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Abstract

Recently, various papers investigated the geometry features, synchronization and control of complex network provided

with certain topology. While, the exact topology of a network is sometimes unknown or uncertain. Using Lyapunov

theory, we propose an adaptive feedback controlling method to identify the exact topology of a rather general weighted

complex dynamical network model. By receiving the network nodes evolution, the topology of such kind of network with

identical or different nodes, or even with switching topology can be monitored. Experiments show that the methods

presented in this paper are of high accuracy with good performance.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, complex networks exist in every corner of the world, from communication networks to social
networks, from cellular networks to metabolic networks, from Internet to World Wide Web [1–11]. Research
on complex networks is already in the ascendant.

Many existing literatures focused on investigating the geometry features, synchronization and control of
complex dynamical network provided with certain topology [12–20]. While, in the real world, the exact
topology of a complex dynamical network is sometimes unknown or uncertain [21]. In view of its
characteristics, identifying topology of complex network becomes a key problem in many disciplines. Such as
the protein–DNA (deoxyribonucleic acid) interactions in the regulation of various cellular processes [1,6–8].
Protein–DNA interactions play pivotal roles in many cell processes, such as DNA replication, modification,
repair and RNA (ribonucleic acid) transcription. It is of significance that by monitoring dynamic behavior of
proteins during the process of recognition through NMR (nuclear magnetic resonance) technology [8], the
topology structure of the interaction network, though in which different kinds of nodes may exist, can be
identified. Another interesting case is the stock network. In the stock market, one of the main reasons
responsible for the fluctuations of it—the price changes per unit time—is believed to be herding behavior,
e front matter r 2007 Elsevier B.V. All rights reserved.
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which is characterized by the fact that decision-making of single trader is influenced by that of others [9,10].
But how much effect on them by each of other people? Maybe the investors themselves have no clear idea.
While through monitoring the behavior of all the members influenced in a community, the interactions among
them can be investigated and quantified systematically. Except what have been mentioned above, this
technology can be implemented to many other fields, such as remote control and diagnostics, disease
transmission, management and administration of cyber bar, and so on.

Therefore, topology identification becomes critical in the research of complex networks. By adaptive
feedback controlling method, the real network is served as a drive network, and we construct another response
network receiving the evolution of each node, then the exact topology of the real network can be identified.
Along with it, the evolution of every node is traced. Using Lyapunov stability theory [22], mathematical
analysis of the mechanism is developed rigorously. Our controlling approach can be applied to a large amount
of rather general weighted complex dynamical networks not only with identical nodes, but also with different
nodes. Besides, even when the topology of the complex dynamical network changes, it can be monitored as
well. All these will contribute to improving efficiency and accuracy of network analysis.

The left paper is organized as follows. Section 2 describes the topology identification method for a general
weighted complex dynamical network with identical nodes. Identifying topology mechanism for such kind of
network consisting of different nodes are detailed in Section 3. Section 4 gives three computational examples
include network with identical nodes, network with different nodes and switching network with different
nodes to illustrate effectiveness of the proposed approach. The main ideas and conclusions are summarized up
in Section 5.
2. A weighted complex network with identical node dynamics

2.1. Model and assumption

Consider a weighted complex dynamical network consisting of N identical nodes with linearly couplings,
which is characterized by

_xi ¼ fðxiÞ þ
XN

j¼1

cijAxj, (1)

where 1pipN, xi ¼ ðxi1;xi2; . . . ;xinÞ
T
2 Rn is the state vector of the ith node, f : Rn � Rþ ! Rn is a smooth

nonlinear vector field, node dynamics is _x ¼ fðxÞ, A 2 Rn�n is the inner-coupling matrix and C ¼ ðcijÞN�N 2

RN�N is the unknown or uncertain weight configuration matrix. If there is a link from node i to node j ðjaiÞ,
then cija0 and cij is the weight; otherwise, cij ¼ 0.

