t0, w(t̂) = v(t̂) ≤M ; otherwise,
w(t̂) < h(t̂) < M + ε. It then follows that h2(‖w‖t,τ0) ≤ h2(M +
ε) = β for t ∈ [t0, t1). Then, one has

ẇ(t) ≤ ε1 − αw(t) + β‖w‖t,τ0 , t ∈ [t0, t1)

which further yields

d

dt
[w(t) exp(αt)] ≤ exp(αt)[ε1 + β‖w‖t,τ0 ], t ∈ [t0, t1). (12)

Integrating (12) from t0 to t1 gives

w(t1) exp(αt1)− w(t0) exp(αt0)

≤
∫ t1

t0

exp(αt)[β‖w‖t,τ0 + ε1]dt.

Since w(t0) ≤M and ‖w‖t,τ0 ≤ h(t− τ0) for t ∈ [t0, t1], it is
deduced that

w(t1) ≤M

(
1− β exp(δτ0)

α− δ

)
exp(−α(t1 − t0))

+
Mβ exp(δτ0)

α− δ
exp(−δ(t1 − t0))

+ ε[1− exp(−α(t1 − t0))].

It then follows from (11) that w(t1) < h(t1), which contradicts
w(t1) = h(t1). Therefore, (10) holds. According to the comparison
principle, one has

v(t) < w(t) < h(t), t > t0.

Letting ε→ 0+ leads to α→ h1(M), β → h2(M), and δ → σ
according to (11) and the definition of σ. Therefore, inequality (8)
is verified.

Remark 3: By adopting the Razumikhin technique, Lemma 2 ex-
tends the well-known Halanay inequality [31]. The Halanay inequality
has constant coefficients for v(t) and ‖v‖t,τ0 , and can well address the
global stability of delayed differential equations. Here, the coefficients
are extended to the form of functions so as to deal with the local stability
of delayed differential equations and estimate the ROA.

Lemma 3: If v(t) is a nonnegative continuous function on [t0 −
τ0,+∞) such that

v̇(t) ≤ q1v(t) + q2‖v‖t,τ0 , t ≥ t0

then,

v(t) ≤M exp[q(t− t0)], t ≥ t0.

where τ0 > 0, q = max{0, q1 + q2}, q1 ∈ R, q2 > 0, and M =
‖v‖t0,τ0 .

Proof: When q1 + q2 < 0, one has q1<0. Then, applying Lemma 2
gives v(t) ≤M ≤M exp[q(t− t0)] for t ≥ t0.

Next, it is to discuss the case of q1 + q2 ≥ 0. Let ε be any positive
constant. If

v(t) < h(t) := (M + ε) exp[q(t− t0)], t ≥ t0 (13)

does not hold, then t1 = inf{t > t0| v(t) ≥ h(t)} > t0 is finite. It
then follows that v(t1) = h(t1) and v(t) < h(t) for t ∈ [t0, t1). Since
d
dt
[v(t) exp(−q1t)] ≤ q2 exp(−q1t)‖v‖t,τ0 , it is deduced that

v(t1) exp(−q1t1)− v(t0) exp(−q1t0)

≤ q2

∫ t1

t0

exp(−q1t)‖v‖t,τ0dt ≤ q2

∫ t1

t0

exp(−q1t)h(t)dt,

which further gives

v(t1) ≤ h(t1)− [M + ε− v(t0)] exp[q1(t1 − t0)].

Since v(t0) ≤M , one has v(t1) < h(t1), a contradiction. Hence,
(13) holds. Letting ε→ 0+ completes the proof.

III. MAIN RESULTS

In this section, two kinds of ROA estimation are established for
networks with time-varying delay.

A. Delay-Independent ROA Estimation

We now establish the first kind of ROA estimation, which is named
delay-independent ROA estimation as the radius of the estimated ROA
is independent of the delay.

Theorem 1: Consider network (1). If the control gain d satisfies

d > d0 := λmax(F
s
1) + c‖A‖‖F2‖ (14)

then network (1) realizes at least local synchronization toward the
equilibrium S, and the ROA is estimated as Rest(r0) with

r0 = sup{r| φ1(r) + c‖A‖φ2(r) < d− d0} (15)

where the symbols are defined in (2), (3), (4), and (6). Particularly, the
synchronization is global if r0 = +∞.

