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ABSTRACT

Diffusion processes widely exist in nature. Some recent papers concerning diffusion processes focus their attention on multiplex networks.
Superdiffusion, a phenomenon by which diffusion processes converge to equilibrium faster on multiplex networks than on single networks
in isolation, may emerge because diffusion can occur both within and across layers. Some studies have shown that the emergence of superdif-
fusion depends on the topology of multiplex networks if the interlayer diffusion coefficient is large enough. This paper proposes some
superdiffusion criteria relating to the Laplacian matrices of the two layers and provides a construction mechanism for generating a superdif-
fusible two-layered network. The method we proposed can be used to guide the discovery and construction of superdiffusible multiplex
networks without calculating the second smallest Laplacian eigenvalues.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0042155

Compared with single-layer networks, what will happen to the
diffusion efficiency of multiplex networks due to the interaction
between layers? Gómez et al.1 proved that the diffusion will be
faster in a duplex network than in its slowest layer when the
interlayer diffusion coefficient is much larger than the intralayer
diffusion coefficients. They further found that it is possible that
the diffusion of a multiplex network is faster than that of both
layers acting separately, which indicates that the multiplex net-
work has superdiffusive behavior. The emergence of superdif-
fusion depends on the specific structures coupled together. If a
network can have superdiffusive behavior when the interlayer
and intralayer diffusion coefficients take certain values, we call
it superdiffusible. In the following, we will provide a mechanism
for constructing superdiffusible networks.

I. INTRODUCTION

Complex networks have become an important tool for
researching the dynamics of complex systems, such as power sys-
tems, ecosystems, and transportation systems.2–7 One of the main
focuses of the study of complex networks is to investigate the rela-
tionship between the network topology and the dynamic processes
that occur on them (e.g., diffusion processes and synchronization
processes).8,9

With the study of complex systems deepening, it is now recog-
nized that real complex systems are rarely formed by single, isolated
networks with links of equivalent meanings and connotations.10–14

A natural extension then is to describe a complex system as a
set of networks coupled across levels (multiplex network). For
instance, in social multiplex networks, we communicate informa-
tion through different types of social relationships (friend, colleague,
acquaintance, family member, etc.); in transportation multiplex
networks, diseases can spread over different layers of transporta-
tion (bus, metro, train, etc.). Currently, multiplex networks have
been investigated in many fields, including molecular biology, epi-
demic spreading process, ecology, transportation networks, and
infrastructures.1,15–20 Different from the dynamical progresses on
single networks, those on multiplex networks may show new phe-
nomena. For example, in the study of synchronization on multiplex
networks, intralayer and interlayer synchronization have been pro-
posed and investigated.21,22 Another widely studied network model
is the higher-order network, which captures the many-body interac-
tions of complex systems. Higher-order networks are usually repre-
sented by simplicial complexes which, differently from graphs, are
not only formed by nodes and links, but also include triangles, tetra-
hedra, and so on.23–26 Several studies on diffusion, synchronization,
and epidemic spreading have shown that taking into account the
higher-order organization of networks can lead to emergent behav-
ior remarkably different from that of graphs, where interactions are
limited to pairs of two nodes only.27–29
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Some recent studies analyzed diffusion dynamics taking place
on multiplex networks and showed that in some cases, multiplex
networks can have superdiffusive behavior, that is, that diffusive
processes in multiplex networks are faster than in any single net-
works that form it separately.1,30–34 The emergence of superdiffusion
depends on the topology of multiplex networks and the intralayer
and interlayer diffusion coefficients. It has been shown in the
literature1,33 that for an undirected duplex network, the larger the
ratio of the interlayer diffusion coefficient to the intralayer diffu-
sion coefficient, the greater the diffusion rate, which means that if
the interlayer diffusion coefficient is much larger than the intralayer
diffusion coefficient, the emergence of superdiffusion only depends
on the topology of duplex networks. The relationship between the
network topology and the superdiffusion phenomenon has been
studied,31 and the numerical simulation results show that the emer-
gence of superdiffusion is independent from the presence of an edge
overlap between layers. In addition, Tejedor et al.33,35 studied the dif-
fusion dynamics on directed multiplex networks and revealed a new
and unexpected signature; that is, differently from their undirected
counterparts, they can exhibit a nonmonotonic rate of convergence
to a steady state as a function of the degree of coupling, wherein
the diffusion is even faster than that of the theoretical limit of undi-
rected systems, i.e., the diffusion in the integrated network obtained
from the aggregation of all layers. These and other characteristics
of superdiffusible networks remain to be further studied. This work
attempts to find out a class of superdiffusible duplex networks.

