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Identifying the Topology of a Coupled FitzHugh-Nagumo
Neurobiological Network via a Pinning Mechanism

Jin Zhou, Wenwu Yu, Xiumin Li, Michael Small, and Jun-an Lu

Abstract—Topology identification of a network has received great
interest for the reason that the study on many key properties of a network
assumes a special known topology. Different from recent similar works
in which the evolution of all the nodes in a complex network need to be
received, this brief presents a novel criterion to identify the topology of a
coupled FitzHugh-Nagumo (FHN) neurobiological network by receiving
the membrane potentials of only a fraction of the neurons. Meanwhile, al-
though incomplete information is received, the evolution of all the neurons
including membrane potentials and recovery variables are traced. Based
on Schur complement and Lyapunov stability theory, the exact weight
configuration matrix can be estimated by a simple adaptive feedback
control. The effectiveness of the proposed approach is successfully verified
by neural networks with fixed and switching topologies.

Index Terms—Complex network, neural network, pinning, topology
identification, weight couplings.

[. INTRODUCTION

Dynamical neural networks, consisting of a large number of neu-
rons, have been a fascinating and important subject of research [1],
[2]. These neurons are connected to each other by synapses, which are
the specialized junctions where a neuron communicates with a target
cell [3]. The interactions among neurons, namely, the couplings, have
a great influence on the dynamical characteristics of neurobiological
network [3].

The properties of a neural network with a certain coupling config-
uration have been extensively investigated [1]-[6]. Network topology
is critical for the understanding of geometry characteristics, synchro-
nization, and application of a network [7]-[14]. Therefore, as an inverse
problem in complex network and neurobiology, topology identification
of a neural network is very important.

In the human brain, there is a large number of neurons which interact
mutually to represent and process information. When measuring brain
activity by electroencephalography (EEG) [15], magnetoencephalog-
raphy (MEG) [16], functional magnetic resonance imaging (fMRI)
[17], or positron emitted tomography (PET) [18], the sensor informa-
tion reflects the dynamics of neurons mediated as a local field potential
(LFP). By receiving this information, it is possible to estimate the
topology of the network. From signal processing point of view, there
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are many algorithms such as cross correlation and partial correlation
to identify the interactions among neurons in a network [19]-[21].
In addition, by exploiting information theory algorithms such as
transfer entropy [22] and mutual information [23], reconstructing the
functional connectivity among neurons is possible. While in the area
of mathematics and engineering, works on the rigorous theoretical
derivation for these techniques have been rare.

Very recently, topology identification of complex networks has been
intensively studied. First, Yu et al. estimated the adjacency matrix of a
linearly coupled complex network in 2006 [24]; then, in 2007, Tang et
al. modified Yu’s method and applied it into a neural network in which
the dynamics of each neuron is a Hindmarsh—Rose model [25]; in the
same year, Zhou and Lu recognized the topology of a general weighted
complex network even with different coupling nodes [26]; later, in
2008, Wu estimated the topology of a network with time-varying cou-
pling delay [27]. In the above methods, the states of all the nodes in the
network were monitored to achieve topology identification.

However, in many cases, only some of the couplings in several sub-
regions are unknown or uncertain, and the remainder is known [28].
Therefore, only some of the couplings need to be identified. The pin-
ning control mechanism, which was first applied to complex networks
by Wang et al. [30] and Li ef al. [31], is a more economical and prac-
tical technique. Although the pinning mechanism requires more infor-
mation of the network to decide which nodes should be controlled, this
mechanism can reduce the number of controllers. Provided with some
known couplings, pinning mechanism is a possible way to estimate the
value of those which are uncertain.

Consider the original neural network as a drive network, and design
a response network which receives only the membrane potential evo-
lution of some of the neurons. Based on Schur complement [32], [33]
and Lyapunov stability theory [34], anovel criterion is presented to esti-
mate the weight configuration matrix for a coupled FitzHugh—Nagumo
(FHN) neural network. In this paper, some simple adaptive feedback
controllers are used to identify the topology of this network by a pin-
ning mechanism.

The remainder of this brief is organized as follows. In Section II,
some preliminaries are briefly outlined. The mechanism of control-
ling the membrane potentials of a fraction of neurons in the response
network to reach topology estimation is discussed in Section III. In
Section IV, examples are simulated to illustrate the effectiveness of the
proposed approach. The main ideas and conclusions are summarized
in Section V.

