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ABSTRACT

After the groundbreaking work by Gómez et al., the superdiffusion phenomenon on multiplex networks begins to attract researchers’
attention. The emergence of superdiffusion means that the time scale of the diffusion process of the multiplex network is shorter than that of
each layer. Using the optimization theory, the manuscript studies the greatest impact of one edge on the network diffusion speed. It is proved
that by deleting any edge from a given network, the drop of the second smallest eigenvalue of its Laplacian matrix is at most 2. Based on the
conclusion, the relation between the complete structure and the superdiffusible network is studied, and, further, some superdiffusion criteria
on general duplex networks are proposed. Interestingly, the theoretical results indicate that the emergence of superdiffusion depends on the
complete structure rather than the overlap one. Some numerical examples are shown to verify the effectiveness of the theoretical results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0133712

The relation between the superdiffusion phenomenon and the
topology of a multilayer network has been an increasingly hot
topic recently. Up to now, some superdiffusion criteria have
been proposed. However, each criterion has its own advantages
and disadvantages. Therefore, in this paper, we propose three
superdiffusion criteria for different cases of network structures
and conclude that superdiffusion is related to the complemen-
tarity rather than the overlap of the subnetworks. Numerical
simulations verify the effectiveness of the theoretical results.

I. INTRODUCTION

In the last few decades, the diffusion problem on complex net-
works has received much attention.1–3 In real life, one diffusion
process is often influenced by other processes. Based on this fact,
multiplex networks gradually come into researchers’ sight.4–8 Multi-
plex networks refer to a kind of networks with multiple layers in the
same group of nodes. The layers are linked by interlayer couplings,
which are from each node to itself. An example of a multiplex net-
work is shown in Fig. 1. It provides us a more realistic framework for
the study of dynamic behaviors, such as synchronization, diffusion,
and propagation.9,10

As a common phenomenon, the diffusion dynamics is an
important class of network dynamics. For a single network, the time
scale of its diffusion to the steady state is inversely proportional to
the second smallest eigenvalue of its Laplacian matrix.11 In Ref. 12,
Gómez et al. investigated the diffusion dynamics on multiplex net-
works and proposed the concept of superdiffusion, which means
the time scale of the diffusion process on a multiplex network is
shorter than that on each isolated layer.12 From the eigenvalue’s
point of view, the emergence of superdiffusion requires that the sec-
ond smallest eigenvalue of the Laplacian matrix, often called supra-
Laplacian matrix, with respect to a multiplex network is greater than
that in terms of each layer. Compared with the Laplacian matrix
of a single layer, the supra-Laplacian matrix includes not only the
topology information of each layer but also the intralayer and inter-
layer diffusion constants. Furthermore, Gómez et al. demonstrated
that for fixed intralayer diffusion constants, when the interlayer
diffusion constant is sufficiently large, the second smallest eigen-
value of the supra-Laplacian matrix is close to half of that of the
sum of two Laplacian matrices corresponding to two layers. This
finding, thus, provides a new direction to investigate the superdif-
fusion phenomenon by focusing on the Laplacian of the sum of two
lower-dimension matrices rather than the supra-Laplacian matrix.
After this groundbreaking work, some results have been developed.
By numerical simulations, Ref. 13 found that the emergence of
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FIG. 1. An example of amultiplex network with two layers and six nodes. The solid
lines represent the intralayer couplings. The dotted lines represent the interlayer
couplings, which are from each node to itself.

superdiffusion on a multiplex network does not depend on the over-
lap between two isolated layers.13 A special class of superdiffusible
duplex networks was proposed in Ref. 14. In Ref. 15, some suffi-
cient superdiffusible conditions for directed duplex networks were
presented.15 Due to the difficulty of solving the eigenvalues of large-
scale matrices directly, it is very difficult to propose superdiffusion
criteria applicable to all multiplex networks. This manuscript, from a
more general perspective, develops some superdiffusion criteria for
duplex networks.