In this paper, we first find types of easily identifiable networks
with algebraic connectivity less than 0.5. Then, we prove that these
types of networks can be used to construct a superdiffusible duplex
network.

The rest of the paper is structured as follows: the model net-
work and some basic preliminaries are introduced in Sec. II; the
main results are presented in Sec. III; Sec. IV shows two examples
to illustrate our results; and finally, the conclusions and possible
further extensions of this work are given in Sec. V.

II. NETWORK MODEL AND PRELIMINARIES

A. Graph theory preliminaries

To begin with, some necessary concepts in graph theory are
introduced below.

A graph can be described by G = (V, E), where V represents
the set of vertices and E represents the set of edges. We denote
edge joining vertices u and v of a graph by uv. G1(= (V1, E1)) ⊆ G2

(= (V2, E2)) means V1 = V2 and E1 ⊆ E2.
The adjacency matrix of an undirected graph G = (V, E),

whose vertices are explicitly ordered v1, v2, . . . , vN, is a N × N matrix
A(G) = (aij) such that

aij = aji =
{

1 if vivj ∈ E,
0 otherwise,

(1)

where vi, vj ∈ V. The Laplacian matrix of an undirected graph G is
defined as L(G) = D(G) − A(G), where D(G) is the diagonal matrix
composed of the degrees of the vertices. The Laplacian eigenvalues
of G are the eigenvalues of its Laplacian matrix L(G). The second

smallest Laplacian eigenvalue, λ2(G), is called the algebraic connec-
tivity of G.36 Denoting the vector (1, 1, . . . , 1)T by e and the set of
all column vector z by W such that z

T
z = 1, z

T
e = 0, then we have

λ2(G) = minz∈W z
TL(G)z by Courant’s theorem.

A walk in a graph G is an alternating sequence of vertices and
edges, W = v̂0, e1, v̂1, e2, v̂2, . . . , en, v̂n such that for j = 1, . . . , n, the
vertices v̂j−1 and v̂j are the end points of the edge ej. A graph is con-
nected if there exists at least a walk between every pair of vertices. A
vertex of a graph is called as a cut-vertex if its removal increases the
number of connected components.37

A graph is bipartite if its vertices can be partitioned into two
sets in such a way that no edge joins two vertices in the same set.37

The symbol Kp,q denotes a bipartite graph where the two partite sets
have cardinalities p and q, and each vertex in one partite set is adja-
cent to all the vertices in the other partite set. A tree is a connected
graph with no cycles. In particular, the tree K1,N is also called a star
graph.

B. Network model

Consider a two-layered network with N nodes in each layer.
Assume that every single layer is connected, unweighted, and undi-
rected. The diffusion dynamics on the duplex network can be
described by





dx
1
i

T

dt
= Cintra

N∑

j=1

a1
ij

(
x

1
j

T− x
1
i

T
)

+ Cinter

(
x

2
i

T − x
1
i

T
)

,

dx
2
i

T

dt
= Cintra

N∑

j=1

a2
ij

(
x

2
j

T− x
2
i

T
)

+ Cinter

(
x

1
i

T − x
2
i

T
)

,

(2)

where x
k
i (t) = (xk

i,1, x
k
i,2, . . . , xk

i,M)
T

represents the state of the ith

(i = 1, . . . , N) node in layer k (k = 1, 2), Ak = (ak
ij) is the adjacency

matrix of layer k, Cintra denotes the intralayer diffusion coeffi-
cient, and Cinter stands for the interlayer diffusion coefficient. Let

x = (x1T
, x2T

)
T = (x1

1
T
, . . . , x1

N
T
, x2

1
T
, . . . , x2

N
T
)

T
. Then, Eq. (2) can be

rewritten as

ẋ = −(L ⊗ IM)x, (3)

where

L =
(

CintraL1 + CinterIN −CinterIN

−CinterIN CintraL2 + CinterIN

)
,

⊗ denotes the Kronecker product, Lk = Dk − Ak, Dk is the diagonal
matrix of the vertex degrees of layer k, and IN and IM are the identity
matrices with dimension N and M, respectively.