II. PRELIMINARIES

A. FitzHugh—Nagumo Model

Since 1951, the quantitative study of electrically active cells has re-
ceived its principal impetus from the remarkable work by Hodgkin and
Huxley [35] on nerve conduction in the squid giant axon. The subject
of Hodgkin and Huxley’s work is the process by which the impulse
travels along the axon in the giant axon of the squid using a 4-D expres-
sion [35]. Since the equations were too complicated to analyze com-
pletely, simpler systems were indeed necessary to aid in understanding
the properties of the Hodgkin—Huxley equations. Thus, by taking into
account the physiological background, FitzHugh (1961) and Nagumo
(1962), independently derived a 2-D system that provides a convenient
simplification of the 4-D Hodgkin—Huxley equations [35]-[38].

The FHN model is described by

V=V-1V-W+I,
W=eV+4+a—-0W).
Here, V' is the membrane potential, W is the recovery variable, I., is

the external stimulus current, and a. b, € are positive constants. Gener-
ally, 0 < € < 1 makes V as a fast variable and W as a slow variable.

1045-9227/$26.00 © 2009 IEEE
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Fig. 1. Phase of W versus phase of V' in FHN model with parameters € =
0.08,a =0.7,b = 0.8, I., = 0.5cos(¢/50), V(0) = —1,and W(0) = 0.
It is shown that the trajectories converge to a limit cycle. Thus, V' and W are
bounded in a certain region ultimately and the ultimate boundary of V' can be
chosen as 2 here.

The parameter b is one of the critical terms that can significantly in-
fluence the dynamics of the system. Choosing ¢ = 0.08, a = 0.7,
b=0.8, 1., = 0.5cos(t/50), V(0) = —1, and W(0) = 0, the state
variables of FHN model can be depicted by Fig. 1. Since the trajecto-
ries starting from arbitrary points will converge to a limit cycle, V' and
W are bounded in a certain region ultimately.

B. The Neurobiological Network Model

In general, consider a neural network with /N coupled neurons which
is described by FHN equations. The dynamics of the ¢th neuron in the
network can then be formulated as

. N
Vi = Vie VP -WitLo— 3 gi; (i(Vi))=hi(V)))
J=1,5#4

A N
2 VLW + X gihi (V)
=1

Wi = e(Vi+a—bWi) 2 f(Vi. W)

(€]

where 1 < i,j < N, f1(Vi,W)) = Vi — (1/3)V> — Wi + L., and
F2(Vi,W;) = e(V; + a — bW;). As for couplings, ;(V;) is a non-
linear inner-coupling function that is the output of node j, and g is the
synaptic outer-coupling strength. The network topology is determined
by the weight configuration matrix G = (g:;) y,  if the jth neuron
is a neighbor of the ith neuron (j # i), then the weight ¢;; # 0;
otherwise, g;; = 0. In addition, the matrix G is diffusive satisfying
Jii = — Zj:l,j;,gi Gij-
For an FHN equation, the following facts are satisfied:

(w2 — 1) (fr(w2,y2) — fil@r,41))
= (22 — Tl)(rz —ry — %(Tg - 1) (Tf + x1w0 +T§)>
— (22 —21)(y2 — 1)
= (;l'z —;1?1)2 <1 - %

— (22 —x1)(y2 — 1)

M?
< (1
< (144

(I12 + ziw2 + I%))

)($2—11)2+|~T2—I1||y2—y1|
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and

(y2 — y1) (f2(@2,y2) — f2(21,91))
= e(y2 —y1)(x2 — 21) — eb(y2 — y1)*

<elra = ailly2 — yi| — eb(y2 — y1)°

for any two vectors (1, yl)T and (2, yg)T, where M is a positive
constant representing the ultimate boundary of the first variable. For
example, when € = 0.08, ¢ = 0.7,b = 0.8, I.. = 0.5 cos(t/50),
V(0) = —1,and W(0) = 0, M can be chosen as 2 from Fig. 1.

C. The Lemmas

In order to derive the main results, the following lemmas are needed.

Lemma 1 (Schur complement [32], [33]): See Appendix I.

