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In this paper, we study the problem of identifying the partial topology of complex dynamical

networks via a pinning mechanism. By using the network synchronization theory and the adaptive

feedback controlling method, we propose a method which can greatly reduce the number of nodes

and observers in the response network. Particularly, this method can also identify the whole

topology of complex networks. A theorem is established rigorously, from which some corollaries

are also derived in order to make our method more cost-effective. Several numerical examples are

provided to verify the effectiveness of the proposed method. In the simulation, an approach is also

given to avoid possible identification failure caused by inner synchronization of the drive network.

Published by AIP Publishing. https://doi.org/10.1063/1.5009946

Apart from synchronization, topology identification of

complex networks is also of great importance. Sometimes,

we are interested in only a part of the whole topology of

complex networks. For example, we may want to know the

friends of several people in social networks, the coauthors

of several academics in coauthorship networks and the

citations of several papers related to our research in cita-

tion networks. Research on synchronization-based topol-

ogy identification of complex dynamical networks has

been thriving in the past decade. Most of the existing stud-

ies focused on identifying the topology of the whole net-

work. There are two fundamental drawbacks for most of

the existing identification methods: (1) they are not practi-

cal when dealing with large-scale networks and (2) they

are not cost-effective when we only want to know a part of

the whole topology. Therefore, it is very necessary to

develop a cost-effective method for identifying the partial

topology of complex networks.

I. INTRODUCTION

Complex networks feature the complexity of having lots

of nodes and complex topology. Complex networks exist in

many natural and man-made systems, such as the World

Wide Web, electrical power grids and neural networks.1–3 In

the past two decades, the research on complex networks has

been thriving, and fruitful results were obtained.4–10 Apart

from synchronization,11–17 which is a key topic, topology

identification has received great attention.18–30

Unraveling the topological structure of complex networks

is of practical importance in the real world. For instance, most

diseases are the result of the collapse of cellular processes

together with interaction networks among the components of

the genome, the proteome and the metabolome.31 Exploring

the biological network between diseases, such as protein-

protein interactions of chronic diseases, might give us a more

detailed understanding of disease comorbidity.32 Moreover,

for many real-world complex networks, we may be interested

in only a part of their whole topology. For example, when

there are several newcomers in a social network, we may

want to know the relationship between these newcomers and

their friends or the relationship among them. In networks of

coauthorship among academics, we may want to know the

coauthors of several academics. Similarly, in citation net-

works, we may be interested in the citations of several papers

that are closely related to our research. Therefore, the problem

of identifying the partial topology of complex networks is of

theoretical and practical importance.

In the past decade, a lot of studies have been devoted to

synchronization-based topology identification. Many net-

work models, including weighted complex dynamical net-

works,18 networks with coupling delay,19 networks with

unknown system parameters,22 and networks with stochastic

perturbations,23 have been investigated. The control scheme

varies from impulsive control21,24 to intermittent control25 as

well as pinning control.26 However, there are two fundamen-

tal drawbacks for most of the aforementioned approaches.

On the one hand, the response network always consists of

the same amount of nodes as the drive network. When the

drive network is of large scale, which is the common case,

we need to construct a response network with many nodes

and observers to estimate the unknown coupling matrix. For

example, for a drive network consisting of 1000 nodes, there

should be 1000 nodes and 1000� 1000 observers in the

response network, which is too consuming to be practical.

On the other hand, most of these approaches identify the

whole topology of complex networks, which is not cost-

effective when we only want to know a part of the whole

topology. They only tell us how to identify the whole topol-

ogy, but they do not tell us how to use fewer nodes and

observers to identify partial topology. Simply reducing the

number of nodes in the response network is not feasible,

which we will further explain. Zhou26 proposed an approach

for identifying the partial topology of a coupled FitzHugh-

Nagumo neurobiological network via a pinning mechanism.

This approach requires that a part of the topology be knowna)Electronic mail: jzhou@whu.edu.cn
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beforehand, and the response network consists of the same

amount of nodes as the drive network, making its practical

value limited. Therefore, it is very necessary to develop a

cost-effective method for identifying the partial topology of

complex networks, which need fewer nodes and does not

require that a part of the topology be known.

By using the network synchronization theory and the

adaptive feedback controlling method, this paper proposes a

novel and cost-effective method for identifying the partial

topology of complex dynamical networks via a pinning

mechanism, i.e., there are fewer nodes in the response net-

work than in the drive network. Our main contributions are

as follows. First, the design of the response network is novel.

