
Generalized outer synchronization between complex dynamical networks
Xiaoqun Wu,1,2,a� Wei Xing Zheng,2,b� and Jin Zhou1,3

1School of Mathematics and Statistics, Wuhan University, Hubei 430072, China
2School of Computing and Mathematics, University of Western Sydney,
Penrith South DC, NSW 1797, Australia
3Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong

�Received 12 October 2008; accepted 29 December 2008; published online 10 February 2009�

In this paper, the problem of generalized outer synchronization between two completely different
complex dynamical networks is investigated. With a nonlinear control scheme, a sufficient criterion
for this generalized outer synchronization is derived based on Barbalat’s lemma. Two corollaries are
also obtained, which contains the situations studied in two lately published papers as special cases.
Numerical simulations further demonstrate the feasibility and effectiveness of the theoretical
results. © 2009 American Institute of Physics. �DOI: 10.1063/1.3072787�

Synchronization of complex networks have been exten-
sively investigated in many research and application
fields. Most of this research has been focused upon a co-
herent behavior within a network, where each node of the
network arrives at the same steady state. This kind of
synchronization, which was called “inner synchroniza-
tion” in Ref. 20 has attracted broad attention. As a mat-
ter of fact, in real-world situations, there also exist other
kinds of synchronization for complex networks, such as
“outer synchronization” between two networks as consid-
ered in Refs. 20 and 23 below, where under the assump-
tion that all individuals in two networks have completely
identical behaviors a “complete outer synchronization”
was studied. However, this kind of assumption may not
seem practical. Take the predator-prey interactions in
ecological communities as an example, where predators
and preys influence one another’s evolution. Without
preys there would not be predators, while too many
predators would bring the preys into extinction. The
communities of predators and preys will finally reach
harmonious coexistence without man made sabotage. It is
worth noting that inside the networks of predators or
preys, one individual always behaves differently from an-
other. Thus it is more practical to assume that each node
has different dynamics. Furthermore, the interactions of
predators themselves usually differ from that of preys,
that is, the topological structure of the predators commu-
nity is different from that of the preys community. There-
fore, synchronization between two different complex net-
works, where the difference results from node diverseness
as well as topological difference, is a more practical and
significant problem worth investigating.

I. INTRODUCTION

Complex networks have received rapidly increasing at-
tention from different fields in recent years. From the internet
to the world wide web, from communication networks to
social organizations, from food webs to ecological commu-

nities, etc., complex networks widely exist in our life and are
presently prominent candidates to describe sophisticated col-
laborative dynamics in many sciences.1–6

So far, the dynamics of complex networks has been ex-
tensively investigated, in which synchronization is a typical
topic that has attracted lots of interests. Synchronization is a
fundamental phenomenon that enables coherent behavior in
networks as a result of interactions. Pecora et al. used the
master stability function approach to determine the stability
of the synchronous state in coupled systems.7,8 Chen et al.
imposed constraints on the coupling strengths to ensure sta-
bility of the synchronized states in arbitrarily coupled dy-
namical systems based on the master stability function to-
gether with Gershörin disk theory.9 Wu et al. investigated
synchronization in linearly coupled identical dynamical sys-
tems by the Lyapunov direct method and proved that strong
enough mutual diffusive coupling will synchronize an array
of identical cells.10 The Lyapunov function method was also
employed in some of Wu’s later works on synchronization of
coupled systems.11–14 Wang and Chen studied synchroniza-
tion in two specific kinds of networks: Scale-free networks
and small-world networks.15,16 Lü and Chen introduced a
time-varying dynamical network and further investigated its
synchronization criteria.17 Zhou et al. and Lu considered
synchronization in networks by integrating network models
and an adaptive technique.18,19