Lemma 2: Assume that P is a diagonal matrix whose kth (k =
1,---,1) diagonal elements are p and the others are 0, where p > 0 is a
proper constant which is large enough. Q™ is the minor matrix of a sym-
metric matrix @ by removing all the kth (k = 1,---,1) row—column
pairs of Q. Then, @ — P < 0 is equivalent to Q@* < O.

The proof of Lemma 2 is presented in Appendix II.

III. THE CONTROLLING MECHANISM

To identify the topology of a complex network, usually the orig-
inal network is served as a drive network. Design a response network
through receiving the evolution of nodes; it is possible to estimate the
weight configuration matrix. In previous literature, however, all the
nodes in the response network should be controlled to achieve topology
identification.

Inspired by pinning control and provided with some known weight
couplings, it is possible to identify the topology of the neurobiological
network without controlling all the neurons in the response network.

Without loss of generality, assume that in neural network (1) the
couplings ¢;;(1 < ¢ < l1,1 < j < l3,l1 > l) are uncertain. To
realize weight configuration matrix estimation, the following response
network is designed:

2 o N N .
Vi= £V W + 3 gy (V) — diVs
=1

B N 2
Wi = fo(Vi, W), @

.;]ij = _51"7;’7/1'(‘7})7

1<i<N

1<i<h, 1<j<h

where Vi, W; are tracing state variables, Vi = Vi — V; is the error
variable, g;; is the estimation of g;; for1 < ¢« < [1,1 < j < Iy,
gij = g.; for others, 6; is positive constant, and d; is the adaptive
feedback gain satisfying

{(i,; =e V7,
di =0,

where e;(1 < ¢ < [y) is positive constant.

In order to propose the main results, the following hypothesis for
inner-coupling function is introduced.

Hypothesis 1 (HI): Assume that h;(z)(1 < j < I3) are linearly
independent [39], and their differentials satisfy m1 < |1} (2)| < ma2,
where m; and m are positive constants.

Denote G* = (G T 4+ G)/2 as the symmetric part of the matrix G.
Let G be a modified matrix of G* which is obtained by changing the di-
agonal elements g;; into (my/ms)gi; for1 < i < N, G* be the minor
matrix of G by removing the first [; row—column pairs, and Amax (.)

1<i <1y
otherwise

3)
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be the maximum eigenvalue of a symmetric matrix. Then, for identi-
fying topology of the coupled FHN network (1) in which the weight
couplings among a section of neurons are unknown, a criterion based
on pinning control is attained.

Theorem 1: Suppose that H1 holds. Then, the unknown elements
gi;(1 < i <14,1 < j <o) of the weight configuration matrix G
in network (1) can be identified by the estimation g;; in the response
network (2) and (3), provided that Ao, (G*) < —(((3+M?)/3m2)+
(14 €)?/4ebm.o)).

Proof: Let ﬁf’; 2 ﬁf’; — W; and gy 2 gij —giy forl < 4,5 <
N. In addition, denote &; as a variable between Vi and V; satisfying
hi(Vi) — hi(V;) = hi(&)(Vi — V). Then, consider a Lyapunov can-
didate as

N N N .9

L=y () +3 3y 2040 Z

=1 11]1

where d is a positive constant to be determined.
Taking the derivative of L along the trajectories of (2) and (3) yields

[v; ( AV W) = AV W ))
W (£a(V ) = £V, W) )]

N N I
+ 30DV (G0 (V) = g0y (Vi) = D iV
i=1

i=1 j=1

v N
—quzﬂ DV, >+Z<d —d)V

=1 5=1

< 2\5 Kl + Mz) Vi + (e+ 1)V,

=1

7:;2}
Vi) - éjdfff

N N N

DVt D> > g Viki()v; —Zd

i=1 i=1 j#i,j=1

& M?
< 22: {<1+ 3
—{—Zg,,mﬂ ‘—1—2 Z gijma|Vi||V; |—Zd¥

=1 jZi,j=1

> VE4 (e 4+ D)|V||W;| - em’f}

:(VT,WT)
2
meG — D + <1 + L) Inn

E+1

X

Inn

é(VﬂW%R(Xv)

where V = (

VDT W = (WA,

N |)