The eigenvalues of the supra-Laplacian matrix L are
0 = 31 < 32 6 · · · 6 32N. Because L ⊗ IM is symmetric, the

solution of Eq. (2) is ϕj(t) = ϕj(0) e−3̂jt (j = 1, 2, . . . , 2MN),

where 3̂j are the eigenvalues of L ⊗ IM and 0 = 31 = 3̂1 = · · ·
= 3̂M < 32 = 3̂M+1 = · · · = 3̂2M 6 · · · 3̂2MN = 32N. Since the
general solution is a linear combination of the normal solutions,
the time scale of the duplex to reach equilibrium is thus controlled
by 32. In other words, the diffusion time scale of the duplex is
proportional to 1

32
. Similarly, the diffusion time scale of layer k
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FIG. 1. (a) A network inG3,3,4. Note that the array (m, n, l)may not be unique for
some networks. (b) Network G3,3,4. (c) Three fully connected parts.

is proportional to 1

λk
2

, where λk
2 represents the smallest nonzero

eigenvalue of Lk.
Definition 1. Superdiffusion emerges in a duplex network

when 32 > max{λ1
2, λ

2
2}.

Denote the smallest nonzero eigenvalue of (L1 + L2)/2 as λs.
Gómez et al.1 have shown that 32 approaches λs as Cinter � Cintra.
Moreover, Tejedor et al.33 have proved that 32 increases when
Cinter/Cintra increases. Thus, it is concluded that λs is the supremum
of 32, which means that superdiffusion cannot emerge in duplex
networks if λs 6 max{λ1

2, λ
2
2}. Therefore, from the above literature,

we have the following definition:
Definition 2. A duplex network is said to be superdiffusible if

λs > max{λ1
2, λ

2
2}.

A duplex network being superdiffusible does not mean that
superdiffusion can emerge in a duplex network for any Cinter and

(a)

(b)

FIG. 2. (a) A duplex network consisting of G1 ∈ G5,2,2 and G2 ∈ G4,3,2.
(b) Comparison between the second smallest eigenvalues λ2 of the different
Laplacian matrices.

Cintra. For example, when Cinter is much less than Cintra, superdiffu-
sion cannot emerge in a duplex network.

III. A CLASS OF SUPERDIFFUSIBLE DUPLEX

NETWORKS

Consider a network with n + m + l − 2 vertices, which con-
tains two cut-vertices. The network is divided into three parts by the
two cut-vertices, which contain m, n, and l vertices, respectively [see
Fig. 1(a)]. Denote the set of such networks as Gm,n,l. Furthermore,
if all three parts are fully connected for G ∈ Gm,n,l, we denote it as
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Gm,n,l [see Fig. 1(b)]. Obviously, Gm,n,l can be obtained by adding the
necessary edge to a graph G ∈ Gm,n,l.

Lemma 1 (Ref. 36). λ2(G1) 6 λ2(G2) if G1 ⊆ G2.
According to Lemma 1, for any G ∈ Gm,n,l, one has λ2(G)

6 λ2(Gm,n,l). Thus, we have the following lemma.

Lemma 2. For a graph G ∈ Gm,n,l, if 2 6 l <
(
3 − m − n

+
√

m2 + 14mn − 16m + n2 − 16n + 16
)
/2, then λ2(G) < 0.5.

Proof. Let

H1 =




m − 1 −1 · · · −1 −1
−1 m − 1 · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · m − 1 −1
−1 −1 · · · −1 m + l − 2




m×m

,

H2 =




n + l − 2 −1 · · · −1 −1
−1 n − 1 · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · n − 1 −1
−1 −1 · · · −1 n − 1




n×n

,

H3 = HT
4 =




0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−1 0 · · · 0




m×n

,

H5 = HT
6 =




0 · · · 0
...

. . .
...

