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a b s t r a c t

Real life networks heavily rely on higher-order interactions. This paper studies the
diffusibility of novel quasi-star higher-order networks from two aspects. When the
coupling strengths of the lower-order and higher-order coupling parts are less than
1, the diffusibility can be maximized by choosing the intermediate values of these
coupling strengths. When they are far greater than 1, there exists an inferior limit of the
diffusibility, and the lower-order coupling part has more impact on quasi-star network’s
diffusibility. Additionally, the face with the middle order in the higher-order coupling
part plays a more important role in enhancing the network’s diffusibility compared with
other faces, and the diffusibility does not naturally increase with the order of face. These
results give us some insights into the influence of higher-order structures and their faces.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, simple networks with pairwise interactions have been extensively applied to various fields of
esearch: control [1–3], synchronization [4,5], game [6], diffusion [7], topology identification [8], and spread [9]. However,
eal life interactions are higher-order ones instead of pairwise ones which involve more than two individuals. For example,
n a Borromean ring [10], three rings cannot be separated without cutting; but once any one of them is removed, the other
wo can be pulled apart without any further cutting. Numerous nerve cells cooperate through higher-order interactions
o carry out a task in the neural networks of the human brain and C. elegans. Simplicial complexes and hypergraphs are
wo common higher-order network models used to represent these complex phenomena [11–15].

Very recently, the dynamical processes that arise on higher-order networks were thoroughly explored [16,17].
ambuzza proposed an adapted master stability function method for analyzing the synchronizability of a simplicial
omplex [18], and Gallo further extended this method to a directed higher-order hypergraph [19]. Moreover, Lucas
ntroduced higher-order Laplacian matrices [20], and Torres investigated the spectral properties of Laplacian matrices
orresponding to a simplicial complex model.
There is an amount of information hidden behind the Laplacian matrices. For example, the second smallest Laplacian

igenvalue, named the spectral gap, plays an important role in the analysis of the dynamics of complex networks [18,19,
1–23], denoted as λ2. The diffusion of substances distributed to nodes of the simple network flow from nodes with higher

concentrations to nodes with lower concentrations [16]. The correlation time scale is usually called the relaxation time
τ , which is an index of the network diffusion. For a connected network, the relaxation time of the network is commonly
given as the reciprocal of the spectral gap [24,25], i.e. τ ∝ 1/λ2. Naturally, the larger the value of the spectral gap, the faster
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the diffusion rate. For higher-order networks, these substances can be distributed not only on nodes (0-order simplexes)
but also on edges (1-order simplexes), triangles (2-order simplexes) and tetrahedrons (3-order simplexes), etc. Similar to
this, higher-order Laplacian matrices are used to study the diffusibility of higher-order networks.

Topology and function are essential in biology. Higher-order interactions, namely simplexes or hyperedges, are
enerally found in many biological networks, such as brain network [26]. Functions of brain are significantly affected by
emote synchronization, which is popular in quasi-star coupling structure [27,28]. To depict this type of topology, a higher-
rder quasi-star network with a hub and multiple simplexes is investigated. In this paper, we draw some interesting
onclusions on the diffusibility of this type of higher-order networks. We find that the diffusibility of the quasi-star
etworks can be maximized by choosing appropriate coupling strengths if both the coupling strengths of the lower-order
nd higher-order coupling parts are less than 1. On the other hand, when the coupling strengths are far greater than 1,
here exist lower bounds of the diffusibility of the quasi-star networks. Further, considering that the higher-order coupling
art is comprised of some faces, the impact of faces on the diffusibility is discussed in the two cases above.
The structure of this paper is as follows. In Section 2, we proposes the model of quasi-star higher-order networks. The

iffusibility of the quasi-star networks is investigated in Sections 3 and 4. Further discussion and a summary of conclusions
re stated in Sections 5 and 6 respectively.

