Superdiffusion induced by complete structure in multiplex

 networksYanqi Zhang (${ }^{\text {(}}$; Jin Zhou (${ }^{\text {(} ~ ; ~ J u n-a n ~ L u ; ~ W e i q i a n g ~ L i ~(D) ~}$

W) Check for updates

Chaos 33, 023133 (2023)
https://doi.org/10.1063/5.0133712

Articles You May Be Interested In

Superdiffusion criteria on duplex networks
Chaos (July 2021)
Explosive synchronization in frequency displaced multiplex networks
Chaos (April 2019)
Control of inter-layer synchronization by multiplexing noise
Chaos (September 2020)

AIP Advances

Why Publish With Us?

740+ DOWNLOADS
INCLUSIVE average per article

Publishing

Superdiffusion induced by complete structure in multiplex networks

Cite as: Chaos 33, 023133 (2023); doi: 10.1063/5.0133712
Submitted: 5 November 2022 • Accepted: 30 January 2023.
Published Online: 21 February 2023

Yanqi Zhang, (iD Jin Zhou, ${ }^{1,2, a)}$ (D) Jun-an Lu, ${ }^{7}$ and Weiqiang Li^{1} (D)

AFFILIATIONS

${ }^{1}$ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
${ }^{2}$ Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China
${ }^{\text {a) }}$ Author to whom correspondence should be addressed: jzhou@whu.edu.ch

Abstract

After the groundbreaking work by Gómez et al., the superdiffusion phenomenon on multiplex networks begins to attract researchers' attention. The emergence of superdiffusion means that the time scale of the diffusion process of the multiplex network is shorter than that of each layer. Using the optimization theory, the manuscript studies the greatest impact of one edge on the network diffusion speed. It is proved that by deleting any edge from a given network, the drop of the second smallest eigenvalue of its Laplacian matrix is at most 2. Based on the conclusion, the relation between the complete structure and the superdiffusible network is studied, and, further, some superdiffusion criteria on general duplex networks are proposed. Interestingly, the theoretical results indicate that the emergence of superdiffusion depends on the complete structure rather than the overlap one. Some numerical examples are shown to verify the effectiveness of the theoretical results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133712

The relation between the superdiffusion phenomenon and the topology of a multilayer network has been an increasingly hot topic recently. Up to now, some superdiffusion criteria have been proposed. However, each criterion has its own advantages and disadvantages. Therefore, in this paper, we propose three superdiffusion criteria for different cases of network structures and conclude that superdiffusion is related to the complementarity rather than the overlap of the subnetworks. Numerical simulations verify the effectiveness of the theoretical results.

I. INTRODUCTION

In the last few decades, the diffusion problem on complex networks has received much attention. ${ }^{1-3}$ In real life, one diffusion process is often influenced by other processes. Based on this fact, multiplex networks gradually come into researchers' sight. ${ }^{4-8}$ Multiplex networks refer to a kind of networks with multiple layers in the same group of nodes. The layers are linked by interlayer couplings, which are from each node to itself. An example of a multiplex network is shown in Fig. 1. It provides us a more realistic framework for the study of dynamic behaviors, such as synchronization, diffusion, and propagation. ${ }^{9,10}$

As a common phenomenon, the diffusion dynamics is an important class of network dynamics. For a single network, the time scale of its diffusion to the steady state is inversely proportional to the second smallest eigenvalue of its Laplacian matrix. ${ }^{11}$ In Ref. 12, Gómez et al. investigated the diffusion dynamics on multiplex networks and proposed the concept of superdiffusion, which means the time scale of the diffusion process on a multiplex network is shorter than that on each isolated layer. ${ }^{12}$ From the eigenvalue's point of view, the emergence of superdiffusion requires that the second smallest eigenvalue of the Laplacian matrix, often called supraLaplacian matrix, with respect to a multiplex network is greater than that in terms of each layer. Compared with the Laplacian matrix of a single layer, the supra-Laplacian matrix includes not only the topology information of each layer but also the intralayer and interlayer diffusion constants. Furthermore, Gómez et al. demonstrated that for fixed intralayer diffusion constants, when the interlayer diffusion constant is sufficiently large, the second smallest eigenvalue of the supra-Laplacian matrix is close to half of that of the sum of two Laplacian matrices corresponding to two layers. This finding, thus, provides a new direction to investigate the superdiffusion phenomenon by focusing on the Laplacian of the sum of two lower-dimension matrices rather than the supra-Laplacian matrix. After this groundbreaking work, some results have been developed. By numerical simulations, Ref. 13 found that the emergence of

FIG. 1. An example of a multiplex network with two layers and six nodes. The solid lines represent the intralayer couplings. The dotted lines represent the interlayer couplings, which are from each node to itself.
superdiffusion on a multiplex network does not depend on the overlap between two isolated layers. ${ }^{13}$ A special class of superdiffusible duplex networks was proposed in Ref. 14. In Ref. 15, some sufficient superdiffusible conditions for directed duplex networks were presented. ${ }^{15}$ Due to the difficulty of solving the eigenvalues of largescale matrices directly, it is very difficult to propose superdiffusion criteria applicable to all multiplex networks. This manuscript, from a more general perspective, develops some superdiffusion criteria for duplex networks.

Without loss of generality, the manuscript focuses on the unweighted and undirected duplex networks. By means of the optimization theory, the manuscript studies the greatest impact of one edge on the network diffusion speed. Adding (deleting) any one edge to (from) a given network, the increment (drop) of the second smallest eigenvalue of its Laplacian matrix is at most 2. Thus, based on this result, the relation between the number of deleted edges and the superdiffusible network is studied. Specifically, the union of the two layers can be obtained by deleting some edges from the complete graph with the same size. Their difference in the number of edges is the number of deleted edges mentioned earlier. Based on previous analysis, some superdiffusion criteria on duplex networks are proposed. From the theoretical results, we find that the emergence of superdiffusion depends on the complete structure rather than the overlap one. The method proposed can be extended to the study of general multiplex networks.