0 · · · 0
−1 · · · −1




m×(l−2)

,

H7 = HT
8 =




−1 · · · −1
0 · · · 0
...

. . .
...

0 · · · 0




n×(l−2)

,

H9 =




l − 1 · · · −1
...

. . .
...

−1 · · · l − 1




(l−2)×(l−2)

.

For l = 2,

L(Gm,n,2) =
(

H1 H3

H4 H2

)
. (4)

Let

H1
1 =




m − 1 − x −1 · · · −1 −1
−1 m − 1 − x · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · m − 1 − x −1
−1 −1 · · · −1 m + l − 2 − x




m×m

,

H1
2 =




n + l − 2 − x −1 · · · −1 −1
−1 n − 1 − x · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · n − 1 − x −1
−1 −1 · · · −1 n − 1 − x




n×n

,

H2
1 =




1 1 · · · 1 − m−1
1−x

0 m − x · · · 0 −1 − m−1
1−x

...
...

. . .
...

...

0 0 · · · m − x −1 − m−1
1−x

0 0 · · · 0 m + l − 2 − x − m−1
1−x




m×m

,
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H2
2 =




n + l − 2 − x − n−1
1−x

0 · · · 0 0

−1 − n−1
1−x

n−x · · · 0 0

...
...

. . .
...

...

−1 − n−1
1−x

0 · · · n−x 0

− n−1
1−x

1 · · · 1 1




n×n

,

one has

∣∣L(Gm,n,2) − xI
∣∣ =

∣∣∣∣
H1

1 H3

H4 H1
2

∣∣∣∣

= (1 − x)2

∣∣∣∣
H2

1 H3

H4 H2
2

∣∣∣∣

= f1(x)(m − x)m−2(n − x)n−2x, (5)

where

f1(x) = x3 − x2(m + n + 2) + x(mn + m + n + 2) − m − n. (6)

For l > 2,

L(Gm,n,l) =




H1 H5 H3

H6 H9 H8

H4 H7 H2


 . (7)

Let

H1
9 =




l − 1 − x · · · −1

...
. . .

...

−1 · · · l − 1 − x




(l−2)×(l−2)

,

one has

∣∣L(Gm,n,l) − xI
∣∣ =

∣∣∣∣∣∣

H1
1 H5 H3

H6 H1
9 H8

H4 H7 H1
2

∣∣∣∣∣∣

= (1 − x)2

∣∣∣∣∣∣

H2
1 H5 H3

H6 H1
9 H8

H4 H7 H2
2

∣∣∣∣∣∣

= (1 − x)2(m − x)m−2(n − x)n−2

∣∣∣∣∣∣∣∣∣∣∣

m + l − 2 − x − m−1
1−x

−1 · · · −1 −1

−1 l − 1 − x · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · l − 1 − x −1
−1 −1 · · · −1 n + l − 2 − x − n−1

1−x

∣∣∣∣∣∣∣∣∣∣∣

= (1 − x)2(m − x)m−2(n − x)n−2

∣∣∣∣∣∣∣∣∣∣∣

m + l − 1 − x − m−1
1−x

0 · · · 0 0

−1 l−1−x · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · l−1−x −1
−1 −1 · · · −1 n + l − 2 − x − n−1

1−x

∣∣∣∣∣∣∣∣∣∣∣
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+ (1 − x)2(m − x)m−2(n − x)n−2

∣∣∣∣∣∣∣∣∣∣∣

−1 −1 · · · −1 −1
−1 l−1−x · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · l−1−x −1
−1 −1 · · · −1 n + l − 2 − x − n−1

1−x

∣∣∣∣∣∣∣∣∣∣∣

= f2(x)(l − x)l−3
(m − x)m−2(n − x)n−2x, (8)

where

f2(x) = (1 − m)(1 − n) − (1 − x)2(m + l − x − 1)(n + l − x − 1).
(9)