Researches on synchronization of networks mentioned
above focused on the phenomenon that all nodes in a net-
work achieve a coherent behavior, which was called inner
synchronization,20 as it is a collective behavior within a net-
work. In reality, there exist other kinds of network synchro-
nization, for example, synchronization between two or more
networks, which was termed outer synchronization in Ref.
20. A representative illustration is predator-prey interactions
in ecological communities,21 where predators and preys can
influence one another’s evolution. For example, plant-eating
animals, such as mice, rats, and rabbits, would soon strip the
land bare without the controlling effect of predators. Areas
where large predators have been reduced through trapping,
shooting, and other predator-control methods often develop
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large populations of mice, rats, and rabbits that can destroy
the plants needed by other wildlife species for both food and
shelter. If the predators had been allowed to remain, the prey
species probably would have been kept under control. In a
word, the relationship between the network of predators and
that of preys is important in maintaining balance among dif-
ferent animal species. Mankind has been trying every means
to maintain this balance. Another example is the balance of
intestinal microflora for human beings.22 A vast amount of
good �or beneficial� bacteria living inside our digestive sys-
tem which perform very important functions exist alongside
with bad �or pathogenic� bacteria which produce harmful
substance and create serious problems. The bacteria are es-
sentially competing with one other for space and nutrients. A
good balance of the two communities of good and bad bac-
teria provides protection against a broad range of pathogens
while discomforts and symptoms of disease can result when
factors like antibiotics, poor diet, and stress cause this bal-
ance to be disrupted. There are a great many examples about
relationships between different networks, which also indi-
cates that it is necessary and significant to investigate the
dynamics between different networks.

Recently, Li et al.20 pioneered in studying outer synchro-
nization between two unidirectionally coupled networks and
derived a criterion for the synchronization between two net-
works with identical topological structures. Shortly after,
Tang et al. analyzed outer synchronization between two
complex networks with nonidentical topologies using adap-
tive controllers.23 In these two papers, it is assumed that each
node in both networks has identical dynamics, and the cor-
responding nodes in two networks manifest completely the
same dynamics, so strictly speaking, it is complete outer syn-
chronization between two networks. However, nodes in dif-
ferent networks usually have different dynamics �parameter
mismatch or structural discrepancy�, while the two networks
may still behave in a synchronous way. This kind of synchro-
nization is called generalized synchronization,24–27 which
represents another degree of coherence. For instance, in the
aforementioned predator and prey networks, predators and
preys may finally reach a synchronous state even though they
have entirely different behaviors �even individuals inside a
network may behave in quite diverse ways�.

Motivated by the above discussions, in this paper, we
introduce the concept of generalized outer synchronization
between two complex dynamical networks, where nodes in
one network synchronize with their counterparts in the other
network through some smooth functions. A criterion on gen-
eralized outer synchronization is derived based on Barbalat’s
lemma, and then two corollaries are drawn. In our study,
each network can be undirected or directed, connected or
disconnected, and nodes in either network may have identi-
cal or different dynamics. As an extension of complete syn-
chronization, the generalized outer synchronization studied
here has a much wider application range than complete outer
synchronization.

The rest of this paper is organized as follows: Network
models and some preliminaries are introduced in Sec. II. In
Sec. III, using nonlinear control, we present a criterion for
generalized outer synchronization between two networks

with arbitrary node dynamics and topological structures.
Some numerical simulations are provided to illustrate the
feasibility and effectiveness of the proposed approach in Sec.
IV. Finally, concluding remarks are given in Sec. V.

II. PROBLEM DESCRIPTION

A. Network models

Some necessary notations that will be used throughout
this paper are first introduced. � denotes the transpose of a
matrix or a vector. ��� indicates the 2-norm of a vector �, i.e.,
���=����. Ii�Ri�i represents the identity matrix with di-
mension i. � denotes the Kronecker product of two
matrices.28 �m�A� represents the maximum eigenvalue of a
square matrix A.