Since the response network has fewer nodes, the traditional

concept of outer synchronization is no longer applicable.

Our idea is to synchronize the response network with a part

of the drive network. Second, we give an approach to avoid

possible identification failure caused by inner synchroniza-

tion of the drive network, while few studies addressed this

issue.

The rest of this paper is organized as follows: Section II

gives some necessary preliminaries. Section III proposes a

method for identifying the partial topology of complex

dynamical networks. Section IV provides several examples

to verify the effectiveness of the proposed method. Section

V gives some concluding remarks.

II. PRELIMINARIES

We first introduce some necessary notations that will be

used throughout this paper. Rn and Rn�m denote the

n-dimensional Euclidean space and the set of all the n�m-

dimensional real matrices, respectively, Rþ is the set of

positive real numbers, the superscript T denotes the transpose

of a vector or matrix, jj � jj denotes the 2-norm of a vector or

matrix, kmaxð�Þ denotes the maximal eigenvalue of a symmet-

ric matrix, kminð�Þ denotes the minimal eigenvalue of a sym-

metric matrix, � represents the Kronecker product, and IN

represents the identity matrix of dimension N.

Consider a complex network having N systems of

dimension n. The equations describing the dynamical evolu-

tion of the network are

_xi tð Þ ¼ fi t; xi tð Þð Þ þ
XN

j¼1

cijCxj tð Þ; (1)

where 1 � i � N; xi 2 Rn is the state vector of the i-th node,

fi: Rþ �Rn ! Rn is a smooth nonlinear function, the

dynamics of the i-th node is _xi ¼ fiðt; xiÞ, C is the inner cou-

pling matrix, and C ¼ ðcijÞN�N is the unknown weight con-

figuration matrix. If there is a link from node i to node j
(j 6¼ i), then cij> 0 and cij is the weight; otherwise, cij ¼ 0,

and the diagonal elements of matrix C are defined as

cii ¼ �
XN

j¼1;j 6¼i

cij; i ¼ 1; 2;…;N:

Note that the configuration matrix C need not be symmetric

or irreducible and C also need not be symmetric, but

the boundedness of the network should be ensured in this

paper.

Hereafter, network (1) is referred to as the drive net-

work. Although the whole topology C is unknown, we might

be interested in only a part of C. Given the partial topology

that we are interested in, the main goal is to identify it in a

cost-effective way. Suppose we are interested in the cou-

plings between l (1< l<N) nodes and their neighbors.

Without loss of generality, these nodes are numbered as

1; 2;…; l, respectively. Construct another complex dynami-

cal network composed of l nodes, referred to as the response

network, and described by

_yi tð Þ ¼ fi t; yi tð Þð Þ þ
Xl

j¼1

ĉijCyj tð Þ þ
XN

j¼lþ1

ĉijCxj tð Þ þ ui; (2)

where 1 � i � l; yi 2 Rn is the response state vector of the

i-th node of the drive network, ui is the control input to be

designed, and ĉij is the estimation of the weight cij. Then

Cl�N ¼ ðcijÞl�N is the partial topology to be identified by

Ĉl�N ¼ ðĉijÞl�N . Sometimes, we would like to know the rela-

tionship among l nodes, then only Cl�l ¼ ðcijÞl�l is needed,

which is included in Cl�N .

Remark 1: Figure 1 shows how the response network

connects with the drive network. It is noteworthy that the

observers ĉijðj > lÞ are indispensable due to two reasons.

First, we need to identify cijðj > lÞ. Second, even if only

Cl�l is needed, the observers ĉijðj > lÞ are still indispens-

able. Without the connections between D2 and R, i.e., with-

out the third part of the right end of (2), the response

network cannot realize partial topology identification, in

general, since D1 and R generally cannot reach the outer

synchronization in this case. We have verified this asser-

tion by simulation, but the simulation result is not shown

here due to space constraint. The role of the connections

between D2 and R is to make D1 and R symmetric in the

structure, so that the outer synchronization between D1 and

R is possible.

In order to identify the partial topology that we need, the

following assumptions and lemmas are necessary.

FIG. 1. The way how the response network connects with the drive network.