The remaining parts are organized as follows. In Sec. II, some mathematical preliminaries and the network model are given. In Sec. III, the greatest impact of adding (deleting) one edge on the network diffusion speed is studied. Based on the conclusions in Sec. III, Sec. IV gives some superdiffusion criteria on duplex networks. Numerical simulations are presented in Sec. V. Finally, the manuscript is concluded in Sec. VI.

II. NETWORK MODEL AND PRELIMINARIES

Consider a multiplex network with M layers and N nodes per layer. In the manuscript, the network is assumed to be unweighted and undirected. Let G_{k} be the graph of layer $k, A_{k}=\left(a_{i j}^{k}\right)$ the adjacency matrix of G_{k}, and $L_{k}=\left(d_{i j}^{k}\right)$ the Laplacian matrix of G_{k}.

Without loss of generality, we consider the simplest case that the multiplex network consists of two layers $(M=2)$. The diffusion dynamics on the duplex network is described as follows:

$$
\begin{equation*}
\frac{d x_{i}^{k}}{d t}=D_{k} \sum_{j=1}^{N} w_{i j}^{k}\left(x_{j}^{k}-x_{i}^{k}\right)+D_{x} \sum_{l=1}^{M}\left(x_{i}^{l}-x_{i}^{k}\right), \tag{1}
\end{equation*}
$$

where $x_{i}^{k} \in R$ represents the state of node $i(i=1,2, \ldots, N)$ in layer $k(k=1,2)$ and $w_{i j}^{k}$ the coupling strength between node i and j in layer k. Here, symbol D_{k} represents the diffusion constant of layer k and D_{x} the interlayer diffusion constant between layers. Since this manuscript only considers unweighted networks, $w_{i j}^{k}$ in Eq. (1) is either 0 or 1 .

Let \boldsymbol{x} be $\left(x_{1}^{1}, \ldots, x_{N}^{1} \mid x_{1}^{2}, \ldots, x_{N}^{2}\right)^{T}$, with I being the identity matrix. Then, Eq. (1) can be rewritten as $\dot{\boldsymbol{x}}=-\mathscr{L} \boldsymbol{x}$, where the supra-Laplacian matrix

$$
\mathscr{L}=\left(\begin{array}{cc}
D_{1} L_{1}+D_{x} I & -D_{x} I \\
-D_{x} I & D_{2} L_{2}+D_{x} I
\end{array}\right) .
$$

Without loss of generality, set $D_{1}=D_{2}=1$. Denote λ_{2}^{k} as the second smallest eigenvalue of L_{k}, λ_{N}^{k} the largest eigenvalue of L_{k}, Λ_{2} the second smallest eigenvalue of \mathscr{L} and λ_{s} the second smallest eigenvalue of $\frac{L_{1}+L_{2}}{2}$. For any Laplacian matrix L, denote $\lambda_{2}(L)$ as its second smallest eigenvalue. The definitions for a duplex network are proposed. ${ }^{14}$

Definition 1: Superdiffusion emerges in a duplex network when $\Lambda_{2}>\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$.

The emergence of superdiffusion means the diffusion time scale of the multiplex network is shorter than that of each layer. Since the diffusion time scale of the network is controlled by the second smallest eigenvalue of its Laplacian matrix; ${ }^{11}$ thus, when $\Lambda_{2}>\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$, the duplex network displays superdiffusion.

Definition 2: A duplex network is superdiffusible if $\lambda_{s}>\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$.

It has been demonstrated that for fixed D_{k}, as D_{x} increases, Λ_{2} will gradually increase and approach $\lambda_{s}{ }^{12}$ Therefore, whether a duplex network is superdiffusible depends on the relation between λ_{s} and $\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$. If $\lambda_{s} \leq \max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$, it is impossible for a duplex network to achieve superdiffusion.

To study the relation between the number of deleted edges and the superdiffusible network, define $G_{1} \cup G_{2}$ as the union of graphs G_{1} and G_{2},

$$
G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right),
$$

where V_{k} and E_{k} represent the node set and edge set of graph G_{k} ($k=1,2$), respectively. In simple terms, $G_{1} \cup G_{2}$ is a single graph with all edges in G_{1} and G_{2}. For example, in Fig. 2, $G_{1} \cup G_{2}$ is the six-order complete graph K_{6}. For any duplex network, $G_{1} \cup G_{2}$ is a subgraph of the N-order complete graph K_{N}.

The smaller the difference in the number of edges between $G_{1} \cap G_{2}$ and $G_{1} \cup G_{2}$, the more overlap between graphs G_{1} and G_{2}.

FIG. 2. A duplex network that satisfies the three conditions of Theorem 2: G_{1} is the complement of $G_{2}, \delta\left(G_{1}\right)=2<\frac{N}{2}=3$ and $\Delta\left(G_{1}\right)=3>\frac{N}{2}-1=2$. Here, λ_{2}^{1} and λ_{2}^{2} are equal to 1 , and λ_{s} is equal to 3 . Thus, the duplex network is superdiffusible.