Without loss of generality, the manuscript focuses on the
unweighted and undirected duplex networks. By means of the opti-
mization theory, the manuscript studies the greatest impact of one
edge on the network diffusion speed. Adding (deleting) any one edge
to (from) a given network, the increment (drop) of the second small-
est eigenvalue of its Laplacian matrix is at most 2. Thus, based on
this result, the relation between the number of deleted edges and the
superdiffusible network is studied. Specifically, the union of the two
layers can be obtained by deleting some edges from the complete
graph with the same size. Their difference in the number of edges is
the number of deleted edges mentioned earlier. Based on previous
analysis, some superdiffusion criteria on duplex networks are pro-
posed. From the theoretical results, we find that the emergence of
superdiffusion depends on the complete structure rather than the
overlap one. The method proposed can be extended to the study of
general multiplex networks.

The remaining parts are organized as follows. In Sec. II, some
mathematical preliminaries and the network model are given. In
Sec. III, the greatest impact of adding (deleting) one edge on the
network diffusion speed is studied. Based on the conclusions in
Sec. III, Sec. IV gives some superdiffusion criteria on duplex net-
works. Numerical simulations are presented in Sec. V. Finally, the
manuscript is concluded in Sec. VI.

II. NETWORK MODEL AND PRELIMINARIES

Consider a multiplex network with M layers and N nodes per
layer. In the manuscript, the network is assumed to be unweighted
and undirected. Let Gk be the graph of layer k, Ak = (ak

ij) the

adjacency matrix of Gk, and Lk = (dk
ij) the Laplacian matrix of Gk.

Without loss of generality, we consider the simplest case that
the multiplex network consists of two layers (M = 2). The diffusion
dynamics on the duplex network is described as follows:

dxk
i

dt
= Dk

N
∑

j=1

wk
ij

(

xk
j − xk

i

)

+ Dx

M
∑

l=1

(

xl
i − xk

i

)

, (1)

where xk
i ∈ R represents the state of node i (i = 1, 2, . . . , N) in layer

k (k = 1, 2) and wk
ij the coupling strength between node i and j in

layer k. Here, symbol Dk represents the diffusion constant of layer k
and Dx the interlayer diffusion constant between layers. Since this
manuscript only considers unweighted networks, wk

ij in Eq. (1) is

either 0 or 1.
Let x be

(

x1
1, . . . , x1

N | x2
1, . . . , x2

N

)T
, with I being the identity

matrix. Then, Eq. (1) can be rewritten as ẋ = −Lx, where the
supra-Laplacian matrix

L =
(

D1L1 + DxI −DxI

−DxI D2L2 + DxI

)

.

Without loss of generality, set D1 = D2 = 1. Denote λk
2 as the

second smallest eigenvalue of Lk, λk
N the largest eigenvalue of Lk,

32 the second smallest eigenvalue of L and λs the second small-
est eigenvalue of L1+L2

2
. For any Laplacian matrix L, denote λ2(L) as

its second smallest eigenvalue. The definitions for a duplex network
are proposed.14

Definition 1: Superdiffusion emerges in a duplex network
when 32 > max

{

λ1
2, λ

2
2

}

.
The emergence of superdiffusion means the diffusion time

scale of the multiplex network is shorter than that of each layer.
Since the diffusion time scale of the network is controlled by the
second smallest eigenvalue of its Laplacian matrix;11 thus, when
32 > max

{

λ1
2, λ

2
2

}

, the duplex network displays superdiffusion.
Definition 2: A duplex network is superdiffusible if

λs > max
{

λ1
2, λ

2
2

}

.
It has been demonstrated that for fixed Dk, as Dx increases,

32 will gradually increase and approach λs.12 Therefore, whether a
duplex network is superdiffusible depends on the relation between
λs and max

{

λ1
2, λ

2
2

}

. If λs ≤ max
{

λ1
2, λ

2
2

}

, it is impossible for a
duplex network to achieve superdiffusion.

To study the relation between the number of deleted edges and
the superdiffusible network, define G1 ∪ G2 as the union of graphs
G1 and G2,

G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2),

where Vk and Ek represent the node set and edge set of graph Gk

(k = 1, 2), respectively. In simple terms, G1 ∪ G2 is a single graph
with all edges in G1 and G2. For example, in Fig. 2, G1 ∪ G2 is the
six-order complete graph K6. For any duplex network, G1 ∪ G2 is a
subgraph of the N-order complete graph KN.

The smaller the difference in the number of edges between
G1 ∩ G2 and G1 ∪ G2, the more overlap between graphs G1 and G2.
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FIG. 2. A duplex network that satisfies the three conditions of Theorem 2: G1

is the complement of G2, δ(G1) = 2 < N

2
= 3 and 1(G1) = 3 > N

2
− 1 = 2.