For l = 2, the spectrum of the Laplacian matrix L(Gm,n,2) of
Gm,n,2 is m, . . . , m︸ ︷︷ ︸

m−2

, n, . . . , n︸ ︷︷ ︸
n−2

, 0, x1
1, x

1
2, x

1
3, where x1

1, x
1
2, x

1
3 are the three

roots of f1(x) = 0 and x1
1 6 x1

2 6 x1
3. For l > 2, the spectrum of the

Laplacian matrix L(Gm,n,l) is m, . . . , m︸ ︷︷ ︸
m−2

, n, . . . , n︸ ︷︷ ︸
n−2

, l, . . . , l︸ ︷︷ ︸
l−3

, 0, x2
1, x

2
2, x

2
3,

x2
4, where x2

1, x
2
2, x

2
3, x

2
4 are the four roots of f2(x) = 0 and x2

1 6 x2
2

6 x2
3 6 x2

4. Because f1(1) > 0(f2(1) > 0) and f1(x) → −∞(f2(x)
→ −∞) as x → −∞, one has x1

1 < 1(x2
1 < 1). In other words,

λ2(Gm,n,l) is x1
1 or x2

1. We discuss two cases of l = 2 and l > 2
separately.

1. Case l = 2: Because f1(0)< 0, f1(1) > 0, f1(max(m, n)) < 0,
and f1(m + n) > 0, one has 0 < x1

1 < 1 < x1
2 < max(m, n) < x1

3

< (m + n). Thus, λ2(Gm,n,2) < 0.5 if and only if f1(0.5) > 0; i.e.,
m, n > 2 and m + n > 6.

2. Case l > 2: Because the function f2(x) increases monoton-
ically on the interval (−∞, 1),f2(x) → −∞ as x → −∞
and f2(1) = (m − 1)(n − 1) > 0, one has λ2(Gm,n,l) < 0.5
if and only if f2(0.5) > 0, i.e., 2 < l < (3 − m − n

+
√

m2 + 14mn − 16m + n2 − 16n + 16)/2.

In summary, one has λ2(Gm,n,l) < 0.5 if 2 6 l < (3 − m − n

+
√

m2 + 14mn − 16m + n2 − 16n + 16
)
/2. In addition, since

λ2(Gm,n,s) is an upper bound of λ2(G), the lemma is proved. �

Lemma 3 (Ref. 36). λ2(Kp,q) = min(p, q) if p + q > 2.
Lemma 2 reveals a class of networks on which diffusion dynam-

ics has a limited diffusion rate. If it can be ensured that the eigen-
value λs of a duplex network with a limited diffusion rate on each
layer is comparatively large, the duplex network may be superdif-
fusible. Therefore, according to Lemmas 2 and 3, we give the
following theorem.

Theorem 1. Let G1 = (V, E1), G2 = (V, E2) be two networks
with the same N vertices, and we assume that G1 and G2 are
connected, unweighted, and undirected. If the following conditions
hold:

1. G1 ∈ Gm1 ,n1 ,l1 , G2 ∈ Gm2 ,n2 ,l2 ;

2. 2 6 li <

(√
m2

i + 14mini − 16mi + n2
i − 16ni + 16 − mi

− ni + 3
)

/2, i = 1,2; and

3. K1,N−1 ⊆ G1 ∪ G2,

where G1 ∪ G2 = (V, E1 ∪ E2), then a duplex network consisting of
G1 and G2 is superdiffusible.

Proof. Denoting the Laplacian matrix of G1 ∪ G2 by L̃, one has

λs = 1

2
min
z∈W

z
T(L1 + L2)z

>
1

2
(min

z∈W

z
TL̃z + min

z∈W

z
T(L1 + L2 − L̃)z)

>
1

2
min
z∈W

z
TL̃z

= 1

2
λ2(G1 ∪ G2). (10)

Based on Lemma 1 and condition 3, one has

λ2(G1 ∪ G2) > λ2(K1,N−1) = 1. (11)

Thus, according to Lemma 2 and condition 2, one obtains

λs >
1

2
λ2(G1 ∪ G2) > 0.5 > max{λ1

2, λ2
2}, (12)

which means that superdiffusion could emerge in the duplex net-
work when Cinter � Cintra. �

Remark 1. Denote
(√

m2 + 14mn − 16m + n2 − 16n + 16

− m − n + 3
)
/2 in Theorem 1 by h(m, n). For m, n > 1, we

have

∂h

∂m
= 1

2

(
(m + 7n − 8) −

√
m2 + 2m(7n − 8) + n2 − 16n + 16√

m2 + 2m(7n − 8) + n2 − 16n + 16

)

= 24(n − 1)2

(
(m + 7n − 8) +

√
m2 + 2m(7n − 8) + n2 − 16n + 16

) √
m2 + 2m(7n − 8) + n2 − 16n + 16

> 0. (13)
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FIG. 3. Network G998,2,2, where K998 represents the fully connected network with
998 nodes.