. Preliminaries and model

.1. Mathematical preliminaries

To get our main results, some basic concepts [11] are stated below.

efinition 1 (Simplex). A d-order simplex is composed of the interaction of a set of d + 1 nodes v1, . . . , vd+1, denoted as
v1, . . . , vd+1], so a 0-order simplex represents the interaction between a node and itself, a 1-order simplex represents
he pairwise interaction between two nodes, and a 2-order simplex represents the many-body interaction among three
odes, etc.

efinition 2 (Face). The face of a d-order simplex [v1, . . . , vd+1] is formed by the interaction of the subsets of its nodes.
For example, the faces of a 2-order simplex are three 0-order simplexes (nodes), three 1-order simplexes (edges), and a
2-order simplex (triangle).

Definition 3 (Simplicial Complex). A simplicial complex is made up of a set of simplexes that are closed concerning their
faces. The highest order of the simplex in the simplicial complex is defined as the order of the higher-order network.

Definition 4 (Facet). A facet is a simplex of a simplicial complex, but it is not a face of any other simplex. Therefore, all
facets of a simplicial complex completely decide its structure.

2.2. Model

Quasi-star higher-order networks are considered in this paper, which consist of a central node and a number of
simplexes. A 3-order quasi-star network with 5 3-order simplexes (where T = 5 and m − 1 = 3) is shown in Fig. 1 as
an example. Higher-order networks considered here are locally homogeneous but globally heterogeneous. The diffusion
dynamics on a quasi-star higher-order network with T (m − 1)-order simplexes are described by

ẋi = a0
mT+1∑
j0=1

A(0)
ij0
h(0) (xi, xj0) + a1

mT+1∑
j1=1

A(1)
ij1
h(1) (xi, xj1)

+ a2
mT+1∑
j1,j2=1

A(2)
ij1j2

h(2) (xi, xj1 , xj2) + · · ·

+ am−1

mT+1∑
j1,...,jm−1=1

A(m−1)
ij1...jm−1

h(m−1) (xi, xj1 , . . . , xjm−1

)
,

i = 1, 2, . . . ,mT + 1,

(1)

where xi indicates the states of the node i, a0 > 0 is the coupling strength of the pairwise interaction of two nodes in
the lower-order coupling part, and ad > 0 (d = 1, . . . ,m − 1) is the coupling strength of the pairwise or many-body
interaction of d + 1 nodes in the higher-order coupling part, h(d) : R(d+1)×n

−→ Rn describes the coupling function of
d + 1 nodes, satisfying h(d)(x, x, . . . , x) ≡ 0 for any x ∈ Rn. Both A(0)

ij0
and A(d)

ij1...jd
(d = 1, . . . ,m − 1) are adjacency tensors

representing the topology of the network [18,20,23,29–31]. In general, if two nodes, say i and j (or j ), interact, then
1 0
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Fig. 1. Schematic diagram of a 3-order quasi-star network consisting of five lower-order coupling parts, five higher-order coupling parts, and its
faces.

A(1)
ij1

= 1 (or A(0)
ij0

= 1); otherwise, A(1)
ij1

= 0 (or A(0)
ij0

= 0). Furthermore, if there are many-body interactions among nodes i,

1, . . . , jd, then A(d)
ij1...jd

= 1; otherwise, A(d)
ij1...jd

= 0.
As a powerful tool for studying complex networks, Laplacian matrices can be generalized to higher-order networks. The

(i, j) element of the d-order Laplacian matrix of a (m−1)-order simplicial complex can be described by L(d)ij = dP (d)
i δij−Q (d)

ij

(1 ≤ i, j ≤ N), where N denotes the size of the network, P (d)
i =

1
d!

∑N
j1,...,jd=1 A

(d)
ij1...jd

denotes the number of distinct d-order
implexes in which node i participates, and Q (d)

ij =
1

(d−1)!