Here, λ1
2 and λ2

2 are equal to 1, and λs is equal to 3. Thus, the duplex network is
superdiffusible.

The smaller the difference in the number of edges between G1 ∪ G2

and KN, the more complete the graph G1 ∪ G2. Denote ε(G) as the
number of edges of graph G. Then, the overlap index ω and the
complete index ν of the network can be defined, respectively:13,16

ω =
ε(G1 ∩ G2)

ε(G1 ∪ G2)
, (2)

ν =
2ε(G1 ∪ G2)

N(N − 1)
. (3)

The two indices are real numbers between 0 and 1. The more the two
networks overlap, the greater the value of ω. The closer the graph
G1 ∪ G2 is to the complete graph KN, the greater the value of ν. Take
the network in Fig. 1 as an example. Both layers have eight edges,
five of which are in common, implying that ε(G1 ∩ G2) = 5 and
ε(G1 ∪ G2) = 11. Thus, one has ω = 5

11
≈ 0.45 and ν = 22

30
≈ 0.73.

Furthermore, these two indices can also be represented by the
elements in the Laplacian matrix or the adjacency matrix. Since

ε(G1 ∩ G2) =
∑

i,j=1...N
j>i

d1
ijd

2
ij =

∑

i,j=1...N
j>i

a1
ija

2
ij,

ε(G1 ∪ G2) =
∑

i,j=1...N
j>i

(

−d1
ij − d2

ij − d1
ijd

2
ij

)

=
∑

i,j=1...N
j>i

(

a1
ij + a2

ij − a1
ija

2
ij

)

,

Eqs. (2) and (3) can be rewritten as

ω =

∑

i,j=1...N
j>i

d1
ijd

2
ij

∑

i,j=1...N
j>i

(

−d1
ij − d2

ij − d1
ijd

2
ij

)

=

∑

i,j=1...N
j>i

a1
ija

2
ij

∑

i,j=1...N
j>i

(

a1
ij + a2

ij − a1
ija

2
ij

) ,

ν =
2
∑

i,j=1...N
j>i

(

−d1
ij − d2

ij − d1
ijd

2
ij

)

N(N − 1)

=
2
∑

i,j=1...N
j>i

(

a1
ij + a2

ij − a1
ija

2
ij

)

N(N − 1)
.

For the main results, the following lemmas are needed.20

Lemma 1: If 0 ≤ λ2 ≤ · · · ≤ λN are the Laplace eigenval-
ues of a single graph G, then 0 ≤ N − λN ≤ · · · ≤ N − λ2 are the
Laplace eigenvalues of the complement of G.

Lemma 2: Let G be a graph on N vertices with at least one
edge and let 1(G) be the maximum degree of G. Then,

λN(G) ≥ 1 + 1(G).

Lemma 3: Let G be a non-complete graph on N vertices and
let δ(G) be the minimum degree of G. Then,

λ2(G) ≤ δ(G).

It should be stressed that in Ref. 20, λN(G) and λ2(G) represent
the largest and second smallest eigenvalues of the Laplacian matrix
of graph G, respectively.

III. THE GREATEST IMPACT OF AN EDGE ON THE

NETWORK DIFFUSION SPEED

In this section, the greatest impact of an edge on the second
smallest eigenvalue of the Laplacian matrix is studied.

Suppose the original graph is G and its corresponding Lapla-
cian matrix is L. After adding an edge between nodes i and j, the new
graph is G′ and its corresponding Laplacian matrix is L′. In addition,
assume there are N nodes in graph G. Then, Theorem 1 is obtained.

Theorem 1: After adding(deleting) an edge between nodes i
and j, the Laplacian matrix changes from L(L′) to L′(L). Then, λ2(L)

and λ2(L
′) have the following relation:

λ2(L
′) − λ2(L) ≤ 2. (4)

In the following, we give a detailed proof of the case of edge
addition and a brief description of the case of edge deletion.

