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Abstract. In this paper, we investigate the synchronizability of two-layer networks according to the master
stability method. We define three particular couplings: positively correlated, randomly correlated and neg-
atively correlated couplings. When the inter-layer coupling strength is fixed, negatively correlated coupling
leads to the best synchronizability of a two-layer network, and synchronizability of networks with ran-
domly and positively correlated couplings follow consecutively. For varying inter-layer coupling strength,
the trend of network synchronizability with an unbounded synchronous region differs from that with a
bounded one. If the synchronous region is unbounded, synchronizability of the two-layer network keeps
enhancing, but it has a threshold. If the synchronous region is bounded, the synchronizability of the two-
layer network keeps improving until the inter-layer coupling strength reaches a certain value, and then the
synchronizability gets weakened with ever-increasing inter-layer coupling strength. To summarise, there
exists an optimal value of the inter-layer coupling strength for maximising synchronizability of two-layer
networks, regardless of the synchronous region types and coupling patterns. The findings provided in this
paper shed new light on understanding synchronizability of multilayer networks, and may find potential
applications in designing optimal inter-layer couplings for synchronization of two-layer networks.

1 Introduction

As is well known, complex networks in reality are usually
interconnected. For example, in a social relationship net-
work [1], a person connects a family network with a friend
network, according to his different roles in the two net-
works. To describe interconnected networks, a new kind
of network named multiplex networks was proposed by
Mucha et al. [2] in 2010. Since that, multilayer networks
have attracted more and more attention. Various aspects
regarding multilayer networks have been studied, such as
network topologies and dynamic properties [3,4], diffu-
sion dynamics [5,6], the spectrum [7], game theory [8,9],
synchronization [10–13], asynchronization [13–15], among
many others [1,16,17]. There are significant differences be-
tween the properties of multilayer networks and those of
traditional single-layer complex networks.

As for traditional complex networks, many realistic
networks are scale-free, namely only a few nodes within
a network have many connections and most of the re-
mainders have much fewer links. For instance, the de-
grees of nodes obey a power-law distribution in the In-
ternet, the World Wide Web, social networks, and even
metabolic networks, which exhibit scale-free properties.
The BA scale-free network [18], proposed by Barabási
and Albert, is a frequently discussed model because of
its strong robustness and extensive existence. Due to the
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ubiquity of scale-free networks in reality, the investiga-
tion of multilayer networks composed of BA scale-free net-
works is of great significance. Even though there have been
many studies on single-layer BA networks, such as stop-
ping hacker attack or preventing epidemics from spread-
ing [19], multilayer networks coupled with two (identical
or distinct) BA networks have not yet been studied.

For the numerous dynamical phenomena of multi-
layer networks, synchronization is a typical one [19].
Though there are some papers [10–15] focusing on syn-
chronization or asynchronization of multilayer networks,
the research is still in its initial stages. In these papers,
different methods are applied such as the Master Sta-
bility Method [10], the Mean-Field Approximation [11],
the Lyapunov Method [12] and the Semi-Tensor Prod-
uct Approach [13–15]. In this paper, we will illustrate
the synchronizability of two-layer networks formed by
two identical BA networks using the Master Stability
Method [20–22]. Similar to reference [5], we assume that
the nodes in the two layers are identical, the intra-layer
edges in one layer are independent of those in the other
one, and that each node in one layer is connected to a
counterpart in the other layer (see Fig. 1).

Three inter-layer coupling patterns are considered:
positively correlated, negatively correlated and randomly
correlated couplings. Specifically, let the nodes within each
layer be ordered according to ascending degrees, that is,
k1 = (k1

1 , k
1
2 , . . . , k

1
N ) and k2 = (k2

1 , k
2
2 , . . . , k

2
N ), where
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Fig. 1. A two-layer network composed of two identical single-
layer networks. The nodes in the two layers carry the same
dynamics; the intra-layer edges in one layer are independent to
that of the other one, and each node in one layer is connected to
a counterpart in the other layer. Specifically, PC means A1 ∼
A2, . . . , F1 ∼ F2 and NC represents A1 ∼ F2, . . . , F1 ∼ A2.