Proof: Consider the following Lyapunov function candidate:
V (e(t)) =

∑N
i=1 e

T
i (t)ei(t),which is also denoted asV (t) for brevity.

Differentiating V along the solution of (4) gives

V̇ (t) = 2
N∑
i=1

eTi (t)(F1 − dIn)ei(t)

+ 2c

N∑
i=1

N∑
j=1

aije
T
i (t)F2ej(t− τ(t))

+ 2
N∑
i=1

eTi (t)R
(1)
i (t)

+ 2c
N∑
i=1

N∑
j=1

aije
T
i (t)R

(2)
j (t− τ(t))

= − 2deT (t)e(t) + 2eT (t)[F s
1 ⊗ In]e(t)

+ 2eT (t)R(1)(t) + 2ceT (t)(A⊗ F2)e(t− τ(t))

+ 2ceT (t)(A⊗ In)R
(2)(t− τ(t)) (16)

where

R(k)(t) =
[
R

(k)
1

T
(t), . . . , R

(k)
N

T
(t)

]T
, 1 ≤ k ≤ 2. (17)
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According to (7), one has ‖R(k)
i (t)‖ ≤ φk(‖e(t)‖)‖ei(t)‖, which

further yields

‖R(k)(t)‖ ≤ φk(‖e(t)‖)‖e(t)‖, 1 ≤ k ≤ 2. (18)

In virtue of Lemma 1, it is derived that

2ceT (t)(A⊗ F2)e(t− τ(t))

≤ 1

ρ1
c2eT (t)(A⊗ F2)(A⊗ F2)

T e(t) + ρ1‖e(t− τ(t))‖2

≤ 1

ρ1
c2‖A‖2‖F2‖2‖e(t)‖2 + ρ1V̂ (t) (19)

where V̂ (t) = ‖V ‖t,τmax and ρ1 > 0 is a parameter to be determined.
Similarly, one obtains

2ceT (t)(A⊗ In)R
(2)(t− τ(t))

≤ 1

ρ2
c2‖A‖2‖e(t)‖2 + ρ2‖R(2)(t− τ(t))‖2

≤
(

1

ρ2
c2‖A‖2 + ρ2φ

2
k

(√
V̂ (t)

))
V̂ (t) (20)

where ρ2 > 0 is a parameter to be determined. According to the
inequalities (16)–(20), one has

V̇ (t) ≤ − 2d‖e(t)‖2 + 2λmax(F
s
1)‖e(t)‖2

+ 2φ1(‖e(t)‖)‖e(t)‖2 + 1

ρ1
c2‖A‖2‖F2‖2‖e(t)‖2

+ ρ1V̂ (t) +

(
1

ρ2
c2‖A‖2 + ρ2φ

2
k

(√
V̂ (t)

))
V̂ (t)

= − h1(V (t))V (t) + h2(V̂ (t))V̂ (t) (21)

where h1(x) = 2d− 2λmax(F
s
1)− 2φ1(

√
x)− c2‖A‖2‖F2‖2

ρ1
and

h2(x) = ρ1 +
1
ρ2
c2‖A‖2 + ρ2φ

2
2(
√
x).

To prove limt→+∞ V (t) = 0, we wish h1(x) > h2(x) on some
interval. In order to maximize h1(x)− h2(x), one should take ρ1 =

c‖A‖‖F2‖ and ρ2 = c‖A‖
φ2(

√
x)

. This leads to

h1(x) = 2d− 2λmax(F
s
1)− 2φ1(

√
x)− c‖A‖‖F2‖

h2(x) = c‖A‖‖F2‖+ 2c‖A‖φ2(
√
x). (22)

Then

h1(x)− h2(x) = 2(d− d0)− 2[φ1(
√
x) + c‖A‖φ2(

√
x)]. (23)

According to (15), one has

r20 = sup{r2| φ1(r) + c‖A‖φ2(r) < d− d0}
= sup{r| φ1(

√
r) + c‖A‖φ2(

√
r) < d− d0}

= sup{r| h1(r) > h2(r)}.
Letting the initial condition ϕ ∈ Rest(r0), one has

M := max
θ∈[t0−τmax,t0]

V (θ) < r20.