Consider a weighted general complex dynamical net-
work consisting of N dynamical nodes with linear couplings,
which is characterized by

ẋi�t� = fi�xi�t�� + �
j=1

N

cijPx j�t�, i = 1,2, . . . ,N . �1�

Here xi�t�= �xi1�t� ,xi2�t� , . . . ,xin�t����Rn is the state vector
of the ith node, and fi :Rn→Rn is a smooth nonlinear vector-
valued function governing the evolution of xi�t� in the ab-
sence of interactions with other nodes. P�Rn�n is an inner-
coupling matrix determining the interaction of variables. C
= �cij�N�N�RN�N is the coupling configuration matrix repre-
senting the coupling strength and the topological structure of
the network, in which cij is defined as follows: if there is a
connection from node i to node j�j� i�, cij�0; otherwise,
cij =0. The diagonal elements of matrix C are defined as

cii = − �
j=1,j�i

N

cij, i = 1,2, . . . ,N .

Consider another complex dynamical network contain-
ing N dynamical nodes as follows:

ẏi�t� = Gi�yi�t�� + �
j=1

N

dijQy j�t�, i = 1,2, . . . ,N , �2�

where yi�t�= �yi1�t� ,yi2�t� , . . . ,yim�t����Rm is the state vec-
tor of the ith node, and Gi :Rm→Rm is a smooth nonlinear
vector-valued function governing the evolution of the ith iso-
lated node yi�t�. Q�Rm�m is the inner-coupling matrix, and
D= �dij�N�N�RN�N is the coupling configuration matrix,
which has the same meaning as that of matrix C. In the
following, we will take Eq. �1� as the drive network and Eq.
�2� as the response network.

It is well-known that many systems, such as the Lorenz
system, Chen system, Lü system, Rössler system, Chua’s
circuit, hyperchaotic Rössler system, hyperchaotic Chen and
Lü system, can be written in the following form:

ẏ = Ay + g�y� ,

where A�Rm�m is the Jacobian matrix of the system at the
origin, and g�y� is the nonlinear part. Therefore, without loss
of generality, we can describe the response network �2� with
control as
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ẏi�t� = Aiyi�t� + gi�yi�t�� + �
j=1

N

dijQy j�t� + ui, i = 1,2, . . . ,N ,

�3�

where Aiyi and gi are, respectively, the linear and nonlinear
part of the ith node, and ui is the ith controller to be designed
according to the specific node dynamics and topological
structures of the drive and response networks.

B. Preliminaries

In this subsection, we will first give a definition of gen-
eralized outer synchronization between two networks, fol-
lowed by an assumption and a lemma which will be needed
in the subsequent study.

Definition 1: Let �i :Rn→Rm�i=1,2 , . . . ,N� be continu-
ously differentiable vector maps. Network �1� is said to
achieve generalized outer synchronization with network �3�
if

lim
t→�

�
i=1

N

�yi�t� − �i�xi�t��� = 0.

Usually, function gi�·� is globally Lipschitz continuous,
i.e., the following assumption is satisfied.

Assumption 1: For function gi�z��i=1,2 , . . . ,N�, there
exists a positive constant hi�i=1,2 , . . . ,N� such that

�gi�z1� − gi�z2�� � hi�z1 − z2�

holds for any z1 and z2.
Lemma 1: �Barbalat’s lemma29� If f�t� is non-negative,

integrable, and uniformly continuous on �a , +��, then f�t�
→0 as t→�.

III. GENERALIZED OUTER SYNCHRONIZATION
CRITERIA

With the network models and the definition given previ-
ously, we arrive at the following main theorem.

Theorem 1: Suppose that Assumption 1 holds. The drive
network �1� can achieve generalized outer synchronization
with the response network �3� under the following control
law:

ui = D�i�xi� · fi�xi� − Ai�i�xi� − gi��i�xi�� − kei

− �
j=1

N

dijQ� j�x j� + D�i�xi��
j=1

N

cijPx j, i = 1,2, . . . ,N ,

�4�

where D�i�xi� is the Jacobian matrix of the map �i�xi�, ei

=yi−�i�xi�, and k is a sufficiently large positive constant.
Proof: Since ei=yi−�i�xi�, from networks �1� and �3�,

together with the control scheme �4�, we obtain the error
dynamical network described by