kτ
1 ≤ kτ

2 ≤ . . . ≤ kτ
N (τ = 1, 2). Positively corre-

lated coupling, simplified as PC, means that the corre-
lation coefficient of k1 and k2 is maximised. For exam-
ple, a person with many links in the friendship network
layer is very likely to have many links in another so-
cial network layer, too. A special case is the assortative
mixing (nodes with large degrees in one layer are likely
to have more links in the other layer as well), namely,
k1
1 ∼ k2

1 , k1
2 ∼ k2

2 , . . . , k
1
N ∼ k2

N . The second coupling
strategy is randomly correlated coupling, abbreviated as
RC, which represents a random matching between a node
in one layer with a node in the other layer. Likewise, in the
negatively correlated coupling (NC), nodes’ degrees in dif-
ferent layers are maximally anti-correlated in their degree
order. A special case of the NC coupling is disassortative
mixing, such as k1

1 ∼ k2
N , k1

2 ∼ k2
N−1, . . . , k

1
N ∼ k2

1 .
For the three coupling patterns, we will discuss the

synchronizability of two-layer networks with bounded or
unbounded synchronous regions. We observe that, when
the inter-layer coupling strength is invariant, negatively
correlated coupling leads to the best synchronizability of
a two-layer network regardless of types of the synchronous
regions. Those of randomly and positively correlated cou-
plings follow. The synchronizability of two-layer networks
in the three coupling patterns progressively approach each
other as their single-layer networks become denser, and is
worse than the synchronizability of single layers. When the
inter-layer coupling strength is increasing, the synchroniz-
ability of the two-layer networks with an unbounded re-
gion keeps enhancing and finally reaches a threshold. If
the synchronous region is bounded, the synchronizability
of the two-layer network is kept enhanced with increasing
inter-layer coupling until the coupling strength reaches a
certain value, then the synchronizability gets weakened
with ever-increasing coupling strength. The findings shed
new light on understanding synchronizability of multilayer
networks, and may find potential applications in designing
optimal inter-layer couplings for synchronization of two-
layer networks.

The rest of the paper is organised as follows. Some
preliminaries are introduced in Section 2. The synchroniz-
ability of the two-layer BA networks with unbounded and
bounded synchronous regions are illustrated in details in
Sections 3 and 4, respectively. Finally, some conclusions
are drawn in Section 5.

2 Preliminaries

Consider a multilayer network composed of M layers, with
each layer consisting of N nodes. The following equation
describes the dynamics of the ith node in the Kth layer:

ẋK
i = f

(
xK

i

)
+ dK

N∑
j=1

wK
ij Γ

(
xK

j

)
+

M∑
L=1

dKL
i Γ

(
xL

i

)
, (1)

where 1 ≤ i ≤ N , 1 ≤ K ≤ M , xK
i ∈ Rn is the state of

the ith node in the Kth layer, f : Rn → Rn is a smooth
nonlinear vector-valued function governing the dynamics
of isolated node xK

i (1 ≤ i ≤ N , 1 ≤ K ≤ M). The
continuous function Γ : Rn → Rn represents both the
intra-layer and inter-layer coupling functions. dK repre-
sents the intra-layer coupling strength of the Kth layer.
Here, WK = (wK

ij ) ∈ RN×N is the coupling weight con-
figuration matrix of the Kth layer. If there is a link from
node j to node i (i �= j), wK

ij = 1, otherwise wK
ij = 0. It is

clear that WK is diffusive by taking

wK
ii = −

N∑
j=1,j �=i

wK
ij ,

thus LK = −dKWK is a Laplacian matrix. Denotation
dKL

i is the inter-layer coupling strength between the ith
nodes in the Kth and Lth layers, satisfying

dKK
i = −

M∑
L=1,L �=K

dKL
i .