D1 denotes the subnetwork consisting of the first l nodes of the drive net-

work, D2 denotes the subnetwork consisting of the other N–l nodes, and R
denotes the response network.
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Assumption 1: (A1) Suppose that there exist nonnegative

constants a and b satisfying

kfi t; x1ð Þ � fi t; x2ð Þk � akx1 � x2k (3)

and

kfi t1; xð Þ � fi t2; xð Þk � bjt1 � t2j (4)

for any t; t1; t2 2 Rþ and any vectors x; x1; x2 2 Rn, where

1 � i � N.

Assumption 2: (A2) Suppose that CxiðtÞ
� �N

i¼1
are line-

arly independent on the orbit xiðtÞ
� �N

i¼1
of the outer synchro-

nization manifold xiðtÞ ¼ yiðtÞ
� �l

i¼1
.

Lemma 1: Let g : Rþ ! Rm be differentiable, where m
is a positive integer. If

lim
t!þ1

g tð Þ ¼ 0;

and _g is Lipschitz continuous, then limt!þ1 _gðtÞ ¼ 0:
Proof: Since _g is Lipschitz continuous, there exists such

a positive constant L that

k _g t1ð Þ � _g t2ð Þk < Ljt1 � t2j; 8t1; t2 2 Rþ:

Denote g ¼ ðg1; g2;…gmÞT . Suppose limt!þ1 _g1ðtÞ ¼ 0 does

not hold. There exists a positive constant e and a sequence

xnf g in strictly increasing order satisfying that

limn!þ1xn ¼ þ1 and j _g1ðxnÞj > 2
ffiffiffiffiffi
Le
p

. For t 2 0;
ffiffi
e
L

p� �
,

one has

j _g1 xn þ tð Þ � _g1 xnð Þj � k _g xn þ tð Þ � _g xnð Þk < Lt �
ffiffiffiffiffi
Le
p

;

yielding that j _g1ðxn þ tÞj >
ffiffiffiffiffi
Le
p

. It follows that

����g1 xn þ
ffiffiffi
e
L

r !
� g1 xnð Þ

���� ¼
ffiffiffi
e
L

r
� j _g1 xn þ nnð Þj > e;

(5)

where nn 2 0;
ffiffi
e
L

p� �
: Since limt!þ1gðtÞ ¼ 0, it is obvious

that limt!þ1g1ðtÞ ¼ 0. There exists a T 2 Rþ, satisfying that

jg1 t1ð Þ � g1 t2ð Þj < e; 8t1; t2 > T1;

which contradicts with (5). Therefore, one deduces that

limt!þ1 _g1ðtÞ ¼ 0. Similarly, one has limt!þ1 _gkðtÞ ¼ 0 for

2 � k � m, yielding that limt!þ1 _gðtÞ ¼ 0. This completes

the proof.

Lemma 2:33 Assume that P is a diagonal matrix in which

the first r diagonal elements are p and the others are 0, where

p> 0 is a proper constant which is sufficiently large. Then,

G � P< 0 is equivalent to G(r)< 0, where G(r) denotes the

minor matrix of matrix G by removing the first r rows and

the first r columns of G.

III. MAIN RESULTS

Denoting eiðtÞ ¼ yiðtÞ � xiðtÞ; ~cij ¼ ĉij � cij, the error

system can be deduced from (1) and (2), described by

_ei tð Þ ¼ fi t; yi tð Þð Þ � fi t; xi tð Þð Þ þ
Xl

j¼1

cijCej tð Þ

þ
Xl

j¼1

~cijCyj tð Þ þ
XN

j¼lþ1

~cijCxj tð Þ þ ui; (6)

where 1 � i � l; 1 � j � N. Based on the assumptions (A1)

and (A2), the following theorem can be deduced.

Theorem 1: Suppose (A1) and (A2) hold. Then, the par-

tial topology ClxN can be estimated by the estimation matrix

Ĉl�N via response network (2) with the following controllers

and updating laws

ui ¼ �diei tð Þ;

_di ¼ kie
T
i tð Þei tð Þ;

_̂c ij ¼ �eT
i tð ÞCyj tð Þ; 1 � j � l;

_̂c ij ¼ �eT
i tð ÞCxj tð Þ; j > l;

(7)

where 1 � i � l and ki is any positive constant.