ėi = ẏi − D�i�xi� · ẋi

= Aiei − kei + gi�yi� − gi��i�xi�� + �
j=1

N

dijQe j,

i = 1,2, . . . ,N . �5�

Let e= �e1
��t� ,e2

��t� , . . . ,eN
��t����RmN, and consider the

following Lyapunov candidate function:

V�t� =
1

2
e�e =

1

2�
i=1

N

ei
��t�ei�t� . �6�

Calculating its derivative along the trajectories of Eq. �5�,
under Assumption 1, we obtain

�V̇�t���5� = �
i=1

N

ei
�ėi

= �
i=1

N

ei
�Aiei − k�

i=1

N

ei
�ei + �

i=1

N

ei
��gi�yi� − gi��i�xi���

+ �
i=1

N

ei
��

j=1

N

dijQe j

� �
i=1

N

ei
�Aiei − k�

i=1

N

ei
�ei + �

i=1

N

hiei
�ei

+ �
i=1

N

ei
��

j=1

N

dijQe j

= e�Ae − ke�e + �
i=1

N

hiei
�ei + e�Qe

� 	�m	A + A�

2

 − k + max

i
�hi� + �m	Q + Q�

2


e�e,

where A=diag�A1 ,A2 , . . . ,AN��RmN�mN �i.e., the ith diago-
nal square block of A is Ai�, and Q=D � Q. Taking k�k*

=maxi�hi�+�m�A+A� /2�+�m�Q+Q� /2�+1, we get

�V̇�t���5� � − eTe . �7�

Obviously, V̇�t��0, so V�t� is uniformly continuous. Fur-
thermore, we have

V�t� � V�0�exp�− 2t� , �8�

thus limt→� 0
t V���d� exists, namely, V�t� is integrable on

�0, +��. According to Barbalat’s lemma, we obtain
limt→+� V�t�=0, which implies limt→+� ei�t�=0 for i
=1,2 , . . . ,N. Therefore, networks �1� and �3� asymptotically
achieve generalized outer synchronization. This completes
the proof. �

Remark 1: In the theorem, the configuration matrices C
and D need not be symmetric or irreducible, which means
that networks �1� and �3� can be undirected or directed net-
works, and they may also contain isolated nodes and clusters.
In addition, there is not any constraint imposed on the inner-
coupling matrices P and Q. Moreover, each node may have
different node dynamics. Therefore, our method is applicable
to a large variety of complex dynamical networks.
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Remark 2: The feedback gain k can be chosen properly
to adjust the synchronization speed. Theoretically, a larger k
may lead to faster synchronization. However, it is noted that
k�k* is only a sufficient condition but not a necessary one.
Later simulations will show that a small value of k can also
lead to generalized outer synchronization quickly.

Based on Theorem 1, we can easily derive the following
corollaries:

Corollary 1: Suppose that Assumption 1 holds. If net-
works �1� and �3� have the same topological structures and
uniform inner-coupling matrices, then the two networks can
achieve complete outer synchronization under the following
control scheme:

ui = fi�xi� − Aixi − gi�xi� − kei, i = 1,2, . . . ,N , �9�

where k�k*=maxi�hi�+�m�A+A� /2�+�m�Q+Q� /2�+1.
Corollary 2: Suppose that Assumption 1 holds. If the ith

nodes in networks �1� and �3� have identical dynamics,
namely, fi=Gi�i=1,2 , . . . ,N�, then the two networks can
achieve complete outer synchronization under the following
control scheme:

ui = − kei + �
j=1

N

�cijP − dijQ�x j, i = 1,2, . . . ,N , �10�

where k�k*=maxi�hi�+�m�A+A� /2�+�m�Q+Q� /2�+1.
Remark 3: This corollary presents a control scheme on

complete outer synchronization for the case as studied in
Ref. 23. In that paper, an adaptive technique was employed,
and for two networks of size N, N2+N additional adaptive
controllers have to be utilized, which immensely increases
the control cost. However, according to our Corollary 2, only
N simple linear controllers are needed, which are much
easier to implement.