It is obvious that Di = (dKL
i ) ∈ RM×M is also a negative

Laplacian matrix.
Similar to reference [5], let L be the Supra-Laplacian

matrix of equation (1), LI be the Supra-Laplacian ma-
trix representing the inter-layer topology, and LL be the
Supra-Laplacian matrix describing the intra-layer topol-
ogy. Then L can be written as:

L = LI + LL. (2)

Taking LI to be the Laplacian matrix of the inter-layer
networks, we have

LI = LI ⊗ IN , (3)

where ⊗ is the Kronecker product, IN is the N×N identity
matrix. As for LL, it can be represented by the direct sum

http://www.epj.org


Eur. Phys. J. B (2015) 88: 240 Page 3 of 6

of the Laplacian matrix LK within each layer, namely,

LL =

⎛
⎜⎜⎜⎜⎜⎝

L1 0 . . . 0

0 L2 . . . 0
...

...
. . .

...

0 0 . . . LM

⎞
⎟⎟⎟⎟⎟⎠ =

M⊕
K=1

LK . (4)

Then for a two-layer network, we can safely conclude that:

(1) If dKL
i = d, one gets

LI =

(
d −d

−d d

)

and Λ(LI) = {0, 2d}, where Λ(LI) is the set of eigen-
values of matrix LI . It is obvious that Λ(LI) ⊂
Λ(L) [5].

(2) The set of eigenvalues of LL is the union of that of L1

and L2, namely Λ(LL) = Λ(L1)∪Λ(L2). Let Λ(LL) =
{0 = λ̄1 = λ̄2 ≤ λ̄3 . . . ≤ λ̄2N}, where λ̄i (1 ≤ i ≤ 2N)
are the eigenvalues of LL.

To get the main results, the following three Lemmas are
needed.

Lemma 1 [23]. Assuming that U and V are n × n
Hermitian matrices, the eigenvalues of U, V and U + V
are ξ1 ≥ ξ2 ≥ . . . ≥ ξn, ζ1 ≥ ζ2 ≥ . . . ≥ ζn, and
ς1 ≥ ς2 ≥ . . . ≥ ςn respectively, then one has

ξi + ζn ≤ ςi ≤ ξi + ζ1, 1 ≤ i ≤ n. (5)

According to Lemma 1, one obtains:

0 = λ1 = λ̄1,

0 ≤ λ2 ≤ λ̄2 + 2d = 2d, (6)

λ̄3 ≤ λ3 ≤ λ̄3 + 2d,

. . .

λ̄2N ≤ λ2N ≤ λ̄2N + 2d, (7)

where 0 = λ1 < λ2 ≤ λ3 . . . ≤ λ2N are eigenvalues of the
Supra-Laplacian matrix of a two-layer network.

Lemma 2 [24]. The relationship between the eigenval-
ues of the two Laplacian matrices L1, L2 and that of the
sum matrix Ls = (L1 + L2)/2 is λs ≥ (λ1

2 + λ2
2)/2 ≥

min(λ1
2, λ

2
2), where λs is the nonzero minimum eigenvalue

of Ls, λ1
2 and λ2

2 are the nonzero minimum eigenvalues
of L1 and L2, respectively.

Lemma 3 [25,26]. Provided that m = m0 in a BA scale-
free network, the estimation of the nonzero minimum
eigenvalue λ2 of the Laplacian matrix is

λ̂2 =

⎧⎪⎪⎨
⎪⎪⎩

0.000696, m = 1

0.7744 ∗ m − 1.049, 2 � m � 5

0.9493 ∗ m − 2.161, 6 � m � 30

(8)

when the network size N is sufficiently large, where m0 is
the initial network size and m is the number of existing
nodes that are connected to a newly introduced node.

This lemma implies that when N → ∞ in a BA scale-
free network, λ2 tends to a constant λ̂2 which is deter-
mined by m.

The Master Stability Function [20–22] tells the crite-
ria for determining synchronizability of a network. For
a network whose synchronous region is unbounded, the
nonzero minimum eigenvalue λ2 of the Laplacian matrix
determines the synchronizability. The larger the λ2 is, the
better synchronizability the network has. For a network
with a bounded synchronous region, the synchronizability
is decided by the eigenratio of the maximum eigenvalue
and the nonzero minimum eigenvalue λmax/λ2 of the net-
work’s Laplacian matrix. If λmax/λ2 is small enough (1 is
the best), the network has strong synchronizability. The
synchronous region of a complex network is mainly deter-
mined by f and Γ .