Since h1(0) > h2(0) and M < r20 , it follows from Lemma 2 that
V (t) → 0 as t→ +∞, that is, limt→+∞ e(t) = 0. Hence, network (1)
realizes at least local synchronization towardS, andRest(r0) is a subset
of the ROA of S.

If r0 = +∞, one has limt→+∞ e(t) = 0 for any initial condition
ϕ that is continuous on [−τmax, 0], so network (1) realizes global
synchronization toward S.

Remark 4: The ROA estimation established in Theorem 1 is delay-
independent, since r0 is independent of the delay. Denote φ = φ1 +
c‖A‖φ2. Sinceφ is continuous andφ(0) = 0, one has r0 > 0 if d > d0.
That is, the estimated ROA is not empty if the control gain is large
enough. In addition, if f and g are globally Lipschitz, it can be verified
that φ1 and φ2 are bounded. Hence, r0 = +∞ if the control gain is
large enough. That is, global synchronization can be realized.

Remark 5: In the literature, results on the ROA estimation of non-
linear systems with delay are quite rare. In [25]–[27], only the constant
delay is considered. In [28], the time-varying delay is considered.
However, the conditions therein are quite restrictive, since it is assumed
that τ(t) ∈ [h, 2h] and τ̇(t) < 1, where h > 0. To the best of our
knowledge, it is the first time that general delay has been addressed
for the ROA estimation of nonlinear systems. Moreover, the results in
[25]–[28] are established by constructing Lyapunov–Krasovskii func-
tionals and need to solve a complicated Lyapunov differential equation.
In contrast, the results here are much easier to use for estimating the
ROA.

If the function g is linear, network (1) can be simplified to the
following form:⎧⎨
⎩ ẋi(t) = f(xi(t)) + c

N∑
j=1

aijΓxj(t− τ(t)) + ui(t), t ≥ 0

xi(t) = ϕi(t), t ∈ [−τmax, 0]

(24)

where Γ ∈ Rn is the inner coupling matrix. For network (24), the
following corollary can be deduced.

Corollary 1: Consider network (24). If the control gain d satisfies

d > d0 := λmax(F
s
1) + c‖A‖‖Γ‖

then network (24) realizes at least local synchronization toward the
equilibrium S, and the ROA is estimated as Rest(r0) with

r0 = sup{r| φ1(r) < d− d0}
where S and Rest(r0) are defined in (2) and (3), respectively. Particu-
larly, the synchronization is global if r0 = +∞.

Proof: The conclusion can be simply derived from Theorem 1 as
φ2 = 0, where φ2 is as defined in (6).

B. Delay-Dependent ROA Estimation

Though convenient to use, the previously established delay-
independent ROA estimation may be conservative as it does not make
full use of the delay. By developing a new technique of dealing with
the delay, we establish another kind of ROA estimation, which is
named delay-dependent ROA estimation as the radius of the estimated
ROA depends on the delay. Compared to the delay-independent ROA
estimation, the delay-dependent ROA estimation is less conservative
when the delay is small.

For convenience, rewrite the error system (4) in the following com-
pact form:

ė(t) = IN ⊗ (F1 − dIn)e(t) + c(A⊗ F2)e(t− τ(t))

+R(1)(t) + c(A⊗ In)R
(2)(t− τ(t)). (25)

where R(1) and R(2) are defined in (17).
Theorem 2: Consider network (1), and suppose that the coupling

delay satisfies

�0 := τmaxc‖A‖‖F2‖ < 1. (26)
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If the control gain d satisfies

d > d0 :=
λmax(F

s
1) + cλmax([A⊗ F2]

s) + �0α0

1− �0
(27)

then network (1) realizes at least local synchronization toward the equi-
libriumS, and the ROA is estimated asRest(r0)with r0 = exp(−�0)r̄,
where α0 = ‖F1‖+ c‖A‖‖F2‖

r̄ = sup

{
r

∣∣∣∣ φ1(r) + c‖A‖φ2(r) <
1− �0
1 + �0

(d− d0)

}

and the other symbols are defined in (2), (3), (4), and (6). Particularly,
the synchronization is global if r0 = +∞.

