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Recently, the assortative mixing of complex networks has received much attention partly because
of its significance in various social networks. In this paper, a new scheme to generate an assorta-
tive growth network with given degree distribution is presented using a Monte Carlo sampling
method. Since the degrees of a great number of real-life networks obey either power-law or
Poisson distribution, we employ these two distributions to grow our models. The models gener-
ated by this method exhibit interesting characteristics such as high average path length, high
clustering coefficient and strong rich-club effects.
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1. Introduction

Nowadays, examples of complex networks have been
found in every corner of the world, such as the
Internet, World Wide Web, communication net-
works, power grid networks, social networks, genetic
regulatory networks, and so on. Over the past two
decades, complex networks have been intensively
studied in various disciplines. The abundant liter-
ature has focused on exploring complex networks
from many different angles including modeling net-
works in real life [Small & Tse, 2005; Small et al.,
2007; Catanzaro et al., 2004] analyzing nonlinear
time series with a complex network transformation
[Zhang & Small, 2006], identifying topology from
existing dynamical networks [Zhou & Lu, 2007] and
controlling complex networks to reach synchroniza-
tion [Zhou et al., 2006].

Many observable real-life networks possess an
important characteristic of “assortative mixing”

or “disassortative mixing” on degree. “Assortative
mixing” on degree means that, high-degree vertices
are likely to become associated with other high-
degree ones, and low-degree vertices would tend to
be linked with other low-degree vertices, while “dis-
assortative mixing” means that low-degree vertices
are more likely to be connected with high-degree
ones, and vice versa.

There have been a few pieces of work on mod-
eling complex networks by assortativity. Newman
[2003a] established a scheme to generate a random
network having a particular value of the matrix
E, whose element ejk is the fraction of edges that
connect vertices of degree j and k; Catanzaro et al.
[2004] presented a network growth model for social
networks by preferential attachment and assorta-
tive attachment; Xulvi-Brunet and Sokolov [2004]
focused on enhancing assortativity of an exist-
ing scale-free network through rewiring two links
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between four endpoints without changing the degree
of all the nodes. Our new model presented in this
paper, however, is a growing scale-free network gen-
erated as assortatively as possible based on a greedy
algorithm at a specific degree of distribution.

The paper is organized as follows. Section 2
describes the feature of assortativity and the algo-
rithm for generating the assortative network with a
given degree of distribution. The models generated
using the given power-law or Poisson degree dis-
tributions are introduced in Sec. 3; meanwhile, the
key properties, including assortativity, average path
length, clustering coefficient, and rich-club charac-
teristics are detailed in this section. Finally, the con-
clusions are made in Sec. 4.

2. The Algorithm for an Assortative
Network with a Given Degree of
Distribution

2.1. Assortativity

Assortative mixing can have a profound effect
on the properties of a network. A distinct pat-
tern of assortative mixing depends on information
concerning individual network nodes. The widely
used approach is to consider assortative mixing
by degree, which allows for connections between
nodes that have similar degrees. Counterparts of
this scheme can be found in social networks. For
example, film actors are likely to be collaborators
with those that are equally prolific, or a new stu-
dent is likely to become friends with others who are
similarly solitary.

For convenience, only an undirected network is
considered in this paper. As mentioned in the pre-
vious section, the matrix E = (eij) is an important
quantity to characterize assortative mixing. Denote
the fraction of edges in the entire network that
is associated with i-type nodes (typically this will
mean precisely that their degrees are i) as ai. It is
obvious that ∑

j

eij =
∑

i

eij = ai.

Newman defined an assortativity coefficient
using E and ai in [Newman, 2003a] by

r =

∑
i

eii −
∑

i

a2
i

1 −
∑

i

a2
i

=
TrE− ‖E2‖

1 − ‖E2‖ , (1)

where TrE means the trajectory of matrix E, ‖ · ‖
represents 2-norm of a matrix. It can be found that
if there are no assortative features, say in Erdös–
Rényi (ER) random network [Erdös & Rényi, 1960],
we have r = 0 since eii = a2

i . If r > 0, then the
network is assortative, while r < 0 represents a dis-
assortative mixing network.