3 Two-layer networks with unbounded
synchronous regions

In this section, we consider networks with unbounded
synchronous regions. Specifically, the two-layer BA-BA
network is composed of two interconnected identical BA
networks of size N = 500 and the intra-layer coupling
strength is d1 = d2 = 1.

3.1 Invariant inter-layer coupling strength

To begin with, we study synchronizability of two-layer net-
works with invariant inter-layer coupling strength, that
is, dKL

i = d = 1 (K, L = 1, 2, K �= L, 1 ≤ i ≤ N). Corre-
sponding to the three different coupling patterns– PC, NC
and RC, the nonzero minimum eigenvalues of the Supra-
Laplacian matrices are denoted by λp

2, λn
2 and λr

2, respec-
tively. Similarly, the eigenratios are denoted by λp

2N/λp
2,

λn
2N/λn

2 and λr
2N/λr

2 for the respective coupling patterns.
According to (8), it is concluded that λ1

2 = λ2
2 < 2

if m ≤ 3 and λ1
2 = λ2

2 > 2 otherwise. To obtain some
representative results, take m = 3 and m = 6 as examples.

When m = 3, it is observed that λ1
2 = λ2

2 = λp
2 ≤

λr
2 ≤ λn

2 (Fig. 2a) from numerical simulations. It reveals
that the single-layer BA network has the same synchro-
nizability as that of the PC two-layer network, which is
weaker than that of the RC or NC two-layer networks. The
synchronizability of the NC two-layer network is the best.
The reason is probably due to the fact that the homoge-
neous degree distribution is beneficial to synchronization
of a network. The coupling tendencies of NC and RC make
the sum-degrees (the sum of degrees of a node in the two
layers) more homogeneous in the networks than that in
the PC networks. Thus the synchronizability of PC two-
layer network is weaker than that of NC and RC networks.
Meanwhile, the reason why the NC network has slightly
better synchronizability than that of the RC network is
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Fig. 2. The values of λ2 by 20 trials for m = 3 (a) and m =
6 (b). The red ◦ represents λ1

2; the green · represents λ2
2; the

blue ∗ is λp
2; the blue ◦ is λn

2 ; the blue � is λr
2.

that the former one has more uniform sum-degrees than
the latter. Besides, it is clear that all these values are
less than 2. This can be explained by (6) and (8), because
the nonzero minimum eigenvalues of the coupled two-layer
networks satisfy 0 ≤ λp

2, λ
r
2, λ

n
2 ≤ 2 according to (6), and

the nonzero minimum eigenvalues of the Laplacian matri-
ces satisfy λ1

2 = λ2
2 < 2 according to (8).

Figure 2b shows the nonzero minimum eigenvalues of
the Laplacian matrices for m = 6 by 20 trials. On the one
hand, it can be seen from the panel that λ1

2 = λ2
2 > 2

for m = 6 and is larger than that for m = 3, which is
coincident with (8). It means that the synchronizability
of single-layer BA networks for m = 6 is better than that
for m = 3. It is obvious since the former network has a
larger average degree than the latter one, and the eigen-
values increase on the whole. On the other hand, the panel
reveals λp

2 = λn
2 = λr

2 = 2, which is smaller than λ1
2 = λ2

2.
This implies that the synchronizability of the coupled two-
layer networks is weaker than that of the single-layer ones,
regardless of the coupling patterns. Besides, due to the
larger average degree of the single layers for m = 6 than
that for m = 3, the connectivity in each layer is denser and
more robust, thus the two-layer networks have reduced
synchronizabilities compared with the corresponding sin-
gle layers [27]. Since 0 ≤ λ2 ≤ λ̄2 + 2 = 2 can be obtained
from (6), synchronizability of the current two-layer net-
work is maximised for all the coupling patterns.