The smaller the difference in the number of edges between $G_{1} \cup G_{2}$ and K_{N}, the more complete the graph $G_{1} \cup G_{2}$. Denote $\varepsilon(G)$ as the number of edges of graph G. Then, the overlap index ω and the complete index v of the network can be defined, respectively: ${ }^{13,16}$

$$
\begin{align*}
& \omega=\frac{\varepsilon\left(G_{1} \cap G_{2}\right)}{\varepsilon\left(G_{1} \cup G_{2}\right)}, \tag{2}\\
& \nu=\frac{2 \varepsilon\left(G_{1} \cup G_{2}\right)}{N(N-1)} . \tag{3}
\end{align*}
$$

The two indices are real numbers between 0 and 1 . The more the two networks overlap, the greater the value of ω. The closer the graph $G_{1} \cup G_{2}$ is to the complete graph K_{N}, the greater the value of v. Take the network in Fig. 1 as an example. Both layers have eight edges, five of which are in common, implying that $\varepsilon\left(G_{1} \cap G_{2}\right)=5$ and $\varepsilon\left(G_{1} \cup G_{2}\right)=11$. Thus, one has $\omega=\frac{5}{11} \approx 0.45$ and $v=\frac{22}{30} \approx 0.73$.

Furthermore, these two indices can also be represented by the elements in the Laplacian matrix or the adjacency matrix. Since

$$
\begin{aligned}
\varepsilon\left(G_{1} \cap G_{2}\right) & =\sum_{\substack{i, j=1 . . . N \\
j>i}} d_{i j}^{1} d_{i j}^{2}=\sum_{\substack{i, j=1, . . N \\
j>i}} a_{i j}^{1} a_{i j}^{2}, \\
\varepsilon\left(G_{1} \cup G_{2}\right) & =\sum_{\substack{i, j=1 . . . N \\
j>i}}\left(-d_{i j}^{1}-d_{i j}^{2}-d_{i j}^{1} d_{i j}^{2}\right) \\
& =\sum_{\substack{i, j=1 . . N \\
j>i}}\left(a_{i j}^{1}+a_{i j}^{2}-a_{i j}^{1} a_{i j}^{2}\right),
\end{aligned}
$$

Eqs. (2) and (3) can be rewritten as

$$
\begin{aligned}
& \omega=\frac{\sum_{\substack{i, j=1 \ldots . . \\
j>i}} d_{i j}^{1} d_{i j}^{2}}{\sum_{\substack{i, j=1 \ldots N \\
j>i}}\left(-d_{i j}^{1}-d_{i j}^{2}-d_{i j}^{1} d_{i j}^{2}\right)} \\
& =\frac{\sum_{\substack{i, j=1 \ldots N \\
j i \lambda}} a_{i j}^{1} a_{i j}^{2}}{\sum_{\substack{i, j=1 \ldots, \ldots \\
j>i}}\left(a_{i j}^{1}+a_{i j}^{2}-a_{i j}^{1} a_{i j}^{2}\right)}, \\
& \nu=\frac{2 \sum_{\substack{i, j=1 . . . N \\
j>i}}\left(-d_{i j}^{1}-d_{i j}^{2}-d_{i j}^{1} d_{i j}^{2}\right)}{N(N-1)} \\
& =\frac{2 \sum_{\substack{i, j=1 \ldots N \\
j>i}}\left(a_{i j}^{1}+a_{i j}^{2}-a_{i j}^{1} a_{i j}^{2}\right)}{N(N-1)} .
\end{aligned}
$$

For the main results, the following lemmas are needed. ${ }^{20}$
Lemma 1: If $0 \leq \lambda_{2} \leq \cdots \leq \lambda_{N}$ are the Laplace eigenvalues of a single graph G, then $0 \leq N-\lambda_{N} \leq \cdots \leq N-\lambda_{2}$ are the Laplace eigenvalues of the complement of G.

Lemma 2: Let G be a graph on N vertices with at least one edge and let $\Delta(G)$ be the maximum degree of G. Then,

$$
\lambda_{N}(G) \geq 1+\Delta(G)
$$

Lemma 3: Let G be a non-complete graph on N vertices and let $\delta(G)$ be the minimum degree of G. Then,

$$
\lambda_{2}(G) \leq \delta(G)
$$

It should be stressed that in Ref. $20, \lambda_{N}(G)$ and $\lambda_{2}(G)$ represent the largest and second smallest eigenvalues of the Laplacian matrix of graph G, respectively.

III. THE GREATEST IMPACT OF AN EDGE ON THE NETWORK DIFFUSION SPEED

In this section, the greatest impact of an edge on the second smallest eigenvalue of the Laplacian matrix is studied.

Suppose the original graph is G and its corresponding Laplacian matrix is L. After adding an edge between nodes i and j, the new graph is G^{\prime} and its corresponding Laplacian matrix is L^{\prime}. In addition, assume there are N nodes in graph G. Then, Theorem 1 is obtained.

Theorem 1: After adding(deleting) an edge between nodes i and j, the Laplacian matrix changes from $L\left(L^{\prime}\right)$ to $L^{\prime}(L)$. Then, $\lambda_{2}(L)$ and $\lambda_{2}\left(L^{\prime}\right)$ have the following relation:

$$
\begin{equation*}
\lambda_{2}\left(L^{\prime}\right)-\lambda_{2}(L) \leq 2 . \tag{4}
\end{equation*}
$$

In the following, we give a detailed proof of the case of edge addition and a brief description of the case of edge deletion.