∑N
j1,...,jd−1=1 A

(d)
ijj1...jd−1

represents the number of distinct d-order
simplexes in which node i and node j participate. If i = j, then δij = 1; otherwise, δij = 0. The multi-order Laplacian
matrix corresponding to the (m − 1)-order simplicial complex [18] is defined as

L =

m−1∑
j=0

ajL(j), (2)

where a0L(0) + a1L(1) and ajL(j) represent the weighted 1-order and j-order Laplacian matrices, respectively.
For a quasi-star network with T (m − 1)-order simplexes, the d-order Laplacian matrix has the following form

L(d)(mT+1)×(mT+1) =

(
O(d)
1×1 S(d)1×mT

(S(d)1×mT )
⊤ D(d)

mT×mT

)
, (3)

where D(d)
mT×mT = diag{D

(d)
m×m,D

(d)
m×m, . . . ,D

(d)
m×m}, and

D
(d)
m×m =

⎛⎜⎜⎜⎜⎝
(m − 1)Cd−1

m−2 −Cd−1
m−2 −Cd−1

m−2 · · · −Cd−1
m−2

−Cd−1
m−2 (m − 1)Cd−1

m−2 −Cd−1
m−2 · · · −Cd−1

m−2

...
...

...
. . .

...

−Cd−1
m−2 −Cd−1

m−2 −Cd−1
m−2 · · · (m − 1)Cd−1

m−2

⎞⎟⎟⎟⎟⎠.

Similarly, if d = 1, the block matrices of a0L(0) + a1L(1) are O(1)
1×1 = Ta0, S(1)1×mT = ( − a0 0 0 · · · 0; −a0 0 0

· · · 0; · · · ; −a0 0 0 · · · 0), D(1)
mT×mT = diag{D(1)

m×m,D(1)
m×m, . . . ,D(1)

m×m}, and D(1)
m×m = a1D

(1)
m×m

+ diag{a0 0 0 · · · 0; a0 0 0 · · · 0; · · · ; a0 0 0 · · · 0}, respectively; else if d = 2, . . . ,m − 1, the block matrices of adL(d) are
O(d)
1×1 = 0, S(d)1×mT=(0 0 0 · · · 0; 0 0 0 · · · 0; · · · ; 0 0 0 · · · 0), D(d)

mT×mT = diag{D(d)
m×m,D(d)

m×m, . . . ,D(d)
m×m}, and D(d)

m×m = adD
(d)
m×m.

By Lemma 1 [32] (see Appendix A), the characteristic polynomial of L is simplified as |λI − L| = λ[λ − (a0 + mg ±
√

∆1)/2]2(T−1)
[λ− (a0 +mg+Ta0 ±

√
∆2)/2]2(λ−mg)(m−2)T . Here, ∆1 = (a0 +mg)2 −4a0g , ∆2 = (a0 +Ta0 +mg)2 −4(1+

mT )a0g , and g =
∑m−1

k=1 akCk−1
m−2 represents the compound coupling strength of the higher-order coupling part composed

of the (m − 1)-order facet and its faces, as shown in Fig. 1. As a result, the second smallest eigenvalue of the Laplacian
matrix L is

λh
=

a0 + mg −
√

∆1
. (4)
2 2
3
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Fig. 2. The diffusibility of an (m − 1)-order quasi-star network. (a) The curves of λh
2 versus m for various values of α. (b) The inverted U-shaped

urves of λh
2 versus α for various values of m.

Clearly, the value of λh
2 depends on a0, m, and g . To explore the diffusibility of quasi-star higher-order networks, the

ensitivity of λh
2 to a0 and g is investigated, where a0 and g correspond to the lower-order and higher-order coupling

arts respectively. Below, we discuss two cases: a0, g ∈ (0, 1) and a0 ≫ 1, g ≫ 1 in detail.

. Case I: a0, g ∈ (0, 1)

To illustrate which one has more impact on the diffusibility of an (m − 1)-order quasi-star network, the lower-order
oupling part a0 or the higher-order coupling part g , we first consider the case of a0 + g = 1. For simplicity, assume that
= α and α ∈ (0, 1).