In particular, if the two networks �1� and �3� have iden-
tical topological structures and inner-coupling matrices, then
the controllers �10� are further simplified into

ui = − kei �i = 1,2, . . . ,N�

for complete outer synchronization. This is an extension of
the case as studied in Ref. 20. Note that in Ref. 20 under the
additional assumption that fi= f=Gi for i=1,2 , . . . ,N, a cri-
terion for local synchronization was derived. In contrast, the
synchronization obtained herein is global synchronization.

IV. NUMERICAL SIMULATIONS

In this section, illustrative examples will be provided to
verify the effectiveness of the control scheme obtained in the
preceding section. For this purpose, we consider several
benchmark chaotic systems, such as Lorenz system, Chen
system, and Lü systems.

Lorenz system is known to be a simplified model of
several physical systems. It was originally derived from a
model of the Earth’s atmospheric convection flow heated
from below and cooled from above.30 Furthermore, it has
been reported that Lorenz equations may describe such dif-
ferent systems as laser devices, disk dynamos, and several

problems related to convection.31 Later on, the Lorenz attrac-
tor was mathematically confirmed to exist.32 The Lorenz sys-
tem is represented by

ẋ = � a�x2 − x1�
cx1 − 0x1x3 − x2

x1x2 − bx3
� , �11�

which has a chaotic attractor when a=10, b=8 /3, c=28.
Chen system is a typical chaos anticontrol model, which

has a more complicated topological structure than the Lorenz
attractor.33 It has been implemented by circuitry,34 and has
wide application potential in secure communications. The
nonlinear differential equations that describe the Chen sys-
tem are

ẋ = � a�x2 − x1�
�c − a�x1 − x1x3 + cx2

x1x2 − bx3
� , �12�

which has a chaotic attractor when a=35, b=3, c=28.
Lü system is a typical transition system, which connects

the Lorenz and Chen attractors and represents the transition
from one to the other.35 Lü system is described by

ẋ = � a�x2 − x1�
− x1x3 + cx2

x1x2 − bx3
� , �13�

which has a chaotic attractor when a=36, b=3, c=20. Later
on Lü et al. proposed a unified chaotic system,36 which con-
tains Lorenz system and Chen system as two extremes and
Lü system as a special case. The unified chaotic system is
described by

ẋ =�
�25	 + 10��x2 − x1�

�28 − 35	�x1 − x1x3 + �29	 − 1�x2

x1x2 −
	 + 8

3
x3

� , �14�

where 	� �0,1�. Obviously, system �14� is the original Lo-
renz system for 	=0 while it reduces to the original Chen
system for 	=1. When 	=0.8, system �14� is just the critical
system, Lü system. In fact, system �14� bridges the gap be-
tween Lorenz system and Chen system. Especially, system
�14� is always chaotic over the whole interval 	� �0,1�.

As is known, there are many hyperchaotic systems dis-
covered in the high-dimensional social and economical sys-
tems. Typical examples are the four-dimensional �4D� hyper-
chaotic Rössler system,37 hyperchaotic Lorenz–Haken
system,38 hyperchaotic Chua’s circuit,39 and hyperchaotic
Chen system.40 Since hyperchaotic systems have the charac-
teristics of high capacity, high security, and high efficiency,
they have broad application potential in secure communica-
tions, nonlinear circuits, biological systems, neural networks,
etc. In Ref. 41, Chen et al. presented the hyperchaotic Lü
system,41 which is described by
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ẋ =�
a�x2 − x1� + x4

− x1x3 + cx2

x1x2 − bx3

x1x3 + dx4

� . �15�

When a=36, b=3, c=20, system �15� has a periodic orbit for
−1.03�d�−0.46, a chaotic attractor for −0.46
d�−0.35,
and a hyperchaotic attractor for −0.35
d�1.30.