Proof. Due to the definition of the second smallest eigenvalue of the Laplacian matrix, ${ }^{17-19}$ one obtains

$$
\begin{equation*}
\lambda_{2}(L)=\min _{z \perp 1,\|z\|=1} z^{T} L z=\min _{z \perp 1,\|z\|=1} \sum_{v_{m} v_{n} \in G}\left(z_{m}-z_{n}\right)^{2}, \tag{5}
\end{equation*}
$$

where $\mathbf{1}$ is a column vector whose all N components be $1, z_{m}$ is the m th component of the vector z, and $v_{m} v_{n}$ represents the edge
between nodes m and n. The solution of the second smallest eigenvalue of the Laplacian matrix can be regarded as an optimization problem, that is, how to distribute the values of components of z so that the sum of the quadratic terms is the minimum. Similar to Eq. (5), one obtains

$$
\lambda_{2}\left(L^{\prime}\right)=\min _{z \perp 1,\|z\|=1} \sum_{v_{m} v_{n} \in G^{\prime}}\left(z_{m}-z_{n}\right)^{2} .
$$

Assume that z^{*} is a unit vector orthogonal to $\mathbf{1}$ and satisfies that

$$
z^{*} \in\left\{\bar{z} \in R^{N} \mid \sum_{v_{m} v_{n} \in G}\left(\bar{z}_{m}-\bar{z}_{n}\right)^{2}=\min _{z \perp 1,\|z\|=1} \sum_{v_{m} v_{n} \in G}\left(z_{m}-z_{n}\right)^{2}\right\},
$$

where \bar{z}_{m} is the m th component of the column vector \bar{z}. From the existence of $\lambda_{2}(L)$, the existence of z^{*} is obvious. Then,

$$
\begin{equation*}
\lambda_{2}(L)=\sum_{v_{m} v_{n} \in G}\left(z_{m}^{*}-z_{n}^{*}\right)^{2}, \tag{6}
\end{equation*}
$$

where z_{m}^{*} is the m th component of z^{*}. Moreover, for this z^{*}, one further has

$$
\begin{equation*}
\lambda_{2}\left(L^{\prime}\right) \leq \sum_{v_{m} v_{n} \in G^{\prime}}\left(z_{m}^{*}-z_{n}^{*}\right)^{2} . \tag{7}
\end{equation*}
$$

Given that $G^{\prime}=G \cup v_{i} v_{j}$, it is implied that

$$
\begin{equation*}
\sum_{v_{m} v_{n} \in G^{\prime}}\left(z_{m}^{*}-z_{n}^{*}\right)^{2}=\sum_{v_{m} v_{n} \in G}\left(z_{m}^{*}-z_{n}^{*}\right)^{2}+\left(z_{i}^{*}-z_{j}^{*}\right)^{2} . \tag{8}
\end{equation*}
$$

From Eq. (6), one obtains

$$
\begin{equation*}
\sum_{v_{m} v_{n} \in G}\left(z_{m}^{*}-z_{n}^{*}\right)^{2}+\left(z_{i}^{*}-z_{j}^{*}\right)^{2}=\lambda_{2}(L)+\left(z_{i}^{*}-z_{j}^{*}\right)^{2} . \tag{9}
\end{equation*}
$$

It is derived from Eqs. (7)-(9) that

$$
\begin{equation*}
\lambda_{2}\left(L^{\prime}\right) \leq \lambda_{2}(L)+\left(z_{i}^{*}-z_{j}^{*}\right)^{2} . \tag{10}
\end{equation*}
$$

Now, we have known that $\lambda_{2}\left(L^{\prime}\right)-\lambda_{2}(L) \leq\left(z_{i}^{*}-z_{j}^{*}\right)^{2}$, once the maximum value $\left(z_{i}^{*}-z_{j}^{*}\right)^{2}$ is acquired, the maximum increment of the second smallest eigenvalue is known.

For simplicity, replace z^{*} with $x_{0}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T}$. The maximum problem of $\left(z_{i}^{*}-z_{j}^{*}\right)^{2}$ is equivalent to the following optimization problem:

$$
\begin{aligned}
\min & -\left(x_{i}-x_{j}\right)^{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}=1, \\
& x_{1}+x_{2}+\cdots+x_{N}=0 .
\end{aligned}
$$

To solve this optimization problem, according to Karush-KuhnTucker Conditions, we construct its Lagrangian function: ${ }^{21}$

$$
\begin{aligned}
L\left(\boldsymbol{x}_{0}, \mu_{1}, \mu_{2}\right)= & -\left(x_{i}-x_{j}\right)^{2}-\mu_{1}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}-1\right) \\
& -\mu_{2}\left(x_{1}+x_{2}+\cdots+x_{N}\right),
\end{aligned}
$$

where μ_{1} and μ_{2} are arbitrary constants. Because the vector $\left(2 x_{1}, 2 x_{2}, \ldots, 2 x_{N}\right)^{T}$ is orthogonal to $(1,1, \ldots, 1)^{T}$, Karush-KuhnTucker conditions is applicable. If $\boldsymbol{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{N}^{*}\right)^{T}$ is the
solution of the optimization problem, then μ_{1}^{*} and μ_{2}^{*} satisfy the following equations:

$$
\left\{\begin{array}{l}
\nabla_{\boldsymbol{x}^{*}} L\left(\boldsymbol{x}^{*}, \mu_{1}^{*}, \mu_{2}^{*}\right)=\mathbf{0}, \tag{11}\\
x_{1}^{* 2}+x_{2}^{* 2}+\cdots+x_{N}^{* 2}=1, \\
x_{1}^{*}+x_{2}^{*}+\cdots+x_{N}^{*}=0,
\end{array}\right.
$$

where $\mathbf{0}$ is a column vector whose all N components are 0 . For

$$
\nabla_{x}^{*} L\left(\boldsymbol{x}^{*}, \mu_{1}^{*}, \mu_{2}^{*}\right)=\left[\begin{array}{c}
-2 \mu_{1}^{*} x_{1}^{*}-\mu_{2}^{*} \tag{12}\\
\vdots \\
-2 \mu_{1}^{*} x_{i-1}^{*}-\mu_{2}^{*} \\
-2 x_{i}^{*}+2 x_{j}^{*}-2 \mu_{1}^{*} x_{i}^{*}-\mu_{2}^{*} \\
-2 \mu_{1}^{*} x_{i+1}^{*}-\mu_{2}^{*} \\
\vdots \\
-2 \mu_{1}^{*} x_{j-1}^{*}-\mu_{2}^{*} \\
2 x_{i}^{*}-2 x_{j}^{*}-2 \mu_{1}^{*} x_{j}^{*}-\mu_{2}^{*} \\
-2 \mu_{1}^{*} x_{j+1}^{*}-\mu_{2}^{*} \\
\vdots \\
-2 \mu_{1}^{*} x_{N}^{*}-\mu_{2}^{*}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right],
$$

the sum of the N elements in the middle is equal to 0 . Thus,

$$
\begin{equation*}
-2 \mu_{1}^{*}\left(x_{1}^{*}+x_{2}^{*}+\cdots+x_{N}^{*}\right)-N \mu_{2}^{*}=0 . \tag{13}
\end{equation*}
$$