In this model, the inner coupling matrix A is not necessarily symmetric, and the weight configuration matrix
C needs not to be symmetric, irreducible and diffusive. For the purpose of identifying these unknown or
uncertain weights, namely for identifying topology of the model, a useful assumption is introduced.

Assumption 1 (A1). Suppose that there exists a positive constant a satisfying

kfðyÞ � fðzÞkpaky� zk,

where y, z are time-varying vectors, k � k represents 2-norm.
2.2. Adaptive controlling method

We give some insights into topology identification of model (1). Consider another generally controlled
complex dynamical network as follows:

_̂xi ¼ fðx̂iÞ þ
XN

j¼1

ĉijAx̂j þ ui, (2)
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where 1pipN, x̂i ¼ ðx̂i1; x̂i2; . . . ; x̂inÞ
T
2 Rn is the response state vector of the ith node, ui 2 Rn is the control

input, and ĉij is the estimation of the weight cij .
Assume that ~xi ¼ x̂i � xi and ~cij ¼ ĉij � cij , we have the error system:

_~xi ¼ fðx̂iÞ � fðxiÞ þ
XN

j¼1

~cijAx̂j þ
XN

j¼1

cijA ~xj þ ui, (3)

where 1pipN.
On the assumption of A1, the following theorem can be deduced.

Theorem 1. Suppose that A1 holds. The weight configuration matrix C of general linearly coupled complex

dynamical network (1) can be identified by the estimation Ĉ using the following response network:

_̂xi ¼ fðx̂iÞ þ
PN
j¼1

ĉijAx̂j þ ui;

_̂cij ¼ � ~x
T
i Ax̂j ;

ui ¼ �di ~xi;
_di ¼ kik ~xik

2;

8>>>>>><
>>>>>>:

(4)

where 1pi; jpN, 1pipN is any positive constant.

Proof. Since A1 holds, we have kfðx̂i; tÞ � fðxi; tÞkpak ~xik; where 1pipN. Then choose Lyapunov
candidate as

V ¼
1

2

XN

i¼1

~xTi ~xi þ
1

2

XN

i¼1

XN

j¼1

~c2ij þ
1

2

XN

i¼1

1

ki

ðdi � d�Þ2,

where d� is a sufficiently large positive constant to be determined, we have the differential coefficient of V as

_V ¼
XN

i¼1

~xTi
_~xi þ

XN

i¼1

XN

j¼1

~cij
_̂cij þ

XN

i¼1

1

ki

ðdi � d�Þ _di

p
XN

i¼1

ak ~xik
2 þ

XN

i¼1

XN

j¼1

~cij ~x
T
i Ax̂j þ

XN

i¼1

XN

j¼1

cij ~x
T
i A ~xj

�
XN

i¼1

dik ~xik
2 þ

XN

i¼1

XN

j¼1

~cij
_̂cij þ

XN

i¼1

ðdi � d�Þk ~xik
2

¼
XN

i¼1

ða� d�Þk ~xik
2 þ

XN

i¼1

XN

j¼1

cij ~x
T
i A ~xj

¼ ~X
T
P ~X,

where ~X ¼ ð ~x1; ~x2; . . . ; ~xNÞ
T, P ¼ ða� d�ÞInN þ C� A, and InN represents identity matrix with n�N

dimension. It is obvious that the matrix P is negative definite for sufficiently large positive constants d�.
So, the set M ¼ f ~xi ¼ 0; ~cij ¼ 0; di ¼ d�; i; j ¼ 1; 2; . . . ;Ng is the largest invariant set of the set M0 ¼ f _V ¼ 0g
for the error system (3). According to the invariant principle of functional differential equation [22,26],
starting with arbitrary initial values, the trajectory asymptotically converges to the set M. Therefore, one gets
limt!þ1 ~xi ¼ 0 for 1pipN and limt!þ1 ~cij ¼ 0 for 1pi; jpN. As a result, the weight configuration matrix C
can be identified by the matrix Ĉ. Thus complete the proof. &