Proof: Consider the following Lyapunov function candidate:
V (e(t)) =

∑N
i=1 e

T
i (t)ei(t),which is also denoted asV (t) for brevity.

According to (16), one has

V̇ (t) = − 2deT (t)e(t) + 2eT (t)[F s
1 ⊗ In]e(t)

+ 2eT (t)R(1)(t) + 2ceT (t)(A⊗ F2)e(t− τ(t))

+ 2ceT (t)(A⊗ In)R
(2)(t− τ(t)). (28)

It follows from (25) that

‖ė(t)‖ ≤ ‖F1 − dIn‖‖e(t)‖+ c‖A‖‖F2‖‖e(t− τ(t))‖
+ φ1(‖e(t)‖)‖e(t)‖
+ c‖A‖φ2(‖e(t− τ(t))‖)‖e(t− τ(t))‖

≤ ϕ (‖e‖t,τmax) ‖e‖t,τmax , t ≥ 0 (29)

where ϕ(x) = d+ α0 + φ1(x) + c‖A‖φ2(x). Since ‖e(t)− e(t−
τ(t))‖ ≤ ∫ t

t−τ(t)
‖ė(s)‖ds, one gets

‖e(t)− e(t− τ(t))‖ ≤ τmax‖ė‖t,τmax . (30)

Considering (29) and (30), one has

ceT (t)(A⊗ F2)e(t− τ(t))

= ceT (t)(A⊗ F2)e(t) + ceT (t)(A⊗ F2)[e(t− τ(t))− e(t)]

≤ eT (t)[A⊗ F2]
se(t) + �0‖e(t)‖‖ė‖t,τmax

≤ λmax([A⊗ F2]
s)V (t) + �0ϕ

(√
Ṽ (t)

)
Ṽ (t) (31)

where t ≥ τmax and Ṽ (t) = ‖V ‖t,2τmax . Recalling (18), one has

ceT (t)(A⊗ In)R
(2)(t− τ(t))

≤ c‖A‖φ2

(√
Ṽ (t)

)
Ṽ (t), t ≥ τmax. (32)

It then follows from (28), (31), and (32) that

V̇ (t) ≤ −g1(V (t))V (t) + g2(Ṽ (t))Ṽ (t), t ≥ τmax

where

g1(x) = 2d− 2λmax(F
s
1)− 2cλmax([A⊗ F2]

s)− 2φ1(
√
x)

g2(x) = 2�0[d+ α0 + φ1(
√
x)] + 2c‖A‖(1 + �0)φ2(

√
x).

By simple calculation, one gets

g1(x)− g2(x)

2(1 + �0)
=

1− �0
1 + �0

(d− d0)− [φ1(
√
x) + c‖A‖φ2(

√
x)].

Following the proof after (23), it is deduced that network (1) real-
izes at least local synchronization toward the equilibrium S, and the

synchronization can be realized if

M1 := ‖e‖τmax,2τmax < r̄. (33)

Let the initial conditionϕ ∈ Rest(r0). Next, we show that (33) holds.
Denoting M = ‖e‖0,τmax , one has

M < r0 = exp(−�0)r̄.
Define t1 = min{τmax, t2}, where

t2 = inf{t > 0| ‖e(t)‖ ≥ r̄} > 0.

Note that t2 could be +∞. Then, one has

r1 := max
θ∈[−τmax,t1]

‖e(θ)‖ ≤ r̄. (34)

Denoting V̂ (t) = ‖V ‖t,τmax , it follows from (21) and (22) that

V̇ (t) ≤ −h1(V (t))V (t) + h2(V̂ (t))V̂ (t)

where h1(x) = 2d− 2λmax(F
s
1)− 2φ1(

√
x)− c‖A‖‖F2‖ and

h2(x) = c‖A‖‖F2‖+ 2c‖A‖φ2(
√
x). When t ∈ [0, t1], one has

h1(V (t)) ≥ h1(r
2
1) := h̄1 and h2(V̂ (t)) ≤ h2(r

2
1) := h̄2. It then

follows that

V̇ (t) ≤ −h̄1V (t) + h̄2V̂ (t), ∀t ∈ [0, t1].