Combine Eq. (13) with the third equation of Eq. (11) and get $\mu_{2}^{*}=0$. Substitute $\mu_{2}^{*}=0$ into Eq. (12) and consider two cases: $\mu_{1}^{*}=0$ and $\mu_{1}^{*} \neq 0$.

If μ_{1}^{*} is equal to 0 , substitute $\mu_{1}^{*}=0$ into Eq. (12) and focus on the i th and j th rows. It can be seen that x_{i}^{*} is equal to x_{j}^{*}, or equivalently, $-\left(x_{i}^{*}-x_{j}^{*}\right)^{2}=0$. This solution is obviously not optimal. If μ_{1}^{*} is not equal to 0 , focus on the rows of Eq. (12) except the i th and j th rows. It is seen that all the N components of \boldsymbol{x}^{*} except the i th and j th components are 0 . Solve Eq. (11) and get the optimal solution \boldsymbol{x}^{*} as $\left(0, \ldots, 0, \frac{\sqrt{2}}{T^{2}}, 0, \ldots, 0,-\frac{\sqrt{2}}{2}, 0, \ldots, 0\right)^{T}$ or $\left(0, \ldots, 0,-\frac{\sqrt{2}}{2}, 0, \ldots, 0, \frac{\sqrt{2}}{2}, 0, \ldots, 0\right)^{T}$. In this case, $-\left(x_{i}^{*}-x_{j}^{*}\right)^{2}$ $=-2$.

Based on the above analysis, it is obtained that $\max \left(x_{i}-x_{j}\right)^{2}$ is equal to 2. Thus, from Eq. (10), one obtains

$$
\begin{equation*}
\lambda_{2}\left(L^{\prime}\right)-\lambda_{2}(L) \leq \max \left(x_{i}-x_{j}\right)^{2}=2 . \tag{14}
\end{equation*}
$$

In other words, when an edge is added to the network, the maximum increment of the second smallest eigenvalue is 2 .

Similarly, delete one edge to make graph G^{\prime} become G, Laplacian matrix L^{\prime} become L. Conversely, graph G^{\prime} can be regarded as graph G by adding an edge. From Eq. (14), then $\lambda_{2}\left(L^{\prime}\right)-\lambda_{2}(L) \leq 2$. Therefore, when an edge is deleted from the network, the maximum drop of the second smallest eigenvalue is 2 .

Actually, Theorem 1 can also be proved by the conclusion of Sec. 1.3 in Ref. 20. It is concluded that when an edge is added to (deleted from) the network, the increment (drop) of its second smallest eigenvalue is at most 2 . The situation where the increment (drop) is equal to 2 exists. When G^{\prime} is equal to $K_{N}, \lambda_{2}\left(L^{\prime}\right)$ is equal
to N. From Lemma $3, \lambda_{2}(L) \leq \delta(G)=N-2$. Thus, $\lambda_{2}\left(L^{\prime}\right)-\lambda_{2}(L)$ ≥ 2. On the other hand, from Theorem $1, \lambda_{2}\left(L^{\prime}\right)-\lambda_{2}(L) \leq 2$. To sum up, when G^{\prime} is equal to $K_{N}, \lambda_{2}\left(L^{\prime}\right)-\lambda_{2}(L)=2$.

IV. THE IMPACT OF COMPLETE STRUCTURE ON SUPERDIFFUSION

In this section, the relation between the number of deleted edges and the superdiffusible network is studied. Specifically, $G_{1} \cup G_{2}$ can be obtained from the complete graph K_{N} by deleting some edges. According to different values of the complete index v and the overlap index ω, we will present our discussion in three cases.

Case 1: When $\nu=1$ and $\omega=0$
When v is equal to one and ω is equal to zero, graph G_{1} is the complement of G_{2}, which means G_{1} is equal to ($K_{N}-G_{2}$).

In this case, λ_{s} is equal to $\frac{N}{2}$. If $0 \leq \lambda_{2}^{1} \leq \cdots \leq \lambda_{N}^{1}$ are the Laplacian eigenvalues of G_{1}, then $0 \leq N-\lambda_{N}^{1} \leq \cdots \leq N-\lambda_{2}^{1}$ are the Laplacian eigenvalues of $G_{2} \cdot{ }^{20}$ Therefore, the duplex network is superdiffusible provided that $\lambda_{2}^{1}<\frac{N}{2}$ and $\lambda_{N}^{1}>\frac{N}{2}$. Using Lemmas 2 and 3, Theorem 2 is derived.

Theorem 2: Assume that G_{1} and G_{2} are connected incomplete single graphs with N nodes. If
(a) G_{1} is the complement of G_{2},
(b) $\delta\left(G_{1}\right)<\frac{N}{2}$,
(c) $\Delta\left(G_{1}\right)>\frac{N}{2}-1$,
where $\delta\left(G_{1}\right)$ and $\Delta\left(G_{1}\right)$ are the minimum and maximum degrees of G_{1}, respectively, then the duplex network composed of G_{1} and G_{2} is superdiffusible.