3.2 Varying inter-layer coupling strength

To analyse the synchronizability of two-layer networks
varying with inter-layer coupling strength, we introduce
the notations λsp

2 , λsn
2 and λsr

2 . They represent the nonzero
minimum eigenvalues of the average Laplacian matrices
Lsp = (Lp

1 + Lp
2)/2, Lsn = (Ln

1 + Ln
2 )/2 and Lsr =

(Lr
1 + Lr

2)/2, respectively.
It can be seen from Figure 3 that there are similar ten-

dencies of λ2 of the Supra-Laplacian matrices for m = 3
and m = 6. Generally, λ2 increases as the inter-layer cou-
pling strength d increases. In detail, λ2 increases sharply
at the beginning (nearly linearly), and then experiences
much slower increase, and finally almost levels off at some
upper bounded values. Coincidentally, when d increases to
a certain value d∗∗, λp

2, λn
2 , λr

2 begins to increase slowly
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Fig. 3. The values of λ2 versus d for m = 3 (a) and m = 6 (b).
The black · is λp

2, the red ◦ is λn
2 , and the blue � is λr

2. The
transverse lines are λsn

2 , λsr
2 and λsp

2 , from top to bottom.

and finally arrives at some upper bounds. It is observed
that λsp

2 , λsn
2 and λsr

2 are basically the corresponding up-
per bounds. It reveals that synchronizability of the two-
layer networks is enhanced almost linearly with increasing
d and then grows much more slowly to be upper bounded.
In applications, synchronizability of a two-layer network
can be enhanced by means of raising d, but it is impracti-
cal for too large d. That is to say, the inter-layer coupling
strength d attains its optimal value d∗∗ for maximizing
synchronizability of network with minimum cost. In addi-
tion, the figure shows λsp

2 ≤ λsr
2 ≤ λsn

2 . It means that as
far as the synchronizability is concerned, the RC pattern
is better than the PC pattern, while the NC pattern is
the best method for interconnection. This is because the
coupling methods of NC, RC and PC give two-layer net-
works an increasing uniformity of sum-degrees. The larger
values of d∗∗ and the higher upper bounds of λ2 in the net-
work for m = 6 than that for m = 3 illustrates that the
synchronizability of the former is better than that of the
latter.

4 Two-layer networks with bounded
synchronous regions

According to the Master Stability Function framework,
synchronous regions of a network can be divided into four
types [20–22]. Besides the unbounded synchronous region,
there exists a bounded one, an empty one, and a union of
several unbounded or bounded regions. The unbounded
and bounded synchronous regions are more usually taken
into consideration since they are more commonly seen
in real-world networks than the other two types. In this
section, we consider networks with bounded synchronous
regions.

4.1 Invariant inter-layer coupling strength

Let the inter-layer coupling strength between the two lay-
ers be dKL

i = d = 1. Networks in each layer are still
generated according to the BA algorithm with m = 3
or m = 6. Figure 4 displays the values of λmax/λ2.
Similar to the result of λp

2 ≤ λr
2 ≤ λn

2 for networks
with unbounded synchronous regions, it can be seen from
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Figure 4 that λn
2N/λn

2 ≤ λr
2N/λr

2 ≤ λp
2N/λp

2. The inequal-
ities can be reasoned as follows. According to (7), one
gains λ̄2N ≤ λ2N ≤ λ̄2N + 2, where λ2N is the largest
eigenvalue of the Supra-Laplacian matrix of the coupled
two-layer network, while λ̄2N is the largest eigenvalue of
the Supra-Laplacian matrix of the intra-layer network. In
other words, λ2N can be regarded as a small perturbation
of λ̄2N when N is sufficiently large, and then the values
of λn

2N , λr
2N and λp

2N are very close to each other. There-
fore, the relationship among λn

2N/λn
2 , λr

2N/λr
2 and λp

2N/λp
2

is similar to that among 1/λn
2 , 1/λr

2 and 1/λp
2. For the

same reason of homogeneity, the synchronizability of the
RC two-layer networks is weaker than that of the NC net-
works, and better than that of the PC networks.