According to Theorem 1, we get the idea that using our adaptive feedback controlling method, the weights
of the complex dynamical network (1) can be estimated by receiving the evolution of network nodes. Namely,
the exact topology of model (1) can be identified. In addition, we find that the evolution of every node is traced
along with it.
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3. A weighted complex network with different node dynamics

3.1. Model and assumption

In this subsection, we consider a weighted complex dynamical network consisting of different node
dynamics which is described by

_xi ¼ gðxiÞ þ
PN
j¼1

cijAxj ; 1pipN�;

_xi ¼ hðxiÞ þ
PN
j¼1

cijAxj ; N� þ 1pipN;

8>>>><
>>>>:

(5)

where g, h : Rn � Rþ ! Rn are different smooth nonlinear vector functions.
Similarly, a useful hypothesis is given as follows:

Assumption 2 (A2). Suppose that there exist positive constants b and g, satisfying

kgðyÞ � gðzÞkpbky� zk; khðyÞ � hðzÞkpgky� zk,

where y, z are time-varying vectors.

3.2. Adaptive controlling method

For the sake of identifying topology of network model (5) and tracing network nodes evolution, another
generally controlled complex dynamical network is introduced here:

_̂xi ¼ gðx̂iÞ þ
PN
j¼1

ĉijAx̂j þ ui; 1pipN�;

_̂xi ¼ hðx̂iÞ þ
PN
j¼1

ĉijAx̂j þ ui; N� þ 1pipN:

8>>>><
>>>>:

(6)

Then, we have the error system:

_~xi ¼ gðx̂iÞ � gðxiÞ þ
PN
j¼1

~cijAx̂j þ
PN
j¼1

cijA ~xj þ ui; 1pipN�;

_~xi ¼ hðx̂iÞ � hðxiÞ þ
PN
j¼1

~cijAx̂j þ
PN
j¼1

cijA ~xj þ ui; N� þ 1pipN:

8>>>><
>>>>:

(7)

Similarly, the following adaptive controlling mechanism can be deduced:

Theorem 2. Suppose that A2 holds. The weight configuration matrix C of general linearly coupled complex

dynamical network (5) can be identified by the estimation Ĉ using the following response network:

_̂xi ¼ gðx̂iÞ þ
PN
j¼1

ĉijAx̂j þ ui; 1pipN�;

_̂xi ¼ hðx̂iÞ þ
PN
j¼1

ĉijAx̂j þ ui; N� þ 1pipN;

_̂cij ¼ � ~x
T
i Ax̂j ; 1pi; jpN ;

ui ¼ �ei ~xi;

_ei ¼ lik ~xik
2; 1pipN ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(8)

where li ð1pipNÞ is any positive constant.
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Proof. Provided with the condition A2, we get kgðx̂i; tÞ � gðxi; tÞkpbk ~xik for 1pipN� and khðx̂i; tÞ �
hðxi; tÞkpgk ~xik for N� þ 1pipN. Choose Lyapunov function as

V ¼
1

2

XN

i¼1

~xTi ~xi þ
1

2

XN

i¼1

XN

j¼1

~c2ij þ
1

2

XN

i¼1

1

li

ðei � e�Þ2,

where e� is a sufficiently large positive constant to be determined. We then have

_V ¼
XN�
i¼1

~xTi
_~xi þ

XN

i¼N�þ1

~xTi
_~xi þ

XN

i¼1

XN

j¼1

~cij
_̂cij þ

XN

i¼1

1

li

ðei � e�Þ_ei

p
XN�
i¼1

bk ~xik
2 þ

XN

i¼N�þ1

gk ~xik
2 þ

XN

i¼1

XN

j¼1

~cij ~x
T
i Ax̂j þ

XN

i¼1

XN

j¼1

cij ~x
T
i A ~xj

�
XN

i¼1

eik ~xik
2 þ

XN

i¼1

XN

j¼1

~cij
_̂cij þ

XN

i¼1

ðei � e�Þk ~xik
2

¼ ~X
T
Q ~X,

where

Q ¼
ðb� e�ÞInN� 0

0 ðg� e�ÞInðN�N�Þ

 !
þ C� A.