Proof. According to the assumption that G_{1} is the complement of G_{2}, one obtains

$$
\begin{equation*}
\lambda_{s}=\lambda_{2}\left(\frac{L_{1}+L_{2}}{2}\right)=\frac{N}{2} \tag{15}
\end{equation*}
$$

When G_{1} is an incomplete graph and $\delta\left(G_{1}\right)<\frac{N}{2}$, from Lemma 3, one has

$$
\begin{equation*}
\lambda_{2}^{1} \leq \delta\left(G_{1}\right)<\frac{N}{2} \tag{16}
\end{equation*}
$$

On the other hand, when G_{1} is the complement of G_{2} and G_{2} is an incomplete graph, it implies that G_{1} is a graph with at least one edge. Since $\Delta\left(G_{1}\right)>\frac{N}{2}-1$, it is derived that

$$
\begin{equation*}
\lambda_{N}^{1} \geq \Delta\left(G_{1}\right)+1>\frac{N}{2} \tag{17}
\end{equation*}
$$

from Lemma 2. According to Lemma 1 and Eq. (17), then one obtains

$$
\begin{equation*}
\lambda_{2}^{2}=N-\lambda_{N}^{1}<\frac{N}{2} \tag{18}
\end{equation*}
$$

Combining Eqs. (15), (16), and (18), one gets $\lambda_{s}>\max$ $\left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$.

Remark 1: When G_{1} is the complement of $G_{2}, \delta\left(G_{1}\right)<\frac{N}{2}$ and $\Delta\left(G_{1}\right)>\frac{N}{2}-1$ are equivalent to $\Delta\left(G_{2}\right)>\frac{N}{2}-1$ and $\delta\left(G_{2}\right)$ $<\frac{N}{2}$, respectively. So, there are actually four different forms to state Theorem 2. One of them is consistent with Theorem 4.3.2 in Ref. 22.

From Theorem 2, it is concluded that if two layers of a duplex network are completely complementary, the smaller the minimum degree and the larger the maximum degree of one layer, the more likely the duplex network is to be superdiffusible. In addition, according to Remark 1, we realize when the minimum degrees of the two layers are small, the duplex network is likely to be superdiffusible. An example is given in Sec. V A.

Case 2: When $\nu \approx 1$ and $\omega=0$
When v is approximately equal to one and ω is equal to zero, $G_{1} \cup G_{2}$ is close to the complete graph K_{N}. As a subgraph of $K_{N}, G_{1} \cup G_{2}$ can be obtained by deleting some edges from K_{N}. Therefore, λ_{s} can be regarded as a disturbance of $\frac{N}{2}$. The estimated value of λ_{s} is related to the number of deleted edges. Define G_{d} as the graph $\left(K_{N}-G_{1} \cup G_{2}\right)$. Then, $\varepsilon\left(G_{d}\right)$ is equal to $\left(\frac{N(N-1)}{2}\right.$ $\left.-\varepsilon\left(G_{1} \cup G_{2}\right)\right)$. From Theorem 1, it is seen that if one edge is deleted from the graph, the drop in the second smallest eigenvalues between the original and new Laplacian matrices will not exceed 2. Thus, Theorem 3 is obtained.

Theorem 3: Suppose the complete index v is approximately equal to one, the overlap index ω is equal to zero, and both G_{1} and G_{2} are incomplete single graphs. If

$$
\begin{equation*}
\varepsilon\left(G_{d}\right)<\min \left\{\frac{N}{2}-\delta\left(G_{1}\right), \frac{N}{2}-\delta\left(G_{2}\right)\right\} \tag{19}
\end{equation*}
$$

then the duplex network composed of G_{1} and G_{2} is superdiffusible.
Proof. When v is approximately equal to one, the graph $G_{1} \cup G_{2}$ can be obtained by deleting some edges from K_{N}. Let $\varepsilon\left(G_{d}\right)$ represents the edge of the graph $\left(K_{N}-G_{1} \cup G_{2}\right)$. From Theorem 1, it is seen that if one edge is deleted from the graph, the eigenvalue drop of the original Laplacian matrix is at most 2 ; thus,

$$
\lambda_{s} \geq \frac{N-2 \varepsilon\left(G_{d}\right)}{2}
$$

For incomplete single graphs G_{1} and G_{2}, one obtains $\lambda_{2}^{1} \leq \delta\left(G_{1}\right)$ and $\lambda_{2}^{2} \leq \delta\left(G_{2}\right)$ from Lemma 3 .

If $\varepsilon\left(G_{d}\right)<\min \left\{\frac{N}{2}-\delta\left(G_{1}\right), \frac{N}{2}-\delta\left(G_{2}\right)\right\}$, then one has $\frac{N-2 \varepsilon\left(G_{d}\right)}{2}$ $>\max \left\{\delta\left(G_{1}\right), \delta\left(G_{2}\right)\right\}$, and, therefore, $\lambda_{s}>\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$.

In fact, Theorem 2 can be regarded as a special case of Theorem 3. By comparing Theorems 2 and 3, we find that if a duplex network satisfies the conditions of Theorem 2, then it is still superdiffusible after some of its edges are deleted. Equation (19) gives an estimate of the number of edges allowed to be deleted. However, this estimate is somewhat conservative, because each time we delete one edge, we make the drop of λ_{2} equal to two.

Theorem 3 tells us that if the duplex network satisfies the conditions of Theorem 3, then the smaller the minimum degrees of the two layers are and the closer $G_{1} \cup G_{2}$ is to K_{N}, the more likely the duplex network is to be superdiffusible.

Case 3: When $v \approx 1$
The condition that ω is equal to zero can be relaxed. When ω is not equal to zero, it means that there is an overlap part between G_{1} and G_{2}. Then,

$$
\begin{equation*}
L_{1}+L_{2}=\left(L_{1}-L_{c}+L_{2}-L_{c}+L_{c}\right)+L_{c} \tag{20}
\end{equation*}
$$

where L_{c} represents the Laplacian matrix of $G_{1} \cap G_{2}$. The term in the bracket is exactly the Laplacian matrix of $G_{1} \cup G_{2}$. Actually, $G_{1} \cup G_{2}$ can be obtained by deleting some edges from K_{N}.