If we denote P (k) as the probability that a ran-
domly chosen node whose degree is k, the excess
degree of the node at the end of an edge is dis-
tributed according to Newman [2001]

q(k) =
(k + 1)P (k + 1)

〈k〉 ,

where 〈k〉 is the mean degree of the network. It can
be found that

∑
j ejk = q(k). Then we get another

form of assortative coefficient as follows [Newman,
2002]

r =

∑
ij

jk(ejk − q(j)q(k))

σ2
q

, (2)

where σq is the standard deviation of the distribu-
tion q(k). For the practical purpose of calculating
the assortativity coefficient on an actual network,
we can use the following form [Newman, 2002]

r =

M−1
∑

i

jiki −
[
M−1

∑
i

1
2
(ji + ki)

]2

M−1
∑

i

1
2
(j2

i + k2
i ) −

[
M−1

∑
i

1
2
(ji + ki)

]2 ,

(3)

where ji and ki are the degrees of the two endpoints
of ith edge, M is the total number of edges in the
network.

2.2. The algorithm

In this part, we present the new scheme using Monte
Carlo sampling method for modeling an assorta-
tive network with a given degree distribution. First
we determine the network size N , and establish a
degree distribution P (k) for the whole network.

A fully connected network with size n0 is
employed to initiate the model. At each step t
(t = 1, 2, . . . , N − n0), introduce a new node into
the network, and choose its degree from the set
Ω = {k|1 ≤ k ≤ min{n0 + t − 1, kmax}} randomly,
where kmax is the critical maximum degree satisfy-
ing NP(k) ≥ 1. Before adding a new node to the



December 8, 2008 18:55 02253

Generating an Assortative Network with a Given Degree Distribution 3497

existing network, judge whether the degree to be
assigned to the new node satisfies Nk ≤ NP(k),
where Nk is the number of nodes whose degrees
are k. If it is not the case, generate another degree
from the set Ω and repeat the above procedure.
Then randomly select k existing nodes to be con-
nected to the new node as assortatively as possi-
ble, provided that those vertices whose degrees are
about to increase satisfy Nk+1 ≤ NP(k + 1). The
assortative connecting means that the new node is
linked to those nodes that have the same degree.
If no such vertices are available, then the new node
will attach to those whose degree is larger or smaller
by one. If, again, this condition cannot be met, con-
nect it to those with degree larger or smaller by
two, etc. Once the new vertex has been success-
fully added into the existing network, proceed to
step t + 1.

2.3. Discussion

In the assortatively growing process, those present
nodes to be linked to the new node are chosen
randomly. In the real world, however, this is not
always the case. Take the social network for exam-
ple, when a newcomer chooses his friends in a com-
munity, some certain rules may often be obeyed
such as the “oldest preferential attachment” or the
“newest preferential attachment”. That is, a new-
comer may be more willing to make friends with
those senior peers or he may prefer to be affili-
ated with more junior colleagues. These ideas can
be illustrated with a counterpart in social collabo-
ration network, where there is a strict hierarchical
social structure and an assortative number of col-
laborators within different layers. For example, in
a certain community, those senior individuals may
have priority when obtaining collaborators. While
in a vibrant cooperative system, newcomers may be
more willing to cooperate with other neophytes.

3. Properties of the Presented Models

3.1. Degree distribution

Barabási and Albert (BA) introduced a grow-
ing network model [Barabási & Albert, 1999] of
preferential attachment to nodes with already high
degree in 1999. This model naturally gives rise
to hubs with a degree distribution following a
power-law. This kind of network has been called
scale-free thereafter. It has been proved that numer-
ous practical networks are scale-free, namely the

degrees of many real-world networks obey power-
law distribution. On the other hand, small-world
network and random network have also been pro-
posed to characterize actual networks. Among
them, the degrees of the Watts–Strogtz (WS)
small-world network [Watts & Strogatz, 1998], the
Newman–Watts (NW) small-world network [New-
man & Watts, 1999], and the classic Erdös–Rényi
(ER) random network [Erdös & Rényi, 1960] obey
Poisson distribution [Barrat & Weigt, 2000; Bol-
lobás, 2001]. Therefore, power-law and Poisson dis-
tributions are the two most typical degree distribu-
tions in observable networks.