In virtue of Lemma 3, one gets

V (t) ≤M2 exp(h̄t), ∀t ∈ [0, t1] (35)

where h̄ = max{0, h̄2 − h̄1}. In view of (34) and the definition of r̄,
one gets

(h̄2 − h̄1)/2

= φ1(r1) + c‖A‖φ2(r1)− d+ λmax(F
s
1) + c‖A‖‖F2‖

≤ 1− �0
1 + �0

(d− d0)− d+ λmax(F
s
1) + c‖A‖‖F2‖

≤ − d0 + λmax(F
s
1) + c‖A‖‖F2‖

≤ − [λmax(F
s
1) + cλmax([A⊗ F2]

s)]

+ λmax(F
s
1) + c‖A‖‖F2‖. (36)

Since 0 is an eigenvalue of A, 0 is also an eigenvalue of A⊗ F2,
indicating that there exists a vector μ �= 0 satisfying (A⊗ F2)μ = 0.
It then follows that:

μT [A⊗ F2]
sμ = μT (A⊗ F2)μ = 0

which further gives λmax([A⊗ F2]
s) ≥ 0. Hence, h̄ ≤ 2c‖A‖‖F2‖.

Recalling (35), one has

‖e(t)‖ ≤M exp(c‖A‖‖F2‖t), ∀t ∈ [0, t1].

If t1 < τmax, then

‖e(t)‖ < M exp(�0) < r̄, ∀t ∈ [0, t1]

which contradicts (34). Hence, t1 = τmax. Then

M1 = ‖e‖τmax,2τmax ≤M exp(�0) < r̄

that is, (33) holds. Therefore, Rest(r0) is a subset of the ROA of the
equilibrium S.

Remark 6: The delay-dependent ROA estimation is established in
Theorem 2. Compared to the delay-independent ROA estimation in
Theorem 1, the delay-dependent ROA estimation is less conservative
when the delay is small.

Authorized licensed use limited to: Wuhan University. Downloaded on November 07,2023 at 08:47:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 1, JANUARY 2023 521

For convenience, redefine the d0, r0 defined in Theorems 1 and 2
asdth1, rth1, anddth2 = dth2(τmax), rth2 = rth2(τmax), respectively.
We now compare the two kinds of estimation.
1) It is obvious that dth1, rth1 do not depend on τmax, while dth2, rth2

depend on τmax. It is found that dth2 strictly increases in τmax and
rth2 decreases (not strictly) in τmax, implying that the results of
Theorem 2 get better as τmax becomes smaller. In addition, rth2
strictly decreases in τmax if rth2(0) < +∞.

2) The limits limτmax→0 dth2 and limτmax→0 rth2 exist, which are
denoted as d̄0 and r̄0 for brevity. Since

λmax([A⊗ F2]
s) ≤ ‖A⊗ F2‖ = ‖A‖‖F2‖. (37)

Then, it is easy to verify that

d̄0 = λmax(F
s
1) + cλmax([A⊗ F2]

s) ≤ dth1

r̄0 = sup
{
r| φ1(r) + c‖A‖φ2(r) < d− d̄0

} ≥ rth1.

Therefore, Theorem 2 is generally better than Theorem 1 when
τmax is small enough.

3) If

λmax([A⊗ F2]
s) < ‖A‖‖F2‖ (38)

then there exists a τ2 ∈ (0, τ1) such that

dth2 < dth1, ∀τmax ∈ (0, τ1) (39)

rth2 ≥ rth1, ∀τmax ∈ (0, τ2) (40)

where τ1 = ‖A‖‖F2‖−λmax([A⊗F2]
s)

(α0+dth1)‖A‖‖F2‖ . The inequality (39) is straight-
forward. It is easy to verify that rth2(0) = r̄0 ≥ rth1 and

rth2(τ1) ≤ exp(−ρ0)
× sup{r| φ1(r) + c‖A‖φ2(r) < d− dth2}
= exp(−ρ0)
× sup{r| φ1(r) + c‖A‖φ2(r) < d− dth1}
= rth1 exp(−ρ0) ≤ rth1

where ρ0 = τ1c‖A‖‖F2‖ in this case. Then, there exists a τ2 ∈
(0, τ1) satisfying (40). The above analysis indicates that, under
(38)

1) the control gain threshold dth2 and the radius rth2 estimated by
Theorem 2 are better than those estimated by Theorem 1 when
τmax ∈ (0, τ2);

2) only dth2 is better when τmax ∈ (τ2, τ1); and
3) both dth2 and rth2 are worse when τmax > τ1.