Similarly, we have ∂h/∂n > 0. Thus, h(m, n) is a monotone increas-
ing function with respect to m and n. Therefore, the graph Gm̂,n̂,l

satisfies condition 2 if Gm,n,l satisfies condition 2 (m̂ > m, n̂ > n).
Remark 2. According to Lemma 2, if T 6= K1,N−1 is a tree on

N > 6 vertices, then λ2(T) < 0.5. Thus, the graph K1,N−1 is the tree
with the largest algebraic connectivity of trees with N > 6 vertices.
Any connected graph contains at least one tree. Therefore, we choose
K1,N−1 as the network contained in G1 ∪ G2 in Theorem 1.

IV. EXAMPLE

Theorem 1 can be used to discover the superdiffusible duplex
network without calculating λ2. The following example is presented
to demonstrate the effectiveness of Theorem 1.

Example 1. Consider a duplex network shown in Fig. 2(a).
The network consists of G1 ∈ G5,2,2 and G2 ∈ G4,3,2. Meanwhile,

l1 = 2 <
(√

73 − 4
)
/2 = h(5, 2), l2 = 2 <

(√
97 − 4

)
/2 = h(4, 3).

Besides, in G1 ∪ G2, the degree of the light blue vertex is 6; i.e.,
G1 ∪ G2 contains K1,N−1. According to Theorem 1, the duplex net-
work is thus superdiffusible. In Fig. 2(b), we have represented, as
indicated in the legend, the eigenvalues of each layer λk

2, the eigen-
value of the superposition of both layers λs, as well as the eigenvalue
of the supra-Laplacian matrix 32 as a function of Cinter/Cintra, respec-
tively. Figure 2(b) shows that 32 increases as Cinter/Cintra increases
and approaches λs for large Cinter/Cintra. When Cinter/Cintra > 0.2330,
we see that 32 > {max{λ1

2, λ
2
2}; that is, superdiffusion occurs in the

duplex network, which means that the diffusion time scale associated
with the whole duplex network is smaller than that of layer 1 and
layer 2 if they were considered independently.

For a duplex network that satisfies conditions 1 and 2 of
Theorem 1, we add edges to a certain layer of the network so that
the aggregated network of the two layers contains a star graph.
According to Theorem 1, if the duplex network after adding edges
still satisfies conditions 1 and 2 of Theorem 1, then we obtain a
superdiffusible duplex network.

Example 2. Consider a duplex network consisting of G998,2,2

(see Fig. 3) and a network Ĝ consisting of 1000 nodes with two
adjacent cut-vertices. Because Ĝ contains two adjacent cut-vertices,

Ĝ ∈ Gm,n,2, where m > 4 and n > 2. According to Remark 1, since
λ2(G4,2,2) < 0.5, we have λ2(Ĝ) 6 λ2(Gm,n,2) < 0.5. Similarly, we
have λ2(G998,2,2) < 0.5. Denote the nodes connected to v1, v2, v3 in Ĝ
by v̂1, v̂2, v̂3, respectively. If v̂1 and v̂3 are directly connected or there is
a node in Ĝ that is connected to v̂2 and v̂3, then G998,2,2 ∪ Ĝ contains
K1,999 and the duplex consisting of G998,2,2 and Ĝ is superdiffusible.

V. CONCLUSION

In this paper, the relationship between the diffusion rate in a
network and its topology has been investigated, and novel superdif-
fusion criteria relating to the Laplacian matrices of the two layers
have been proposed. Our result can be used to guide the discovery
and construction of superdiffusible duplex networks. Furthermore,
our result is practical because any network satisfying the conditions
in Lemma 2 and K1,N−1 is both easy to identify and construct. More-
over, the method we proposed can also be extended to multiplex
networks with more than two layers.
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