.1. The lower-order and higher-order coupling parts

From Eq. (4), the spectral gap is

λh
2(α,m) =

1 − α + mα −

√
(1 − α + mα)2 − 4α(1 − α)

2
. (5)

It can be easily demonstrated that λh
2(α,m1) < λh

2(α,m2) if m1 > m2, and limm→+∞ λh
2(α,m) = 0, which implies that

he spectral gap converges decreasingly to 0 as m increases. Fig. 2(a) tells the relation between λh
2 and m for various values

f α.
On the other hand, according to Eq. (5), the first and second derivatives of λh

2(α,m) with respect to α are

∂λh
2(α,m)
∂α

=
1
2

(
m − 1 −

p1
q1

)
, (6)

and

∂2λh
2(α,m)
∂α2 =

p21 −

[
(m − 1)2 + 4

]
q21

2q31
=

2 − 2m
q31

, (7)

respectively, where p1 = m− 1+ (m− 1)2α − 2(1− 2α) and q1 =

√
(1 − α + mα)2 − 4α(1 − α). Based on Lemma 2 [33]

see Appendix A), Eqs. (6) and (7), we can obtain an optimal value αopt of α from ∂λh2(α,m)
∂α

⏐⏐
α=αopt

= 0, such that λh
2(α,m)

reaches the maximum value at α = αopt = (
√
(m − 1)3 − m + 3)/(m2

− 2m + 5) since ∂2λh
2(α,m)/∂2α < 0. Then, one

as λh
2(αopt ,m) =

[
(m − 1)

√
m3 − 3m2 + 3m − 1 + (2m − m2

− 5)
√
m − 1 + 2m − 2

]
/(m2

− 2m + 5). Fig. 2(b) shows
he inverted U-shaped curves of λh

2 versus α for various values of m, which indicates that there is an optimal solution αopt
orresponding to the maximum value of the spectral gap λh

2.
The phase diagram in the plane (m, α) for the spectral gap λh

2 is illustrated in Fig. 3. In Fig. 3, the optimal coupling
trength αopt is shown in the pentagrams, which divides the area into two parts. The top (bottom) part indicates that the
ower-order (higher-order) coupling part has a greater positive impact on the spectral gap. Besides, the optimal solution
opt implies three aspects of the (m − 1)-order quasi-star network: (i) αopt is a threshold to distinguish which one of
he lower-order and higher-order coupling parts has more impact on the spectral gap λh

2. Specifically, for α < αopt
α > α ), λh gets greater with increasing α (a ), and then the diffusibility of the network is enhanced by increasing
opt 2 0

4
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b
d

Fig. 3. Phase diagram for the spectral gap λh
2 corresponding to an (m−1)-order quasi-star network in the case of a0 +g = 1. Each cross (pentagram)

represents the optimal αopt where λh
2 reaches the maximum value for m = 1 (m > 1).

the coupling strength of the higher-order (lower-order) coupling part, which is observed in Fig. 3(a). (ii) αopt gets smaller
with increasing m since ∂αopt

∂m =
p2
q2

< 0, where p2 = −
1
2

√
(m − 1)5+6

√
m − 1+m2

−6m+1 and q2 = (m2
−2m+5)2, then

αopt (m) ≤ αopt (2) = 0.4, and therefore the lower-order coupling part has a wider positive impact region of the spectral
gap than the higher-order coupling part, as illustrated in Fig. 3(b). (iii) As shown in Fig. 3, if m is small, the size of the
optimal solution αopt decreases rapidly with the increase of m. The rates of change of αopt are 0.0206 and 7.1733 × 10−4

if m increases from 2 to 10 and 500 respectively. When m reaches a specific level, αopt decreases slowly as m increases.
For example, if m increases from 2 to 3000, the rate of change of αopt is 1.2744 × 10−4. Therefore, the sensitivity of αopt
to m decreases as m increases.