Clearly, the matrix Q is negative definite when the positive constant e� is large enough. Similar to the proof
method of Theorem 1, we obtain limt!þ1 ~xi ¼ 0 for 1pipN and limt!þ1 ~cij ¼ 0 for 1pi; jpN. That is, the
weight configuration matrix C can be identified by the matrix Ĉ. Thus the proof is completed.

Remark 1. In this theorem, the weighted complex dynamical network is built up of two types of different
nodes. For networks with more types of ones, similar work can be generalized easily.

From this theorem, it is shown that using similar adaptive feedback controlling approach, the exact
topology of model (5) can be identified, and the evolution of every node can be traced at the same time. On
account of the widespread circumstances in which considerable weighted complex dynamical networks with
different nodes exist, this mechanism is of great significance in practice.
4. Numerical simulation

4.1. A weighted complex network with identical node dynamics

In this subsection, a simple example is used to show the effectiveness of the adaptive controlling method
presented in Section 1.

It is well known that Lorenz, Chen, Lü systems are several typical benchmark chaotic systems [23–25]. In
which, Lorenz chaotic system is known as

_x ¼

�a a 0

c �1 0

0 0 �b

0
BB@

1
CCA

x1

x2

x3

0
BB@

1
CCAþ

0

�x1x3

x1x2

0
BB@

1
CCA

9B1xþWðxÞ,
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when a ¼ 10; b ¼ 8
3
; c ¼ 28, and Lü chaotic system is known as

_x ¼

�a a 0

0 c 0

0 0 �b

0
BB@

1
CCA

x1

x2

x3

0
BB@

1
CCAþ

0

�x1x3

x1x2

0
BB@

1
CCA

9B2xþWðxÞ,

when a ¼ 36; b ¼ 3; c ¼ 20. For any two state vectors y and z of Lorenz system or Lü system, there exists a
constant M satisfying kypk; kzpkpM for 1ppp3 since Lorenz attractor and Lü attractor are bounded by
certain region, respectively. Therefore, one has

kWðyÞ �WðzÞkp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�y3ðy1 � z1Þ � z1ðy3 � z3ÞÞ

2
þ ðy2ðy1 � z1Þ þ z1ðy2 � z2ÞÞ

2

q
p2Mky� zk.

Thus Lorenz system and Lü system satisfy Assumption A1.
Here, we consider a weighted linearly coupled complex dynamical network (1) consists of 4 identical Lü

systems, which is described by Fig. 1. This model can be written as

_xi ¼ fðxiÞ þ
X4
j¼1

cijAxj, (9)

where 1pip4, fðxÞ ¼ B2xþWðxÞ, C ¼ ðcijÞ4�4 is the weight configuration matrix with

C ¼

�6 4 2 0

4 �6 3 �1

2 3 �5 0

0 �1 0 1

0
BBB@

1
CCCA.
Fig. 1. Topology of model (9).

Fig. 2. Topology of model (11).
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Fig. 3. Topology after switching.
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Fig. 4. Estimation of topology of model (9).
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For simplicity, we assume that A ¼ I3. Since A1 holds, according to Theorem 1, the weigh configuration
matrix C can be estimated by the matrix Ĉ using the following controlled response network

_̂xi ¼ fðx̂iÞ þ
P4
j¼1

ĉijAx̂j � di ~xi;

_̂cij ¼ � ~x
T
i Ax̂j ;

_di ¼ kik ~xik
2;

8>>>><
>>>>:

(10)

where 1pip4. Some elements of matrix Ĉ are displayed in Fig. 4 and the synchronous errors ~xi ð1pip4Þ are
shown in Fig. 5.