In what follows, we will take the unified chaotic system
and the hyperchaotic Lü system as node dynamics to illus-
trate our proposed method for generalized outer synchroni-
zation. For brevity, we always take P and Q as identity ma-
trices with proper dimensions. In all the following
simulations, we assume the drive network is a star network,
while the response network is a directed ring network, as
shown in Fig. 1. All the coupling strength is set to be 1 and
the network size N is taken as 50.

A. Complete synchronization between two networks

Consider the unified chaotic system �14� as isolated node
dynamics. Let 	 for the ith node be �sin i� in the drive net-
work and �sin i2� in the response network, namely, each node
in the two networks are different but all chaotic. Thus we
have

fi�xi� =�
�25�sin i� + 10��xi2 − xi1�

�28 − 35�sin i��xi1 − xi1xi3 + �29�sin i� − 1�xi2

xi1xi2 −
�sin i� + 8

3
xi3

� ,

�16�

Ai =�
− �25�sin i2� + 10� 25�sin i2� + 10 0

28 − 35�sin i2� 29�sin i2� − 1 0

0 0
�sin i2� + 8

3
� , �17�

and

gi�y� = g�y� = � 0

− y1y3

y1y2
� . �18�

For any vectors y and z of the unified chaotic system �14�,
there exists a positive constant M =57 such that �yp��M,
�zp��M for 1� p�3 since the unified chaotic system is
bounded in a certain region.42 Therefore, one has

�g�y� − g�z��

= ��y1�y3 − z3� + z3�y1 − z1��2 + �y1�y2 − z2� + z2�y1 − z1��2

� �2M�y − z� ,

that is, Assumption 1 is satisfied. So we may take hi=�2M
for i=1,2 , . . . ,N.

For complete synchronization, the map �i is defined as

yi = �i�xi� = ��xi� = xi,

then

D�i�xi� = �1 0 0

0 1 0

0 0 1
� .

Furthermore, �m�A+A� /2�=31, �m�Q+Q� /2�=0, which
gives k*=112.6.

With the parameters specified above, the controllers are
designed according to the control law �4�. The initial values
for the ith node in the drive and response networks are set to
be xi�0�= �0.1i ,−0.2i ,0.3i�� and yi�0�= �0.2i ,−0.3i ,0.4i��,
respectively. Let E�t�=�i=1

N �yi�t�−�i�xi�t��� denote the syn-
chronization error between the two networks. Figure 2 shows
the phase diagrams of node 5 in the two networks without
control. Figure 3�a� displays the evolution of E�t� along time
t without control. When the control law is imposed, the syn-
chronization error quickly tends to zero, as displayed in

FIG. 1. �Top� a star coupled network; �bottom� a directed ring network.
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Fig. 3�b� for k=5. This further indicates that k�k* is only a
sufficient condition, and a small value of k can also render a
fast synchronization.

B. Generalized synchronization with uniform node
dimension in the drive and response networks

Still take the unified chaotic system as node dynamics,
with 	 for the ith node being �sin i� and �sin i2� in the drive
and response networks, respectively.

Define two different types of maps �i as

yi = �i�xi� = ��xi� = �2xi1,xi2 + 1,xi3
2 ��, i = 1,2, . . . ,

N

2

and

yi = �i�xi� = ��xi� = �xi2,xi1xi2,xi1 + 2xi3��,

i =
N

2
+ 1,

N

2
+ 2, . . . ,N .

Then

D�i�xi� = �2 0 0

0 1 0

0 0 2xi3
�, i = 1,2, . . . ,

N

2
;

and

D�i�xi� = � 0 1 0

xi2 xi1 0

1 0 2
�, i =

N

2
+ 1,

N

2
+ 2, . . . ,N .

With the expressions above, we design controllers ui

�i=1,2 , . . . ,N� according to the control scheme �4�. The ini-
tial conditions are set as the same as those in the previous
subsection. The synchronization error with k=3 is shown in
Fig. 4. It is seen from the figure that the generalized outer
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FIG. 2. �Color online� Phase diagrams of node 5 without control. �a� Node
5 in the drive network with 	= �sin 5�=0.9589; �b� Node 5 in the response
network with 	= �sin 52�=0.1324.
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FIG. 3. �Color online� Complete synchronization errors of the drive and
response networks, where the ith node in the drive and response networks is
a unified chaotic system �14� with 	= �sin i� and 	= �sin i2�, respectively. �a�
without control; �b� control imposed with k=5.
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FIG. 4. �Color online� Generalized synchronization error between the drive
and response networks with k=3.
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synchronization is attained after a quite short transient
period.