3.2. In the higher-order coupling part

In the higher-order coupling part, λh
2 increases with the increasing of g in the regime of α < αopt . Note that g is

related to the coupling strengths a1, . . . , am−1 of the faces of the higher-order coupling part. In this subsection, we further
investigate which component makes a key contribution to g .

From the definition of g , one has

∂g
∂a1

= lim
∆→0

g (a1 + ∆) − g (a1)
∆

= C0
m−2,

· · ·

∂g
∂a⌈

m
2 ⌉−1

= lim
∆→0

g
(
a⌈

m
2 ⌉−1 + ∆

)
− g

(
a⌈

m
2 ⌉−1

)
∆

= C
⌈
m
2 ⌉−2

m−2 ,

∂g
∂a⌈

m
2 ⌉

= lim
∆→0

g
(
a⌈

m
2 ⌉ + ∆

)
− g

(
a⌈

m
2 ⌉

)
∆

= C
⌈
m
2 ⌉−1

m−2 ,

∂g
∂a⌈

m
2 ⌉+1

= lim
∆→0

g
(
a⌈

m
2 ⌉+1 + ∆

)
− g

(
a⌈

m
2 ⌉+1

)
∆

= C
⌈
m
2 ⌉

m−2,

· · ·

∂g
∂am−1

= lim
∆→0

g (am−1 + ∆) − g (am−1)

∆
= Cm−2

m−2,

(8)

where ⌈ ⌉ represents a function of rounding a number up to the next integer.
From the definition of g , we know that g is a linear combination of a1, . . . , am−1 with binomial coefficients

C0
m−2, . . . , C

m−2
m−2. According to the theory of composite function, the spectral gap gets greater with increasing a1, . . . , am−1.

Thus, it is concluded that: (a) For any odd number m, the spectral gap can be maximized by increasing a⌈
m
2 ⌉−1 or a⌈

m
2 ⌉

ecause of C
⌈
m
2 ⌉−2

m−2 = C
⌈
m
2 ⌉−1

m−2 > C
⌈
m
2 ⌉−3

m−2 = C
⌈
m
2 ⌉

m−2 > · · · > C0
m−2 = Cm−2

m−2, as illustrated in Fig. 4(a) for m = 9. The red
otted line indicates a threshold value athr = 0.0067, that is, when a4 ∈ (0, 0.01] or a5 ∈ (0, 0.01], the spectral gap

value λh
2(a4) = λh

2(a5) = 0.0639 corresponding to a4 = 0.0067 or a5 = 0.0067 is the largest. In addition, their spectral
gap values are larger than those corresponding to a , a , a , a , a and a . (b) Similarly, for any even number m, m -order
1 2 3 6 7 8 2

5
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Fig. 4. Relation between λh
2 and ai under a0 = 1 −

∑m−1
k=1 akCk−1

m−2 for m = 9 (a) and m = 10 (b), respectively. The red dotted lines indicate the
threshold value athr of ai such that λh

2 reaches the maximum value at ai = athr .

Fig. 5. The spectral gap λh
2 as a function of a0 with g = 8 (a) and g with a0 = 12 (b) respectively.

face is the most conducive to enhance the diffusibility of the network, as shown in Fig. 4(b) for m = 10. At this time,
the maximum spectral gap value corresponding to the threshold athr = 0.0031 is λh

2(a5) = 0.0588. The results show that
more nodes in a single face do not necessarily improve the diffusibility of a higher-order network.

4. Case II: a0 ≫ 1 and g ≫ 1

In this section, the case of a0 ≫ 1 and g ≫ 1 is considered.