e+1

R 5

Iy

< + 1INN —ebInn
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Ri =m>G =D+ (14 (M?/3)Iyw, Inn isthe N x N identity
matrix, and D is the diagonal matrix whose ith (1 < i < I7) elements
are d and others are 0. Due to that Apmax (G™) < —(((34+M?)/3ma)+
((14¢€)?/4ebm>), one can choose an appropriate constant d > 0 such
that Amax(R1) < —((1 + €)?/4¢b) according to Lemma 2. It grows
Ri—((14+€)/2)-(1/ —eb)- (1 4+ ¢)/2))Inn < 0. As aresult,
since —ebInn < 0, R is negative definite according to Lemma 1.
The largest invariant set of {L = 0} isQ = {V; = 0 and W; =
0,1 < ¢ < N}. According to LaSalle’s invariance principle [34], all
the trajectories of systems (1)—(3) will converge to {2 asymptotically
for any initial values. In this set, it is obvious that f'l = 0, and fur-
ther, Z 2 Gish ,(l ;) = 0. Since H1 holds, there do not exist nonzero
constants 7;(1 < j < l3), such that Z 2 01 (V) = 0. Thus, we
have §i; = 0for1 < i <1,1 <5< ]2 in the set . Therefore, we
get lim gi; =0forl <i<h,1<j<b,and lim Vi, =0,
11m Wz = 0forl < i < N.Asaconclusion, the unknown coupling

t——4oo

strength in neural network (1) can be identified using the response net-
work (2) and (3). Thus, the proof is completed.

From this theorem, it is shown that using the pinning adaptive feed-
back control approach, the exact topology of model (1) can be esti-
mated. At the same time, it is obvious that although just the mem-
brane potentials of some of the neurons are received, all the evolution
of the neurons including membrane potentials and recovery variables
are traced. As there are many circumstances in which the connections
among some of nodes in a complex network are unknown, this mech-
anism is of great practical significance.

Remark 1: As a special case, if the couplings of the entire net-
work (1) are unknown, the proposed mechanism (2) and (3) guarantees
topology identification provided only with H1 holding.

Remark 2: For neurobiological networks whose weight configu-
ration matrix is switching, our method works well too as shown in
Section IV.

Remark 3: The proposed mechanism can also be applied to the
neural network in which dynamics of each neuron is something other
than FHN equations, and even to neural networks with different types
of neurons (dynamics of each neuron need not to be identical). Similar
mathematical or engineering conclusions can be derived.

IV. NUMERICAL SIMULATIONS

Here, 100 neurons are considered to form a Barabdsi—Albert scale-
free (see Appendix III) neurobiological network (mo = m = 5) in
which the dynamics of each neuron is an FHN equation with parameters
e = 0.08,a = 0.7,b = 0.8, and I.. = 0.5cos(¢/50). Assume
that the adjacent matrix of this network is A, the common weight is
w = 12. Suppose that the weight coupling matrix is G = w A, where
g1 = —480,g21 = 72,g31 = 72,941 = 0,912 = 72,g22 = —420,
gs2 = 72, and ga> = 0 are unknown. In addition, h;(z) = = +
5sin j(1 < j < 100) are assumed to be inner-coupling function. It is
obvious that m; = ma = 1. Then, we have G = G*.

In view of ¢;;(1 < i < 4,1 < j < 2) to be identified, con-
sider the minor matrix G* which is obtained by removing the first
four row—column pairs of G. The maximum eigenvalue of G* satis-
fies Amax (G*) = —12.3041 < —6.8896 = —(1 + (22/3) + ((1 +
0.08)%/(4 x 0.08 x 0.8))).

Choose the initial values as e; = 1, 6; = 10%, d;(0) = 0, V;(0) =
—0.540.17,Vi(0) = 9.5+0.1¢, W;(0) = 0+0.17, W;(0) = 10+0.14
for1 <4 < 100, and §;;(0) = 0with1 <i < 4,1 < j < 2inthe
numerical simulation. Fig. 2(a) shows the evolution of inner-coupling
functions Ay (V 1) and ho(Vz). From Fig. 2(a), it is easy to see that

hy (Vl) and ho 2) are linearly independent, for example, choosing
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Fig. 2. (a) Evolution of inner-coupling functions h;(V;) (7 = 1,2). It is obvious that h1(V1) and ho(V2) are linearly independent. (b) Tracing errors V; and
W, (1 < i < 100) versus time t. It is seen that all the state variables can be traced.
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Fig. 3. (a) Estimations of the unknown coupling set {11, g21, Ja1, ga1 } versus time ¢. (b) Estimations of the unknown coupling set {g12, 22, g32, ga2 } versus
time ¢. It is shown that the estimations approach to the corresponding weight values perfectly.