It is verified via simulations that inequality (38) holds in most cases.
Furthermore, if rth1 < +∞, inequality (40) becomes

rth2 > rth1, ∀τmax ∈ (0, τ2)

i.e., the radius rth2 estimated by Theorem 2 is strictly better than that
estimated by Theorem 1.

Corollary 2: Consider network (1). Suppose that the coupling matrix
A is symmetric and the coupling delay satisfies

�0 := τmaxc‖A‖‖F2‖ < 1.

If F s
2 is semipositive definite and the control gain d satisfies

d > d0 :=
λmax(F

s
1) + �0(‖F1‖+ c‖A‖‖F2‖)

1− �0

then network (1) realizes at least local synchronization toward the equi-
libriumS, and the ROA is estimated asRest(r0)with r0 = exp(−�0)r̄,

where

r̄ = sup

{
r

∣∣∣∣ φ1(r) + c‖A‖φ2(r) <
1− �0
1 + �0

(d− d0)

}

and the other symbols are defined in (2), (3), (4), and (6). Particularly,
the synchronization is global if r0 = +∞.

Proof: Since A is symmetric, it follows that λmax(A) = 0 and
[A⊗ F2]

s = A⊗ F s
2 . In view that F s

2 is semi-positive definite, one
has λmax([A⊗ F2]

s) = 0. Then, the conclusion can be simply derived
from Theorem 2.

IV. NUMERICAL SIMULATIONS

Consider a controlled network consisting of four nodes⎧⎨
⎩ ẋi(t) = f(xi(t)) + c

4∑
j=1

aijg(xj(t− τ(t)))− dei(t)

xi(t) = ϕi(t), t ∈ [−τmax, 0]

(41)

where c = 1, τ(t) = τmax| sin t|, τmax > 0 is a parameter to be dis-
cussed, and

f(z(t)) = [−z1(t) + z1(t)z2(t),−z2(t) + z22(t)]
T

g(z(t)) = [z2(t),−c1 sin z1(t)− c2z2(t)]
T

A =

⎡
⎢⎢⎣
−2 1 1 0
1 −3 2 0
1 0 −2 1
0 0 1 −1

⎤
⎥⎥⎦

with z(t) = [z1(t), z2(t)]
T ∈ R2 and c1 = c2 = 0.1. Let s =

[s1, s2]
T be an equilibrium of ẋ = f(x). Solving

{−s1 + s1s2 = 0
−s2 + s22 = 0

yields s = [0, 0]T or s = [c0, 1], where c0 can be any real constant. It
is verified that only [0, 0]T is a stable equilibrium.

To compare the delay-independent ROA estimation and the delay-
dependent ROA estimation, both Theorems 1 and 2 will be used to
estimate the ROA of the equilibrium S = 0 of network (41).

A. Delay-Independent ROA Estimation

Theorem 1 is first used to estimate the ROA of the equilibriumS = 0
of network (41). Set τmax = 100.

By simple calculation, one gets F1 = −I2, F2 =
[

0 1
−0.1 −0.1

]
,

α1(z) = |z2| ≤ ‖z‖, andα2(z) =
0.1|z1−sinz1 |

‖z‖ . According to [18, Ex-

ample 1], one has α2(z) ≤ 0.1(1− sin ‖z‖
‖z‖ ). Then, take φ1(r) = r and

φ2(r) =

{
1− sinr

r
, r ∈ [0, π

2
]

1− 1
r
, r ∈ (π

2
,+∞).

According to (14), network (41) realizes at least local synchroniza-
tion toward the equilibrium S if

d > d0 = 2.9936.

Taking d = 10, it follows from Theorem 1 that Rest(r0) with r0 =
4.0211 is a subset of the ROA of S = 0.