4.1. The lower-order and higher-order coupling parts

According to Eq. (4), one has

∂λh
2

∂a0
=

1
2

−
p3

2
√

∆1
, (9)

where p3 = a0 + mg − 2g . Then ∂λh
2/∂a0 > 0 since |

√
∆1| ≥ |p3| holds for any g > 0 and m ≥ 2. Moreover,

lima0→+∞ λh
2 = g =

∑m−1
k=1 akCk−1

m−2. Therefore, the spectral gap λh
2 is a monotonically increasing function of a0, and tends

to the upper bound g as a0 approaches the infinity. Fig. 5(a) displays the relation between λh
2 and a0 for the 3-order

quasi-star network shown in Fig. 1. From Fig. 5(a), we observe that λh
2 converges to an upper bound a1 + 2a2 + a3, which

is consistent with the above analytic result.
On the other hand, from Eq. (4), we also get

∂λh
2

=
m

−
q3
√ , (10)
∂g 2 2 ∆1

6
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Fig. 6. The spectral gap λh
2 as a function of a0 and g for m = 4 (a) and m = 101 (b) respectively.

Fig. 7. The spectral gap λh
2 versus ai for m = 9 (a) and m = 10 (b) respectively, where aj = 1, a0 = 1, j ̸= i.

here q3 = m(a0 + mg) − 2a0. Due to |m
√

∆1| ≥ |q3| for any g > 0 and m ≥ 2, then ∂λh
2/∂g > 0. It is further deduced

that limg→+∞ λh
2 = a0/m. As a result, λh

2 is monotonically increasing with respect to g , and has a upper bound a0/m, as
is seen in Fig. 5(b).

Fig. 6 depicts the spectral gap λh
2 of the (m−1)-order quasi-star network in terms of a0 and g for m = 4 and m = 101.

It is seen from Fig. 6 that the larger a0 or g , the larger λh
2, in turn, the stronger the diffusibility of the network. Besides,

we conclude that the variation of a0 brings about a greater change of λh
2 than that of g .

.2. In the higher-order coupling part

When g ≫ 1, λh
2 gets greater with increasing g . Since g is dependent on ai (i = 1, . . . ,m−1), we explore the impact of

i on λh
2 in the higher-order coupling part. It is obtained that limai→+∞ λh

2 = a0/m and ∂g
∂a1

> 0, ∂g
∂a2

> 0, · · · , ∂g
∂am−1

> 0.
hus λh

2 gets greater with increasing the coupling strength ai of a face of the higher-order coupling part. For any odd
umber m, the (⌈m

2 ⌉ − 1)-order or ⌈
m
2 ⌉-order face, rather than any other face, has more impact on the spectral gap since

C
⌈
m
2 ⌉−2

m−2 = C
⌈
m
2 ⌉−1

m−2 > C
⌈
m
2 ⌉−3

m−2 = C
⌈
m
2 ⌉

m−2 > · · · > C0
m−2 = Cm−2

m−2. Additionally, λ
h
2 increases with ai (i = 1, 2, . . . ,m − 1), and

as almost the same upper bounded value a0/m when ai > athr , as shown in Fig. 7(a). Similarly, for any even number m,
he m

2 -order face has more impact on the spectral gap, and if every ai (i = 1, 2, . . . ,m − 1) is greater than the threshold
athr , then their corresponding diffusibility are almost equal, as shown in Fig. 7(b). The red dotted lines in Fig. 7(a) and (b)
respectively represent the threshold athr for m = 9 and m = 10. On the left side of these red dotted lines, the spectral
gap increases slowly with the increase of the coupling strength of a single face. While on the other side of the red dotted
lines, these corresponding spectral gap values are almost the same, which is consistent with our results.