Remark 4: In this simulation, though there are two dif-
ferent forms of the maps �i�xi� which vary for nodes, the
generalized outer synchronization is achieved under our pro-
posed scheme. For more different types of the maps �i�xi�,
similar work can be generalized easily.

C. Generalized synchronization with different node
dimensions in the drive and response
networks

In this subsection, we consider the hyperchaotic Lü sys-
tem as node dynamics in the drive network, and the unified
chaotic system as node dynamics in the response network,
where 	 for the ith node is still taken as �sin i2�. The maps �i

are defined variously for different nodes, with

yi = �i�xi� = �2ixi1,xi2 + 0.5xi4,xi3 − i��, i = 1,2, . . . ,N .

Therefore,

D�i�xi� = �2i 0 0 0

0 1 0 0.5

0 0 1 0
� .

The controllers ui �i=1,2 , . . . ,N� are then designed ac-
cording to the control law �4�. Select the initial values as
xi�0�= �−0.1i ,−0.2i ,0.3i ,0.4i�� in the drive network and
yi�0�= �0.2i ,−0.3i ,0.4i�� in the response network. To begin
with, let all the nodes in the drive network be the identical
hyperchaotic Lü system with a=36, b=3, c=20, d=−0.4,
where each node displays a chaotic attractor. Figure 5 plots
the generalized outer synchronization error E�t� along time t,
with k=15. Figure 6 shows the dynamics of node 5 in the
drive and response networks, where projections on different
phase space are displayed. Next, we assume that each node
in the drive network is distinct. Assume the ith node is a
hyperchaotic Lü system with a=36, b=3, c=20 but d=−1
+ �2.3i / N�. So d varies from about −1 to 1.3, and the nodes
transit from a periodic orbit to a hyperchaotic attractor, as
discussed previously. Figure 7 displays the generalized outer
synchronization error E�t� with k=15, which tends to zero

after a short transient period. To take a clearer view of the
relationships between dynamics of nodes in two networks,
we also depict some corresponding subvariables of node 25
in the xy plane, as shown in Fig. 8, where transients are
discarded.

V. CONCLUSIONS

Synchronization within complex networks has been ex-
tensively studied in the past decade. However, investigation
on synchronization between two networks �called outer syn-
chronization� is still at the initial stage. To the best of our
knowledge, there have been only a few papers in the litera-
ture that focus on complete outer synchronization between
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FIG. 5. �Color online� Generalized synchronization error between the drive
and response networks with k=15, where each node in the drive network
displays a hyperchaotic Lü attractor with a=36, b=3, c=20, d=−0.4.
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FIG. 6. �Color online� Phase diagrams for node 5, where �yi1 ,yi2 ,yi3�
= �2ixi1 ,xi2+0.5xi4 ,xi3− i� with i=5. �a� projection in the �xi3 ,xi1 ,xi2�-phase
space of node 5 in the drive network; �b� projection in the �xi3 ,xi1 ,xi4�-phase
space of node 5 in the drive network; �c� controlled node 5 in the response
network with 	= �sin 52�=0.1324.
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two networks, where it is required that all the nodes should
have the same dynamical behaviors. In this paper, we have
investigated generalized outer synchronization between two
complex dynamical networks with different topologies and
diverse node dynamics. We have proposed a nonlinear con-
trol scheme which is guaranteed to achieve this generalized

outer synchronization. When two complex networks have the
same topological structures or identical dynamics, the pro-
posed control scheme for achieving generalized outer syn-
chronization reduces to a simpler form. The applicability of
the theoretical findings has been validated by the computer
simulations.
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