Proof: Since (A1) holds, one has

kfi t; yi tð Þð Þ � fi t; xi tð Þð Þk � akei tð Þk;

where 1 � i � l. Choose a Lyapunov candidate as

V tð Þ ¼ 1

2

Xl

i¼1

eT
i tð Þei tð Þ þ 1

2

Xl

i¼1

XN

j¼1

~c2
ij þ

1

2

Xl

i¼1

di � d�ð Þ2

ki
;

(8)

where d� is a positive constant to be determined. Then, one

has

_V tð Þ ¼
Xl

i¼1

eT
i tð Þ _ei tð Þ þ

Xl

i¼1

XN

j¼1

~cij
_̂c ij þ

Xl

i¼1

di � d�ð Þ _di

ki

� a
Xl

i¼1

eT
i tð Þei tð Þ þ

Xl

i¼1

Xl

j¼1

cije
T
i tð ÞCej tð Þ

þ
Xl

i¼1

Xl

j¼1

~cije
T
i tð ÞCyj tð Þ þ

Xl

i¼1

XN

j¼lþ1

~cije
T
i tð ÞCxj tð Þ

�
Xl

i¼1

die
T
i tð Þei tð Þ þ

Xl

i¼1

Xl

j¼1

~cij �eT
i tð ÞCyj tð Þ

� 	

þ
Xl

i¼1

XN

j¼lþ1

~cij �eT
i tð ÞCxj tð Þ

� 	

þ
Xl

i¼1

di � d�ð ÞeT
i tð Þei tð Þ

¼ a� d�ð Þ
Xl

i¼1

eT
i tð Þei tð Þ þ

Xl

i¼1

Xl

j¼1

cije
T
i tð ÞCej tð Þ:

Denote eðtÞ¼ðeT
1 ðtÞ;eT

2 ðtÞ;…;eT
l ðtÞÞ

T 2Rnl and P¼Cl�l �C.

Then, one gets
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_V tð Þ � a� d�ð ÞeT tð Þe tð Þ þ eT tð ÞPe tð Þ

¼ a� d�ð ÞeT tð Þe tð Þ þ eT tð Þ Pþ PT

2


 �
e tð Þ

� a� d� þ 1

2
kmax Pþ PTð Þ


 �
eT tð Þe tð Þ:

Taking d� ¼ aþ 1
2
kmaxðPþ PTÞ þ 1, one gets _VðtÞ

� �eTðtÞeðtÞ, from which it can be deduced thatðt

0

eT sð Þe sð Þds � �
ðt

0

V sð Þds ¼ V 0ð Þ � V tð Þ � V 0ð Þ

for any t � 0. Therefore, one has eðtÞ 2 L2. Since _VðtÞ � 0,

V is bounded. It follows from (8) that ei; ~cij, and di are

bounded, where 1 � i � l and 1 � j � N. Due to the bound-

edness of network (1), xj and _xj are bounded. Since

yi ¼ xi þ ei is bounded, it follows from error system (6) that

_ei is bounded. By using Barbalat lemma,34 one obtains

lim
t!þ1

ei tð Þ ¼ 0: (9)

Rewrite (6) as _eiðtÞ ¼ uiðtÞ þ wiðtÞ, where

ui tð Þ ¼ fi t; yi tð Þð Þ � fi t; xi tð Þð Þ (10)

and

wi tð Þ ¼
Xl

j¼1

cijCej tð Þ þ
Xl

j¼1

~cijCyj tð Þ þ
XN

j¼lþ1

~cijCxj tð Þ þ ui:

(11)

It is first to prove that wi is Lipschitz continuous. From (11),

one gets

_wi tð Þ ¼
Xl

j¼1

cijC _ej tð Þ þ
Xl

j¼1

_~c ijCyj tð Þ þ
Xl

j¼1

~cijC _yj tð Þ

þ
XN

j¼lþ1

_~c ijCxj tð Þ þ
XN

j¼lþ1

~cijC _xj tð Þ

� _diei tð Þ � di _ei tð Þ:

From (7) and _yi ¼ _xi þ _ei, one deduces that _di; _~c ij and _yi are

bounded. It follows that _wi is bounded, yielding that wi is

Lipschitz continuous. Now, it is to prove that ui is Lipschitz

continuous. From (10), one gets

jui t1ð Þ � ui t2ð Þj ¼ jfi t1; yi t1ð Þð Þ � fi t1; xi t1ð Þð Þ
�fi t2; yi t2ð Þð Þ þ fi t2; xi t2ð Þð Þj
� jfi t1; xi t1ð Þð Þ � fi t1; xi t2ð Þð Þj
þ jfi t1; xi t2ð Þð Þ � fi t2; xi t2ð Þð Þj
þ jfi t1; yi t1ð Þð Þ � fi t1; yi t2ð Þð Þj
þ jfi t1; yi t2ð Þð Þ � fi t2; yi t2ð Þð Þj
� ajxi tið Þ � xi t2ð Þj þ ajyi t1ð Þ � yi t2ð Þj
þ 2bjt1 � t2j
¼ aj _xi n1ð Þj þ aj _yi n2ð Þj þ 2b
� 	

jt1 � t2j;

where 1 � i � l, t1 < t2 and n1; n2 2 ðt1; t2Þ. Due to the

boundedness of _xi and _yi, one gets that ui is Lipschitz contin-

uous. Therefore, _ei is Lipschitz continuous. According to

Lemma 1, one has

lim
t!þ1

_ei tð Þ ¼ 0: (12)

It then follows from (6) that

lim
t!þ1

Xl

j¼1

~cijCyj tð Þ þ
XN

j¼lþ1

~cijCxj tð Þ

0
@

1
A ¼ 0: (13)

Furthermore, one has

lim
t!þ1

XN

j¼1

~cijCxj tð Þ ¼ 0; 1 � i � l: (14)

From (A2), one has limt!þ1~cij ¼ 0, 1 � i � l, 1 � j � N,

which indicates that the partial topology Cl�N can be

identified by the estimation matrix Ĉl�N . This completes the

proof.

Remark 2: The proof of (12) is neglected in some stud-

ies.22,27 Besides (9), the Lipschitz continuity of _ei is also a

critical condition guaranteeing (12). Consider a function

g tð Þ ¼ 1

tþ 1
sin et; t 2 Rþ:

It is obvious that limt!þ1gðtÞ ¼ 0, but one does not have

limt!þ1 _gðtÞ ¼ 0.

Remark 3: When l¼N, the topology of the whole net-

work can be identified. Therefore, our method is able to deal

with not only partial topology but also the whole topology of

complex networks.

Remark 4: Compared with traditional methods,18,19,23

our method is of great advantage when we are interested in

only a small part of the whole topology. For example, we

would like to know the couplings between the first three

nodes and their neighbors in a complex network composed

of N¼ 1000 nodes. By using our method, we only need to

construct l¼ 3 nodes and lN observers to estimate the

unknown couplings. While by using traditional methods, we

need to construct N nodes and N2 observers, which is too

consuming to be practical. From another perspective, the

dimension of the response network with controllers and

updating laws (7) is l(nþ 1þN), while that in Refs. 18, 19,

and 23 is N(nþ 1þN). Therefore, our method is more cost-

effective and provides an approach for dealing with large-

scale networks.

Let l¼ 1, then we have the following corollary.

Corollary 1: Suppose (A1) and (A2) hold. Then, the

connections starting from node 1 can be identified via a

response network

_y1 tð Þ ¼ f1 t; y1 tð Þð Þ þ ĉ11Cy1 tð Þ þ
XN

j¼2

ĉ1jCxj tð Þ þ u1; (15)

with the following controllers and updating laws
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u1 ¼ �d1e1 tð Þ;
_d1 ¼ k1eT

1 tð Þe1 tð Þ;
_̂c11 ¼ �eT

1 tð ÞCy1 tð Þ;
_̂c1j ¼ �eT

1 tð ÞCxj tð Þ; j > 1;

where k1 is any positive constant.

Remark 5: From corollary 1, all the connections starting

from node 1 can be identified via a response network consist-

ing of just one node (though there is just one node, we still

refer to it as network). For a drive network of identical nodes,

we can renumber any node as node 1 through rearranging the

ordinal of the nodes, thus the connections starting from this

node can be identified via response network (15). Therefore,

constructing only one node and N observers, Ĉl�N can be

identified by using (15) l times. Particularly, the topology of

the whole network can be identified by using (15) N times.

Sometimes, only some couplings of the drive network

are unknown, while the others have already been known. In

this case, the constructed response network is simpler and

more cost-effective.