Theorem 4: Suppose the complete index v is approximately equal to one and both G_{1} and G_{2} are incomplete single graphs. If

$$
\varepsilon\left(G_{d}\right)<\min \left\{\frac{N}{2}-\delta\left(G_{1}\right), \frac{N}{2}-\delta\left(G_{2}\right)\right\}
$$

then the duplex network composed of G_{1} and G_{2} is superdiffusible.
Proof. Denote L_{+}as the Laplacian matrix of graph $G_{1} \cup G_{2}$. Considering L_{c} is a positive semi-definite matrix, one then obtains ${ }^{20}$

$$
2 \lambda_{s}=\lambda_{2}\left(L_{1}+L_{2}\right) \geq \lambda_{2}\left(L_{+}\right)
$$

from Eq. (20). It is inferred from Theorem 1 when $\varepsilon\left(G_{d}\right)=\frac{N(N-1)}{2}$ $-\varepsilon\left(G_{1} \cup G_{2}\right)$, then

$$
\frac{\lambda_{2}\left(L_{+}\right)}{2}>\frac{N-2 \varepsilon\left(G_{d}\right)}{2} .
$$

In addition, for incomplete single graphs G_{1} and G_{2}, one gets $\lambda_{2}^{1} \leq \delta\left(G_{1}\right)$ and $\lambda_{2}^{2} \leq \delta\left(G_{2}\right)$ from Lemma 3 .

If $\varepsilon\left(G_{d}\right)<\min \left\{\frac{N}{2}-\delta\left(G_{1}\right), \frac{N}{2}-\delta\left(G_{2}\right)\right\}$, then one has $\frac{N-2 \varepsilon\left(G_{d}\right)}{2}$ $>\max \left\{\delta\left(G_{1}\right), \delta\left(G_{2}\right)\right\}$, and, therefore, $\lambda_{s}>\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$.

By comparing Theorems 3 and 4 , we find that, in some cases, whether there is an overlap between two layers has little influence on the emergence of superdiffusion, which is consistent with the numerical result in Ref. 13. For example, if one selects a network that satisfies the conditions of Theorem 3, and adds some edges in G_{2} instead of G_{1} to G_{1} while ensuring $\delta\left(G_{1}\right)$ unchanged, then the network is still superdiffusible.

Theorem 4 reveals that, if the duplex network satisfies the conditions of Theorem 4, then the smaller the minimum degrees of the two layers are and the closer $G_{1} \cup G_{2}$ is to K_{N}, the more likely the duplex network is to be superdiffusible.

The above results show that as long as $G_{1} \cup G_{2}$ is approximately equal to K_{N} and $\max \left\{\delta\left(G_{1}\right), \delta\left(G_{2}\right)\right\}<\frac{N}{2}$, then the duplex network composed of G_{1} and G_{2} is superdiffusible. Thus, whether a duplex network is superdiffusible has no direct relation with the overlap of its two layers. In other words, the emergence of superdiffusion does not depend on the overlap but on the complete structure.

V. NUMERICAL SIMULATION

In this section, two examples are displayed to verify the effectiveness of our theoretical results.

A. Example 1: Verification of Theorem 2

A duplex network is shown in Fig. 2. It satisfies the three conditions of Theorem 2: G_{1} is the complement of $G_{2}, \delta\left(G_{1}\right)=2<\frac{N}{2}=3$, and $\Delta\left(G_{1}\right)=3>\frac{N}{2}-1=2$.

The second smallest eigenvalues of the Laplacians of the network are plotted in Fig. 3. The dashed line represents the value of λ_{s} and the dashed-dotted line the value of λ_{2}^{1} and λ_{2}^{2}. The blue solid line represents the value of Λ_{2}. Figure 3 shows that, when D_{x} increases, Λ_{2} will gradually increase and approach λ_{s}. This phenomenon has been revealed previously in Ref. 12. Moreover, it

FIG. 3. Comparison of the second smallest eigenvalues of the Laplacians of the network in Fig. 2. Here, $\lambda_{2}^{1}=\lambda_{2}^{2}=1$. It is seen that $\Lambda_{2}>\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$ when $D_{x}>D_{c}$. Thus, the duplex network is superdiffusible.
can also be seen that when $D_{x}>D_{c}, \Lambda_{2}>\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$. Thus, the network is superdiffusible.

B. Example 2: Verification of Theorem 3

In order to verify the effectiveness of Theorem 3, a duplex network is employed: the first layer is shown in Fig. 4 and the second layer is the complement of the first layer. Obviously, $\delta\left(G_{1}\right)=3, \delta\left(G_{2}\right)=5$ and $N=39$. From Theorem 3, if $\varepsilon<\min \left\{\frac{N}{2}-\delta\left(G_{1}\right), \frac{N}{2}-\delta\left(G_{2}\right)\right\}=14.5$, the network is superdiffusible. In other words, if the number of deleted edges from the

FIG. 4. A network with 39 nodes and 171 edges.

FIG. 5. Comparison of the second smallest eigenvalues of the Laplacians of a network satisfying the conditions of Theorem 3. When $D_{x}>D_{c}$, $\Lambda_{2}>\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$ is satisfied; thus, the duplex network is superdiffusible.
duplex network is smaller than 14.5, the duplex network keeps superdiffusible.