Hence, in our simulations we focus on net-
works with both power-law and Poisson degree dis-
tributions. The denotations SFO, SFN, SFR, PO,
PN and PR are the abbreviation of the scale-free
oldest-preferential assortative network, the scale-
free newest-preferential assortative network, the
scale-free assortative network with randomly cho-
sen nodes to be connected to the new node, the
oldest-preferential assortative network with Poisson
degree distribution, the newest-preferential assorta-
tive network with Poisson degree distribution, and
the assortative network with Poisson degree distri-
bution as well as randomly chosen nodes to be con-
nected to the new node. The assortative networks
to be generated with degree distributions P (k) =
(N/(N − 1))k−2 and P (k) = 〈k〉ke−〈k〉/k! are
depicted in Fig. 1, in which the existing nodes to be
associated with the new node are chosen randomly,
where m0 = 6, N = 200. It should be noted that in
all the simulations 〈k〉 = (N/(N − 1))

∑kSF
max

k=1 (1/k)
in the Poisson degree distribution network is set
the same as that in the scale-free network, where
kSF

max represents kmax in the scale-free network. It
can be seen that their degrees obey strict power-
law or Poisson distribution in Fig. 2.

3.2. Assortativity coefficient

Using formula (3), the assortativity coefficients of
the SFO, SFN, SFR, PO, PN and PR networks are
depicted in Fig. 3. We find that all of them are much
larger than that of the BA scale-free network and
the ER random network, whose assortativity coeffi-
cients have the same value r = 0 [Newman, 2003b].
All the assortativity coefficients tend to grow with
the network size because of the assortative mix-
ing mechanism. The reason that the assortativity
coefficients of the Poisson degree distribution mod-
els are larger than those of the scale-free models is
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(a) (b)

Fig. 1. The network models to be generated with degree distributions (a) P (k) = (N/(N − 1))k−2 and (b) P (k) =

〈k〉ke−〈k〉/k!, in which the existing nodes to be associated with the new node are chosen randomly. Here, m0 = 6, N = 200,
and 〈k〉 = 4.79 in the Poisson degree distribution network is set the same as that in the scale-free network.
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Fig. 2. Degree distributions of the new models to be grown with power-law (a) P (k) = (N/(N − 1))k−2 and (b) Poisson

distribution P (k) = 〈k〉ke−〈k〉/k!.

explained below. Note that in the scale-free models,
there are a great number of vertices whose degrees
are very low, say, a small integer k0. Each of these
vertices possesses just k0 links, so under the cir-
cumstance of connectivity, many of them have to
be connected to those whose degree is k0 + 1, or
k0 + 2, etc. Then they have less chance to obtain
perfectly assortative attachment (the attachment to

those who have exactly the same degree). While in
the Poisson degree distribution models, the degrees
of most vertices are closer to the mean degree, which
is much higher than k0, hence they have more links
available to get perfectly assortative mixing. This
results in the much higher values of the assorta-
tivity coefficients in the Poisson degree distribution
models than that in the scale-free models.
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Fig. 3. Assortativity coefficients of (a) the scale-free models (SFN, SFO, SFR) and (b) the Poisson degree distribution models
(PN, PO, PR). All of them are much higher than that of the BA scale-free network and the ER random network (r = 0)
[Newman, 2003b], and tend to increase as the size of the network model grows.

3.3. Average path length

Average path length represents the average num-
ber of steps along the shortest paths for all possible
pairs of network nodes [Albert & Barabási, 2002]. It
is a measure of the efficiency of information trans-
fer or mass transport on a network and is usually
denoted as L. This concept can be explained as the
average number of friends you have to communi-
cate through when you want to contact a complete

stranger, or the average number of clicks which will
lead you from one website to another.