Corollary 2: Suppose (A1) and (A2) hold. If only partial

couplings cijð1 � i � l; 1 � j � l1; l � l1Þ are unknown, then

Cl�l1 ¼ ðcijÞl�l1
can be estimated by the estimation matrix

Ĉl�l1 ¼ ðĉijÞl�l1
via response network (2) with the following

controllers and updating laws

ui ¼ �diei tð Þ;
_di ¼ kie

T
i tð Þei tð Þ;

_̂c ij ¼ �eT
i tð ÞCyj tð Þ; 1 � j � l;

_̂c ij ¼ �eT
i tð ÞCxj tð Þ; l < j � l1;

ĉij ¼ cij; j > l1;

(16)

where 1 � i � l, and ki is any positive constant.

Proof: Choose a Lyapunov candidate as

V tð Þ ¼ 1

2

Xl

i¼1

eT
i tð Þei tð Þ þ 1

2

Xl

i¼1

Xl1

j¼1

~c2
ij þ

1

2

Xl

i¼1

di � d�ð Þ2

ki
;

where d* is a positive constant to be determined. The rest of

the proof is very similar to that of Theorem 1 and thus omit-

ted here.

Remark 6: Reference 26 also studied the case that only a

part of the couplings are unknown. The dimension of the

response network therein is nNþ lþ l� l1, while the dimen-

sion of the response network with controllers and updating

laws (16) is nlþ lþl� l1. Therefore, the response network

with controllers and updating laws (16) is simpler and more

cost-effective than that in Ref. 26.

Suppose Cl�l has already been known, and the goal is to

identify the couplings between the first l nodes and the other

N–l nodes. In this case, the number of controllers ui can

be less than l. Denote c ¼ kCk; j ¼ 1
2
kminðCþ CTÞ, and �C

¼ 1
2
ð �Cþ �CTÞ, where �C is a modified matrix of Cl�l by

replacing cii with j
c cii.

Corollary 3: Suppose (A1) and (A2) hold, and Cl�l is

known. If there exists a positive integer r satisfying 1� r< l

and kmaxð �CðrÞÞ < � a
c, then the couplings cij(1� i� l,

l< j�N) can be estimated by ĉij via response network (2)

with the following controllers and updating laws

ui ¼ �diei tð Þ; 1 � i � r;

ui ¼ 0; r < i � l;

_di ¼ kie
T
i tð Þei tð Þ; 1 � i � r;

ĉij ¼ cij; 1 � i; j � l;

_̂c ij ¼ �eT
i tð ÞCxj tð Þ; 1 � i � l; j > l or l < j

(17)

where ki is any positive constant.

Proof: Choose a Lyapunov candidate as

V tð Þ ¼ 1

2

Xl

i¼1

eT
i tð Þei tð Þ þ 1

2

Xl

i¼1

XN

j¼lþ1

~c2
ij þ

1

2

Xr

i¼1

di � d�ð Þ2

ki
;

where d* is a positive constant to be determined. Then, one has

_V tð Þ � a
Xl

i¼1

eT
i tð Þei tð Þ þ

Xl

i¼1

Xl

j¼1

cije
T
i tð ÞCej tð Þ

� d�
Xr

i¼1

eT
i tð Þei tð Þ

� a
Xl

i¼1

eT
i tð Þei tð Þ þ c

Xl

i¼1

Xl

j¼1;j 6¼i

cijkei tð Þkkej tð Þk

þ j
Xl

i¼1

ciie
T
i tð Þei tð Þ � d�

Xr

i¼1

eT
i tð Þei tð Þ

¼ lT tð Þ aIl þ c �C � D
� 	

l tð Þ;

where lðtÞ ¼ ðke1ðtÞk;…; kelðtÞkÞT and D 2 Rl�l is a diago-

nal matrix in which the first r diagonal elements are d* and

the others are 0. Since kmaxð �CðrÞÞ < � a
c, one has aIl�r

þ c �CðrÞ < 0. According to Lemma 2, one can select a suffi-

ciently large d* satisfying that aIl þ c �C � D < 0. The rest of

the proof is very similar to that of Theorem 1 and thus omit-

ted here.