It can be seen that 1 < λn
2N/λn

2 ≤ λr
2N/λr

2 ≤ λ1
N/λ1

2 =
λ2

N/λ2
2 ≤ λp

2N/λp
2 for m = 3 in Figure 4a, which reveals

that the single-layer BA network has better synchroniz-
ability than that of the PC two-layer network, and weaker
than that of the RC and NC two-layer networks. When
m = 6, 1 < λ1

N/λ1
2 = λ2

N/λ2
2 ≤ λn

2N/λn
2 ≤ λr

2N/λr
2 ≤

λp
2N/λp

2 is observed in Figure 4b. This suggests that the
single-layer BA network has better synchronizability than
interconnected two-layer networks. Because the connec-
tions in the two-layer networks with m = 6 are denser
than that with m = 3, the networks are more robust.
This leads to a quicker drop of the eigenratios after two
networks are coupled into two-layer networks for m = 6
than for m = 3.

If m keeps increasing, the single-layer BA network be-
comes more and more robust, and the synchronizability
of the two-layer networks becomes weaker and weaker
compared with the single-layer networks. When m turns
into a large value, we will have approximately λn

2N/λn
2 =

λr
2N/λr

2 = λp
2N/λp

2. Thus two-layer networks with the
three different interconnection patterns have roughly iden-
tical synchronizability.

4.2 Varying inter-layer coupling strength

In this subsection, we provide some insight into the ten-
dencies of eigenratios with varying d. The eigenratios of
the Supra-Laplacian matrices for m = 3 and m = 6 are
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displayed in Figures 5a and 5b, respectively. It is found
that λ2N/λ2 decreases as a power-law function of d at
the beginning, and then increases after d attains a cer-
tain value d∗, irrespective of the coupling pattern. That
is, the synchronizability of the two-layer networks is get-
ting better at first with increasing d and begins to get
weaker after d attains a certain value. From Figure 5, it
can be seen that d∗ is varied for different coupling patterns
and dp

∗ ≤ dr
∗ ≤ dn

∗ . With d increasing to a certain value
d∗, λ2N/λ2 reaches its minimum R∗. Therefore, d∗ is an
optimal inter-layer coupling strength as far as enhancing
synchronizability of two-layer networks is concerned. Fur-
thermore, when d exceeds the critical value, it is the NC
networks that have the best synchronizability for a fixed
inter-layer coupling strength.

5 Conclusion

We have investigated the synchronizability of positively
correlated, randomly correlated and negatively correlated
two-layer networks, which are formed by two intercon-
nected identical BA scale-free networks. We have con-
cluded that when the inter-layer coupling strength is fixed
to be 1, negatively correlated coupling leads to the best
synchronizability of a two-layer network, and randomly
and positively correlated couplings follow. Synchronizabil-
ity of two-layer networks with three different connection
patterns progressively approach each other as m increases,
and they become worse and worse compared with those of
the isolated single-layers. When the inter-layer coupling
strength d grows, network synchronizability trend with an
unbounded synchronous region is different from that with
a bounded one. With an unbounded synchronous region,
the synchronizability of a two-layer network continues to
be enhanced, but it has a threshold. Among the thresholds
of λ2, that of the NC network is the largest, the next is
the RC network, and the smallest is for the PC network.
If the synchronous region is bounded, the synchronizabil-
ity of a two-layer network is enhanced with initially in-
creasing d, and then weakened after d gets larger than a
certain value d∗. In particular, the synchronizability index
λmax/λ2 attains its minimum R∗ at a critical value d∗, and
we have Rn

∗ ≤ Rr
∗ ≤ Rp

∗. Therefore, there exists an optimal

http://www.epj.org
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value of the inter-layer coupling strength for maximiszing
synchronizability of two-layer networks, regardless of the
types of synchronous regions and the coupling patterns.
Even though these results are obtained by using two-layer
networks with identical structures in the two layers, they
will provide insight into understanding synchronizability
of multilayer networks, and may potentially be applicable
in the design of optimal inter-layer couplings for synchro-
nizing two-layer networks, such as power grids [28] and ad
hoc mobile networks [29].
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