In the numerical simulation, all parameters are given as follows: ki ¼ 1; dið0Þ ¼ 1, xið0Þ ¼ ð3:5þ 0:5i; 4:5þ
0:5i; 5:5þ 0:5iÞT, x̂ið0Þ ¼ ð5:5þ 0:5i; 6:5þ 0:5i; 7:5þ 0:5iÞT, ĉijð0Þ ¼ 1, where 1pi; jp4.

4.2. A weighted complex network with different node dynamics

Next, we consider a weighted complex dynamical network (5) consists of four different node systems with
two Lorenz systems (I, II node) and two Lü systems (III, IV node), which is characterized by Fig. 2. The model
can be written as

_xi ¼ gðxiÞ þ
P4
j¼1

cijAxj ; 1pip2;

_xi ¼ fðxiÞ þ
P4
j¼1

cijAxj ; 3pip4;

8>>>><
>>>>:

(11)

where gðxÞ ¼ B1xþWðxÞ, A and C are the same as that in model (9).
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ĉ32

Fig. 6. Estimation of topology of model (11).

J. Zhou, J.-a Lu / Physica A 386 (2007) 481–491488
It is clear that A2 holds. Then according to Theorem 2, the weight configuration matrix C can be traced by
the matrix Ĉ using the controlled response network

_̂xi ¼ gðx̂iÞ þ
P4
j¼1

ĉijAx̂j � ei ~xi; 1pip2;

_̂xi ¼ fðx̂iÞ þ
P4
j¼1

ĉijAx̂j � ei ~xi; 3pip4;

_̂cij ¼ � ~x
T
i Ax̂j ; 1pi; jp4;

_ei ¼ lik ~xik
2; 1pip4:

8>>>>>>>>><
>>>>>>>>>:

(12)

Some elements of matrix Ĉ are shown in Fig. 6 and the synchronous errors ~xi ð1pip4Þ are displayed
in Fig. 7.

All the parameters in this simulation are: li ¼ 1; eið0Þ ¼ 1, xið0Þ ¼ ð3:5þ 0:5i; 4:5þ 0:5i; 5:5þ 0:5iÞT,
x̂ið0Þ ¼ ð5:5þ 0:5i; 6:5þ 0:5i; 7:5þ 0:5iÞT, ĉijð0Þ ¼ 1, where 1pi; jp4.
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ĉ13
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4.3. A switching weighted complex network with different node dynamics

Then, we give an example of the switching weighted complex dynamical network which is characterized by a
modified model of (11) with switching weight configuration C. At first, the weight structure of this model is
described by Fig. 2; while at t ¼ 400, the weight between nodes II and IV is changed from �1 to 1, thus the
topology can be transformed into what has been plotted in Fig. 3. That is, the elements c24, c22 and c44 are
changed into 1, 1, �8 and �1, respectively.

From Figs. 8 and 9, it can be seen that the change of topology and the state variables have been traced
effectively.

5. Conclusions

In this paper, we have presented an adaptive feedback controlling method to identify the exact topology of
weighted complex dynamical network using Lyapunov stability theory. Particularly, the weight configuration
is not necessarily symmetric, irreducible and diffusive, and the inner coupling matrix needs not to be
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Fig. 9. Errors of the switching model ð ~xijð1pip4; 1pjp3ÞÞ.
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symmetric. Two rigorous theorems have been deduced by mathematical analysis in Sections 2 and 3. Three
computational examples of weighted complex dynamical network with identical nodes, different nodes and
switching topology have been shown to illustrate the effectiveness of the proposed approach.
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[19] J. Lü, G. Chen, A time-varying complex dynamical network models and its controlled synchronization criteria, IEEE Trans.

Automatic Control 50 (6) (2005) 841–846.
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