Remark 7: (A2) is a critical condition for guaranteeing

the identification success. However, it is very difficult to ver-

ify (A2) in spite of its importance. To the best of our knowl-

edge, there has not yet been an effective method for

verifying (A2). We give here two necessary but not sufficient

conditions for (A2). Suppose the identified topology is

C� ¼ limt!þ1Ĉl�NðtÞ 2 Rl�N . If (A2) holds, C* should sat-

isfy the following two conditions:

(C1) c�ij � 0; 1 � i � l; 1 � j � N; i 6¼ j;
(C2) for the undirected drive network, c�ij ¼ c�ji; 1 � i;
j � l.

Finding a simple and sufficient condition for (A2) is still a

challenging problem.

Remark 8: The condition
PN

j¼1 c�ij ¼ 0ð1 � i � lÞ is also

necessary for (A2), but it is of little use. When the identifica-

tion fails, we know that (A2) does not hold. In this case, net-

work (1) usually reaches complete synchronization, that is,
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x1 tð Þ ¼ x2 tð Þ ¼ � � � ¼ xN tð Þ:

Then, (14) turns into

lim
t!þ1

~ci1 þ ~ci2 þ � � � þ ~ciNð Þ ¼ 0; 1 � i � 1;

yielding that
PN

j¼1 c�ij ¼ 0. Therefore,
PN

j¼1 c�ij ¼ 0ð1 � i � lÞ
usually holds, no matter whether (A2) holds.

IV. NUMERICAL SIMULATION

The L€u system is a well-known benchmark chaotic sys-

tem35 described by

_x ¼ g xð Þ ¼ BxþW xð Þ; (18)

where

B ¼
�a a 0

0 c 0

0 0 �b

0
B@

1
CA; W xð Þ ¼

0

�x1x3

x1x2

0
B@

1
CA;

with a¼ 36, b¼ 3, and c¼ 20. It can be simply verified that

the L€u system satisfies (A1) due to its boundedness.18,35

Next, we present three networks in order to verify the

effectiveness of the proposed method. In all the three net-

works, we are always interested in the couplings among three

nodes, say 1, 2, and 3 (if they are not numbered 1, 2, and 3,

we can rearrange the ordinal of the nodes so that they are

numbered 1, 2, and 3). Then, we have l¼ 3. Moreover, we

always use response network (2) with controllers and updat-

ing laws (7) to identify the partial topology in which we are

interested.

A. A 20-node small-world network of identical nodes

Consider a network consisting of N¼ 20 L€u systems,

described by

_xi tð Þ ¼ g xi tð Þð Þ þ
X20

j¼1

cijCxj tð Þ; (19)

where 1� i� 20, C ¼
1 0 0:5
0 1 0:3

0:4 0 1

0
@

1
A, and C¼ eCadj with

the coupling strength e> 0. The non-diagonal elements of

Cadj are depicted in Fig. 2, while the diagonal elements

should be calculated according to the zero row sum. The

Watts-Strogatz (W-S) algorithm4 is used here to generate a

small-world network. First, start with a ring of 20 nodes,

each connected to its K¼ 4 nearest neighbors. The coupling

weight is an integer between 1 and 4, which is generated ran-

domly and illustrated by the corresponding color, as shown

in Fig. 2. Second, rewire each edge with probability pr¼ 0.2

in a certain way.4

From Fig. 3, we can see that the identification of the par-

tial topology succeeds when e¼ 0.1 but fails when e¼ 1.

This is because C is anti-stable. When C is anti-stable, net-

work (19) is of type I, i.e., its synchronization region is

unbounded.36 In this case, large coupling strength favors

synchronization within the drive network and thus hinders

the identification. Without comparing with the original topol-

ogy, we can still know that the identification fails when

e¼ 1, since the identified partial topology in Fig. 3(b) satis-

fies neither (C1) nor (C2) in Remark 7.

FIG. 2. Colormap of a 20-node W-S small-world network generated with

rewiring probability pr¼ 0.2.

FIG. 3. Partial topology identification of network (19) with (a) e¼ 0.1 or (b)

e¼ 1: evolution of the coupling set ĉ12; ĉ13; ĉ21; ĉ23; ĉ31; ĉ32f g.
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Some initial values and parameters are given as follows,

di(0)¼ 1, ki¼ 1, xj(0)¼ 3jþ (1, 2, 3)T, yi(0)¼�2.6þ 0.6i
þ 0.2(1, 2, 3)T, and ĉijð0Þ ¼ 1, where 1� i� 3 and

1� j� 20.