two different times ¢, > 1" and t» > T, where 1 is a large constant, it
is seen that

h(Vi(t)) i (Vilt2)) £0
ha(Va(t1))  ha(Va(t2)) '

The synchronous errors Vi and Wi(1 < i < 100) are plotted in
Fig. 2(b), which shows that all the state variables have been traced.

The topology estimations are illustrated in Fig. 3. It is found that the
weights have been estimated precisely.

If at time ¢, = 5000 the unknown coupling set
{g1 1592159315 9415912, 422, gaz, g42} switches from {—480, 72, 72,
0,72,-420,72,0} to {-420,12,12,0,12,-360,12,0}, the
proposed topology identification approach also performs well,
which is exhibited in Figs. 4 and 5. Besides the successful topology
identification, all the state variables have been traced.

V. CONCLUSION

In this brief, a criterion has been presented for identifying the uncer-
tain topology of a neurobiological network by using an adaptive feed-
back controlling method. Unlike similar approaches which monitor all

the states of all the nodes to reconstruct network topology, we have
presented a different mechanism. By receiving the membrane poten-
tials of only a fraction of the neurons, an estimated model is designed
to identify the unknown weight couplings in the original neural net-
work. Simulated examples are shown to illustrate the effectiveness of
the proposed approach. In addition to the application in neurobiology,
this technology is expected to be implemented on many other fields in
which the dynamics of each agents can be monitored and received, such
as remote control and diagnostics, disease transmission, management,
and administration of Internet cafe, and so on.

APPENDIX |

Lemma 1 (Schur complement [32], [33]): The following linear ma-
trix inequality (LMI):
B(x
(r)) 50

( ne C(a)

B(x)"

where A(x)T = A(x) and C(2)T = C(x), is equivalent to one of the
following conditions:

a) A(z) > 0and C(z) — B(x)" A(z) "' B(z) > 0;

b) C(z) > 0 and A(z) — B(x)C(x) *B(x)T > 0.
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Fig. 4. Evolution of inner-coupling functions and variable tracing of the neural network whose topology switches at z; = 5000. (a) Evolution of inner-coupling
functions 1;(V;) (7 = 1, 2). (b) Tracing errors V; and W;(1 < i < 100) versus time #. It is seen that all the state variables can be traced.
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Fig.5. Topology identification for the neural network whose topology switches att; = 5000. (a) The estimations of the unknown coupling set { gi1, 921,931, ga1 }
vs. time t. (b) The estimations of the unknown coupling set { g2, g22., g32, ga2 } Vs. time ¢. It is shown that the estimations approach to the corresponding weight

values perfectly.

APPENDIX 11
The Proof of Lemma 2: On the one hand, if @ — P < 0, one has
Q" < 0 clearly.
On the other hand, we will prove that if @* < 0, then @ — P < 0.
Q —ply

It is obvious that
Q1
of Q"

where I;; represents the ! X [ identity matrix, and Q; is the cor-
responding matrix with compatible dimension. Since @ — pI; —
Q19" ' QT < 0 whenp > 0is a sufficiently large constant, we have
) —pl )
Q 2L Qi <0
A Q
if @* < 0 according to Lemma 1. Thatis, Q" < Oleadsto Q—P < 0.
Thus, the proof is completed.

o-p=(

APPENDIX III

The Barabasi—Albert model (widely known as the BA model) [40]
introduced in 1998 explains the power-law degree distribution of net-
works by considering two main ingredients: growth and preferential
attachment. The algorithm used in the BA model is as follows.

* Growth: Starting with mo fully connected nodes, at every time
step, a new node is introduced and connected to m(< mg) ex-
isting nodes in the network.

* Preferential attachment: Assume that the probability P that a new
node is connected to node ¢ depends on the degree k; of node 1,
such that P ~ (ki/ >, ki).

Numerical simulations and analytic results indicate that this algorithm
evolves a scale-free network.
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