Let the initial condition be

ϕi(t) = 0.3i+ [0,−2]T , t ∈ [−1, 0]

where 1 ≤ i ≤ 4. Then, one hasϕ ∈ Rest(r0), i.e., the initial condition
belongs to the ROA. According to Theorem 1, the synchronization
errors ei converges to 0, as verified by Fig. 1(a). This validates the
effectiveness of Theorem 1.

Reset ϕ1(t) = [0, 11]T and ϕ2(t) = ϕ3(t) = ϕ4(t) = 0 for t ∈
[−1, 0]. Then, one has ϕ /∈ Rest(r0). It is shown in Fig. 1(b) that
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Fig. 1. Synchronization errors eij(t) (1 ≤ i ≤ 4, 1 ≤ j ≤ 2) of network
(41): (a) the initial condition belongs to the estimated ROA, i.e., ϕ ∈
Rest(r0); (b) the initial condition does not belong to the estimated ROA,
i.e., ϕ /∈ Rest(r0). It is shown that the synchronization is realized when
ϕ ∈ Rest(r0), but not realized when ϕ /∈ Rest(r0).

some components of the synchronization error e diverge to infinity,
which implies that the synchronization may not be realized when
ϕ /∈ Rest(r0). This example demonstrates the importance of the initial
condition in determining whether the synchronization can be realized.
In addition, this example also implies that the estimated r0 cannot
exceed 11.

B. Delay-Dependent ROA Estimation and Comparison

Theorem 2 is now used to estimate the ROA of the equilibriumS = 0
of network (41). Setting τmax = 0.01, one has

�0 := τmaxc‖A‖‖F2‖ = 0.0399

which satisfies (26). Then, Theorem 2 is applicable as �0 also satisfies
(27). By simple calculation, one obtainsd0 = 1.2242 and r0 = 4.7405.
The results here are better than those obtained by Theorem 1, demon-
strating the advantage of Theorem 2 when the delay is small.

It is known that Theorem 1 gives d0 = 2.9936 and r0 = 4.0211 no
matter how large τmax is, as shown by the dashed lines in Fig. 2. To
show the influence of τmax on the d0 and r0 estimated by Theorem
2, we calculate d0 and r0 by Theorem 2 for τmax ∈ (0, τ0), where
τ0 = 0.1507 is the supremum of τmax given by (26) and (27). The
results are shown by the solid lines in Fig. 2. From this figure, we have
several findings:

Fig. 2. Control threshold d0 and radius r0 estimated by Theorems 1
and 2 when τmax ∈ (0, τ0), where τ0 = 0.1507 is the supremum of τmax

that Theorem 2 can deal with. It is shown that the ROA estimated by
Theorem 2 is better than that estimated by Theorem 1 when τmax is
less than the threshold 0.01837.

1) Theorem 2 has better r0 and d0 than Theorem 1 when τmax is
smaller than the threshold τ2 = 0.01837.

2) Theorem 2 has better d0 but worse r0 when τmax ∈ (τ2, τ1) with
τ1 = 0.06326.

3) Theorem 2 has worse r0 and d0 when τmax ∈ (τ1, τ0). In addition,
Theorem 2 is not applicable when τmax ≥ τ0, while Theorem 1 is
applicable.

4) The d0 and r0 estimated by Theorem 2 converge when τmax draws
close to 0.

These numerical results, which are consistent with the theoretical
analysis in Remark 6, show that one can determine which theorem has
better performance according to the value of τmax once the thresholds
τ1, τ2 are determined.

V. CONCLUSION

In this article, the ROA estimation problem for controlled complex
networks with time-varying delay has been investigated. A differen-
tial inequality has been developed to estimate the ROA of nonlin-
ear systems with delay. Based on this inequality, delay-independent
ROA estimation of networks with general delay has been established,
where the ROA is estimated in the form of a ball-like set. Then,
delay-dependent ROA estimation has been established, which is less
conservative than the delay-independent estimation for small delay.
Unlike the popularity of network synchronization analysis, the ROA
estimation of various network models is far from elaborately explored
and thereby deserves further study. Specifically, the ROA estimation of
networks with nonuniform time delays will be considered in our future
work.
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