Randomly delete 14 edges while keeping $\delta\left(G_{1}\right)=3$ and $\delta\left(G_{2}\right)=5$ unchanged. Figure 5 displays the second smallest eigenvalues of the Laplacians of the network. It is seen that $\lambda_{s}>\max \left\{\lambda_{2}^{1}, \lambda_{2}^{2}\right\}$, and, thus, the duplex network is superdiffusible. Each of the 100 stochastic simulations is similar to one shown in Fig. 5.

VI. CONCLUSIONS

Based on the optimization theory, this manuscript theoretically analyzes the greatest impact of one edge on the network diffusion speed and gives a quantitative conclusion. Further, the relation between the number of deleted edges and the superdiffusible network is studied and some superdiffusion criteria on duplex networks are proposed. It is proved that if $G_{1} \cup G_{2}$ is approximately equal to K_{N} and $\max \left\{\delta\left(G_{1}\right), \delta\left(G_{2}\right)\right\}<\frac{N}{2}$, the duplex network composed of G_{1} and G_{2} is superdiffusible. The results supplement the proof for the numerical results in Ref. 13: the emergence of superdiffusion does not depend on the overlap. In addition, it is interesting to note that the emergence of superdiffusion depends on the complete structure. The result can be used to discover and construct a superdiffusible duplex network. In addition, a method has been developed to judge whether a multiplex network is superdiffusible, as shown in the proof of Theorem 4 in detail. Obviously, the method can be extended to the research of the multiplex network with more than two layers. Compared with the previous studies on superdiffusible multiplex networks, the manuscript provides a new angle from which we can use disturbance theory to estimate λ_{s} based on the known quantities.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 62173254, 61773294 , and 61773175.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Yanqi Zhang: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Writing - original draft (equal). Jin Zhou: Conceptualization (equal); Funding acquisition (equal); Methodology (equal); Validation (equal); Writing - review \& editing (equal). Jun-an Lu: Funding acquisition (equal); Methodology (equal); Validation (equal); Writing - review \& editing (equal). Weiqiang Li: Methodology (equal); Validation (equal); Writing - review \& editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

${ }^{1}$ I. Simonsen, K. A. Eriksen, S. Maslov, and K. Sneppen, "Diffusion on complex networks: A way to probe their large-scale topological structures," Physica A 336, 163-173 (2004).
${ }^{2}$ J. Gómez-Gardeñes and V. Latora, "Entropy rate of diffusion processes on complex networks," Phys. Rev. E 78, 065102 (2008).
${ }^{3}$ Z. Zhang, C. Liu, X. Zhan, X. Lu, C. Zhang, and Y. Zhang, "Dynamics of information diffusion and its applications on complex networks," Phys. Rep. 651, 1-34 (2016).
${ }^{4}$ W. Yu, G. Chen, J. Lü, and J. Kurths, "Synchronization via pinning control on general complex networks," SIAM J. Control Optim. 51, 1395-1416 (2013).
${ }^{5}$ S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, "Complex networks: Structure and dynamics," Phys. Rep. 424, 175-308 (2006).
${ }^{6}$ R. J. Sánchez-García, E. Cozzo, and Y. Moreno, "Dimensionality reduction and spectral properties of multilayer networks," Phys. Rev. E 89, 052815 (2014).
${ }^{7}$ G. Bianconi, "Statistical mechanics of multiplex networks: Entropy and overlap," Phys. Rev. E 87, 062806 (2013).
${ }^{8}$ A. Solé-Ribalta, M. De Domenico, N. E. Kouvaris, A. Díaz-Guilera, S. Gómez, and A. Arenas, "Spectral properties of the Laplacian of multiplex networks," Phys. Rev. E 88, 032807 (2013).
${ }^{9}$ A. B. Serrano, J. Gómez-Gardeñes, and R. F. S. Andrade, "Optimizing diffusion in multiplexes by maximizing layer dissimilarity," Phys. Rev. E 95, 052312 (2017).
${ }^{10}$ G. F. de Arruda, F. A. Rodrigues, and Y. Moreno, "Fundamentals of spreading processes in single and multilayer complex networks," Phys. Rep. 756, 1-59 (2018).
${ }^{11}$ A. Arenas, A. Díaz-Guilera, and C. J. Pérez-Vicente, "Synchronization processes in complex networks," Physica D 224, 27-34 (2006).
${ }^{12}$ S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno, and A. Arenas, "Diffusion dynamics on multiplex networks," Phys. Rev. Lett. 110, 028701 (2013).
${ }^{13}$ G. Cencetti and F. Battiston, "Diffusive behavior of multiplex networks," New J. Phys. 21, 035006 (2019).
${ }^{14}$ H. Yan, J. Zhou, W. Li, J. Lu, and R. Fan, "Superdiffusion criteria on duplex networks," Chaos 31, 073108 (2021).
${ }^{15}$ X. Wang, A. Tejedor, Y. Wang, and Y. Moreno, "Unique superdiffusion induced by directionality in multiplex networks," New J. Phys. 23, 013016 (2021).
${ }^{16}$ F. Battiston, V. Nicosia, and V. Latora, "Structural measures for multiplex networks," Phys. Rev. E 89, 073108 (2014).
${ }^{17}$ B. Bollobás, Modern Graph Theory (Springer, New York, 1998).
${ }^{18}$ M. Fiedler, "Algebraic connectivity of graphs," Czechoslov. Math. J. 23, 298-305 (1973).
${ }^{19}$ A. Tejedor, A. Longjas, E. Foufoula-Georgiou, T. T. Georgiou, and Y. Moreno, "Diffusion dynamics and optimal coupling in multiplex networks with directed layers," Phys. Rev. X 8, 031071 (2018).
${ }^{20}$ A. E. Brouwer and W. H. Haemers, Spectra of Graphs (Springer, New York, 2012).
${ }^{21}$ S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004).
${ }^{22}$ J. Wei, Synchronization and Superdiffusion on Duplex Networks (Wuhan University, 2014) (in Chinese).