As is shown in Fig. 4, the average path lengths
of the SFO, PN, PO and PR networks have nearly
the same tendency that they scale linearly with
the network size, while the other two are much
lower. A small number of long-range links guar-
anteed by the “oldest preferential attachment” in
the scale-free models, as well as the great number of
vertices whose degrees are very low, lead to the long
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Fig. 4. Average path lengths of (a) the scale-free models (SFN, SFO, SFR) and (b) the Poisson degree distribution models
(PN, PO, PR). Clearly, the average path lengths of SFN, PN, PO, PR have nearly the same tendency that they scale linearly
with the network size.
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loops in the SFO network. We find that it is these
long loops that bring about a large average path
length in the SFO network. On the other hand,
with the high assortativity coefficient, the Poisson
degree distribution models possess very few long-
range links as is described in Fig. 1(b), and this
results in “huge” average path lengths. Since a net-
work can be regarded as a small-world one if the
average path length scales no more than logarithmi-
cally with its size N [Newman, 2002], we conclude
that the SFN, PN, PO and PR networks show a
“large-world” and under some circumstances even
a “huge-world” effect.

3.4. Clustering coefficient

Clustering coefficient is one of the three most robust
measures in network topology, along with the aver-
age path length and the degree distribution. Clus-
tering coefficient for a vertex is the proportion of
links between the vertices within its neighborhood
divided by the number of links that could possibly
exist between them. Clustering coefficient for the
whole network is defined by Watts and Strogatz as
the average value of the clustering coefficient for
each vertex [Watts & Strogatz, 1998].

Figure 5 reveals the similarly decreasing trends
of the clustering coefficients in the three scale-
free models (SFN, SFO, SFR), while the values of
the SFN and SFO networks are remarkably higher
than that of the SFR network. This is because the

“oldest” or “newest” preferential attachment guar-
antees that those nodes which are chosen to link
a new node have a high probability to have been
joined together. Furthermore, due to the fact that
the set of oldest nodes which are selected to be
attached to the new node with a particular degree
is roughly the same and that the set of the newest
nodes is dynamically changing, the clustering coeffi-
cient of the SFO network is a little higher than that
of the SFN network. Besides, since the lengths of
loops increase as network size expands, the cluster-
ing coefficients of the three models exhibit decreas-
ing tendency.

On the other hand, the clustering coefficients of
the three Poisson degree distribution models (PN,
PO, PR) rise rapidly with the network size. This
is because, for the Poisson degree distribution, the
maximum degree is much smaller than that in the
scale-free models, and then the degrees of most
of the new nodes generated are widely distributed
in the degree interval (the interval from the mini-
mum degree to the maximum degree). As the net-
work grows, the new node can be easily grouped
into existing clusters, because its degree can eas-
ily be matched to those of existing nodes. Thus
the clustering coefficient curves in Fig. 5(b) increase
greatly. In addition, we find that the “oldest pref-
erential attachment” makes the oldest nodes pos-
sess the highest degrees and connect to each other.
This leads to a higher level of clustering in the high
degree nodes than that in the PN network because
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Fig. 5. Clustering coefficients of (a) the scale-free models (SFN, SFO, SFR) and (b) the Poisson degree distribution models
(PN, PO, PR). There are similar trends of the clustering coefficients in the three scale-free models and the three Poisson
degree distribution models, respectively.
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Fig. 6. (a) Rich-club coefficients of the scale-free models (SFN, SFO, SFR) and (b) the Poisson degree distribution models
(PN, PO, PR), where N = 1000. It is shown that the rich-club coefficients in the Poisson degree distribution models with the
same degree distribution are slightly different at first and tend to be equal gradually.

the highest degree nodes are less clustered in the lat-
ter one. However, the clustering coefficients of the
nodes whose degrees are not so high in the PN net-
work are larger than that in the PO network for the
“newest preferential attachment”. Since there are a
great number of nodes whose degrees are near the
mean degree according to the Poisson degree dis-
tribution, the average value of the clustering coef-
ficient for each node in the PN network exhibits a
higher value.