5. Further discussion

We further extend the higher-order coupling parts to simplexes with various orders based on the aforementioned
results, and discover some interesting phenomena. For an (m − 1)-order quasi-star network with T simplexes shown
7
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s
a
p
a
w
o

C

a

Fig. 8. A quasi-star network with 5 4-order simplexes, where λh
2 = 0.1849 with multiplicity 4, T = 5 and m − 1 = 4.

in Fig. 8 (T = 5, m − 1 = 4), λh
2 is the second smallest Laplacian eigenvalue with multiplicity T − 1. If T2 (T2 < T )

(m−1)-order simplexes are replaced by T2 k-order (k < m−1) simplexes, the second smallest Laplacian eigenvalue is the
same as that of the original network, but its multiplicity is reduced by T2. For example, λh

2 is λh
2=0.1849 with multiplicity

4 in Fig. 8. The detailed changes of the network topologies and the spectral gaps are illustrated in Figure B1 and Table 1
(see Appendix B). As shown in Table 1, if a 4-order simplex is replaced with a 3-order simplex or a 2-order simplex in
Figure B1-1(a), B1-1(b), λh

2 is still the second smallest Laplacian eigenvalue, but its multiplicity is 3, where T1 = 4, T2 = 1.
Similarly, if two (three) 4-order simplexes are all replaced by two (three) 3-order simplexes or 2-order simplexes in Figure
B1-2(a), B1-2(b) (Figure B1-3(a), B1-3(b)), λh

2 is still the second smallest Laplacian eigenvalue, but its multiplicity is 2 (1),
where T1 = 3, T2 = 2 (T1 = 2, T2 = 3). As a result, the diffusibility of a quasi-star network may be unchanged if part of
the order numbers of the higher-order coupling decrease.

6. Conclusion

This paper studies the diffusibility of a kind of quasi-star higher-order network and discusses the impact of the
lower-order and higher-order coupling parts on the diffusibility. When the coupling strengths of the lower-order and
higher-order coupling parts are less than 1, the diffusibility of the quasi-star networks can reach the maximum value at
some intermediate values of a0 and g . In addition, if g is smaller than a certain threshold, compared with other components
of g , increasing a⌈

m
2 ⌉ in the higher-order coupling part has a greater advantage in enhancing the diffusibility of the quasi-

tar networks, and their diffusibility does not always improve with the order of a face. On the other hand, when a0 ≫ 1
nd g ≫ 1, there exist upper bounds of the spectral gaps, that is g and a0/m, and the effect of the lower-order coupling
art on the network’s diffusibility is greater than that of the higher-order coupling part. Similarly, the ⌈

m
2 ⌉-order face

lso has an important impact on the network’s diffusibility in the higher-order coupling part than any other face. Further
ork includes more general quasi-star higher-order network, where the higher-order coupling parts consist of various
rders simplexes, and the impact of higher-order interactions on multilayer higher-order networks.
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Appendix A

Lemma 1 ([32]). Let A be an m by m square matrix, B an m by n matrix, C an n by n square matrix, and 0 an n by m matrix
ith each element being 0. Then⏐⏐⏐⏐Am×m Bm×n

0n×m Cn×n

⏐⏐⏐⏐ = |A| |C | .

emma 2 ([33]). Suppose that f ′(x0) = 0.

(1) If f ′′(x0) < 0, then f (x0) is a maximum value.
(2) If f ′′(x0) > 0, then f (x0) is a minimum value.

Appendix B

See Table 1.

Table 1
Eigenvalues of the multi-order Laplacian matrix L with T = T1 + T2 = 5.

T1 = 4,
T2 = 1

λh
2 with

multiplicity
3

Figure B1-1(a)

λh
2,3,4=0.1849,

λh
5 = 0.2194, · · ·

Figure B1-1(b)

λh
2,3,4=0.1849,

λh
5 = 0.2759, · · ·

T1 = 3,
T2 = 2

λh
2 with

multiplicity
2

Figure B1-2(a)

λh
2,3=0.1849,

λh
4 = 0.2108, · · ·

Figure B1-2(b)

λh
2,3=0.1849,

λh
4 = 0.2533, · · ·

T1 = 2,
T2 = 3

λh
2 with

multiplicity
1

Figure B1-3(a)

λh
2=0.1849,

λh
3 = 0.2022, · · ·

Figure B1-3(b)

λh
2=0.1849,

λh
3 = 0.2306, · · ·
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