B. A 20-node small-world network of nonidentical
nodes

As Ref. 37 stated, synchronization within the drive net-

work is an obstacle to the identification of network topology,

since (A2) does not hold when the drive network reaches syn-

chronization. Even generalized synchronization may hinder

the identification. Many complex networks with nonidentical

nodes naturally satisfy (A2).22 The big node difference can

shorten the time that the identification needs and improve the

identification efficiency.38 Therefore, a simple method for

avoiding identification failure is to make the nodes nonidenti-

cal. Add artificial perturbation to the L€u system, say,

vi ¼ q cosðitÞð1; 1; 1ÞT , where i� 1 and q is any positive con-

stant. Then, we get a class of different systems described by

fi t; x tð Þð Þ ¼ g x tð Þð Þ þ q cos itð Þ 1; 1; 1ð ÞT ; i � 1: (20)

It is clear that the difference between fi and fi is bigger with a

larger value of q, where i 6¼ j and i, j� 1.

Consider a network consisting of N¼ 20 nonidentical

nodes, described by

_xi tð Þ ¼ fi t; xi tð Þð Þ þ
X20

j¼1

cijCxj tð Þ; (21)

where 1� i� 20, and C, C¼ eCadj are the same as those in

the last example. Since

kfi t; xð Þ � fi t; yð Þk ¼ kg xð Þ � g yð Þk;

and

kfi t1; xð Þ � fi t2; xð Þk ¼
ffiffiffi
3
p

qj cos it1ð Þ � cos it2ð Þj
� 20

ffiffiffi
3
p

qjt1 � t2j; (22)

(A1) holds.

The identification fails when q¼ 0 according to the last

example (the initial values and parameters are the same as those

in the last example). However, from Fig. 4, we can see that the

identification succeeds when q¼ 10, 100, and 1000, indicating

that nonidentical nodes favors the identification. Specifically,

we can see from Fig. 4 that the time needed for identification

decreases significantly with the increase of q, which is consis-

tent with the result in Ref. 38. To make the node difference big-

ger, we can simply increase the value of q, i.e., add stronger

perturbation. However, too strong perturbation may not be

practical and may destroy the original network, so we should

choose the perturbation of appropriate strength.

C. A 1000-node ring network of nonidentical nodes

Consider a ring network consisting of N¼ 1000 non-

identical nodes, described by

_xi tð Þ ¼ fi t; xi tð Þð Þ þ eC xi�1 tð Þ � 2xi tð Þ þ xiþ1 tð Þð Þ; (23)

where 1 � i � 1000; C ¼ I3; x0 	 x1000; x1001 	 x1 and

e> 0 is the coupling strength. According to the last example,

(A1) holds. Figure 5 shows that the partial topology is cor-

rectly identified.

Some initial values and parameters are given as follows:

e¼ 0.2, q¼ 20, di(0)¼ 1, ki¼ 1, xj(0)¼ 1þ 0.001jþ 0.002(1,

2, 3)T, yi(0)¼ 1þ iþ(1, 2, 3)T, and ĉijð0Þ ¼ 1, where

1 � i � 3; 1 � j � 1000.

V. CONCLUSION

In this paper, we have proposed a novel and cost-

effective method for identifying the partial topology of

FIG. 4. Partial topology identification of network (21) with (a) q¼ 10, (b)

q¼ 100 or (c) q¼ 1000: evolution of the coupling set ĉ12; ĉ13; ĉ21;f
ĉ23; ĉ31; ĉ32g.
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complex dynamical networks via a pinning mechanism.

Compared with most of the existing methods, our method is

able to deal with large-scale networks and is more cost-

effective when we are only interested in only a small part of

the whole topology, because the number of nodes and

observers in the response network are greatly reduced.

Several numerical examples are provided to verify the effec-

tiveness of the proposed method. For networks of identical

nodes, the identification may fail. To avoid identification

failure, we present a simple method for making the nodes

nonidentical by adding artificial perturbation, such as

vi ¼ q cosðitÞð1; 1; 1ÞT . We introduce two simple and neces-

sary conditions for (A2), while finding a simple and suffi-

cient condition for (A2) remains an important and

challenging problem. In 2017, Ref. 39 proposed a compres-

sive-sensing-based method for identifying one layer (it is, in

fact, partial topology) of multilayer networks. However, cor-

responding methods based on synchronization are rare. We

expect to extend our work to the context of multilayer net-

works in further study.
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