3.5. Rich-club coefficient

Rich-club connectivity describes the characteristics
that high-degree nodes tend to be connected with
other high-degree nodes. When nodes in the net-
work are sorted by decreasing number of links that
each node possess, there are instances where groups
of nodes contain an identical number of links. Once
this occurs, they are arbitrarily assigned a posi-
tion within that group. The node rank s denotes
the position of a node on this ordered list, where
s is normalized by the total number of nodes N .
The rich-club connectivity coefficient of the s rich-
est nodes is defined by [Zhou & Mondragón, 2004]
to be

Φ(s/N) =
R

s(s − 1)/2

where R is the actual edge between the richest most
s nodes.

From Fig. 6, which is obtained by choosing the
network sizes N = 1000, it can be seen that the
assortative attachment mechanism and power-law
degree distribution lead to about 3% richest vertices
almost fully connected with each other and with sig-
nificantly less links to other poorer vertices. While
in the Poisson degree distribution models, the “old-
est preferential attachment” results in a more sig-
nificant rich-club property due to the fact that the
highest degree nodes, namely the oldest ones, are
connected to each other. The “newest preferential
attachment”, however, renders the highest nodes to
be less connected to each other. As a result, the rich-
club coefficients in the models with the same degree
distribution are slightly different at small s/N and
coincide at large s/N .

4. Conclusions

In summary, we have proposed a new scheme to
generate an assortative growth network with a given
degree distribution. Particularly, the key features of
our new models with given power-law and Poisson
degree distribution have been discussed in detail. In
view of the difference between the two degree dis-
tributions, we have found that our models exhibit
interesting characteristics. Despite possessing the
same assortative mixing mechanism, the assorta-
tivity coefficients of the Poisson degree distribution
models are much higher than that of the scale-free
models; the average path lengths of the former are
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very large or even huge compared to that of the
latter; the clustering coefficients show an opposite
tendency in the two different degree distribution
models; the rich-club coefficients of the former are
different at small s/N and coincide at large s/N ,
while that of the latter are nearly the same.
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Erdös, P. & Rényi, A. [1960] “On the evolution of ran-
dom graphs,” Science 5, 17–61.

Newman, M. E. J. & Watts, D. J. [1999] “Renormal-
ization group analysis of the small-world network
model,” Phys. Lett. A 263, 341–346.

Newman, M. E. J., Strogatz, S. H. & Watts, D. J. [2001]
“Random graphs with arbitrary degree distributions
and their applications,” Phys. Rev. E 64, 026118.

Newman, M. E. J. [2002] “Assortative mixing in net-
works,” Phys. Rev. Lett. 89, 208701.

Newman, M. E. J. [2003a] “Mixing pattern in networks,”
Phys. Rev. E 67, 026126.

Newman, M. E. J. [2003b] “The structure and function
of complex networks,” SIAM Rev. 45, 167–256.

Small, M. & Tse, C. K. [2005] “Small world and scale free
model of transmission of SARS,” Int. J. Bifurcation
and Chaos 15, 1745–1755.

Small, M., Walker, D. M. & Tse, C. K. [2007] “Scale-free
distribution of avian influenza outbreaks,” Phys. Rev.
Lett. 99, 188702.

Watts, D. J. & Strogatz, S. H. [1998] “Collective dynam-
ics of ‘Small-World’ networks,” Nature 393, 440–442.

Xulvi-Brunet, R. & Sokolov, I. M. [2004] “Reshuffling
scale-free networks: From random to assortative,”
Phys. Rev. E 70, 066102.

Zhang, J. & Small, M. [2006] “Complex network from
pseudoperiodic time series: Topology vs dynamics,”
Phys. Rev. Lett. 96, 238701.
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