Proof. Due to the definition of the second smallest eigenvalue
of the Laplacian matrix,17–19 one obtains

λ2(L) = min
z⊥1,‖z‖=1

zTLz = min
z⊥1,‖z‖=1

∑

vmvn∈G

(zm − zn)
2, (5)

where 1 is a column vector whose all N components be 1, zm is
the mth component of the vector z, and vmvn represents the edge
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between nodes m and n. The solution of the second smallest eigen-
value of the Laplacian matrix can be regarded as an optimization
problem, that is, how to distribute the values of components of z
so that the sum of the quadratic terms is the minimum. Similar to
Eq. (5), one obtains

λ2(L
′) = min

z⊥1,‖z‖=1

∑

vmvn∈G′

(zm − zn)
2.

Assume that z∗ is a unit vector orthogonal to 1 and satisfies that

z∗ ∈
{

z̄ ∈ RN

∣

∣

∣

∣

∣

∑

vmvn∈G

(z̄m − z̄n)
2 = min

z⊥1,‖z‖=1

∑

vmvn∈G

(zm − zn)
2

}

,

where z̄m is the mth component of the column vector z̄. From the
existence of λ2(L), the existence of z∗ is obvious. Then,

λ2(L) =
∑

vmvn∈G

(z∗
m − z∗

n)
2, (6)

where z∗
m is the mth component of z∗. Moreover, for this z∗, one

further has

λ2(L
′) ≤

∑

vmvn∈G′

(z∗
m − z∗

n)
2. (7)

Given that G′ = G ∪ vivj, it is implied that

∑

vmvn∈G′

(z∗
m − z∗

n)
2 =

∑

vmvn∈G

(z∗
m − z∗

n)
2 + (z∗

i − z∗
j )

2. (8)

From Eq. (6), one obtains

∑

vmvn∈G

(z∗
m − z∗

n)
2 + (z∗

i − z∗
j )

2 = λ2(L) + (z∗
i − z∗

j )
2. (9)

It is derived from Eqs. (7)–(9) that

λ2(L
′) ≤ λ2(L) + (z∗

i − z∗
j )

2. (10)

Now, we have known that λ2(L
′) − λ2(L) ≤ (z∗

i − z∗
j )

2, once

the maximum value (z∗
i − z∗

j )
2 is acquired, the maximum increment

of the second smallest eigenvalue is known.
For simplicity, replace z∗ with x0 = (x1, x2, . . . , xN)T. The max-

imum problem of (z∗
i − z∗

j )
2 is equivalent to the following optimiza-

tion problem:

min − (xi − xj)
2

s.t. x2
1 + x2

2 + · · · + x2
N = 1,

x1 + x2 + · · · + xN = 0.

To solve this optimization problem, according to Karush–Kuhn–
Tucker Conditions, we construct its Lagrangian function:21

L(x0, µ1, µ2) = −(xi − xj)
2 − µ1(x

2
1 + x2

2 + · · · + x2
N − 1)

− µ2(x1 + x2 + · · · + xN),

where µ1 and µ2 are arbitrary constants. Because the vector
(2x1, 2x2, . . . , 2xN)T is orthogonal to (1, 1, . . . , 1)T, Karush–Kuhn–
Tucker conditions is applicable. If x

∗ = (x∗
1 , x∗

2 , . . . , x∗
N)T is the

solution of the optimization problem, then µ∗
1 and µ∗

2 satisfy the
following equations:











Ox
∗L(x∗, µ∗

1 , µ∗
2) = 0,

x∗2
1 + x∗2

2 + · · · + x∗2
N = 1,

x∗
1 + x∗

2 + · · · + x∗
N = 0,

(11)

where 0 is a column vector whose all N components are 0. For

O
∗
x
L(x∗, µ∗

1 , µ∗
2) =



















































−2µ∗
1x∗

1 − µ∗
2

...

−2µ∗
1x∗

i−1 − µ∗
2

−2x∗
i + 2x∗

j − 2µ∗
1x∗

i − µ∗
2

−2µ∗
1x∗

i+1 − µ∗
2

...

−2µ∗
1x∗

j−1 − µ∗
2

2x∗
i − 2x∗

j − 2µ∗
1x∗

j − µ∗
2

−2µ∗
1x∗

j+1 − µ∗
2

...

−2µ∗
1x∗

N − µ∗
2



















































=



















































0

...

0

0

0

...

0

0

0

...

0



















































, (12)

the sum of the N elements in the middle is equal to 0. Thus,

−2µ∗
1(x

∗
1 + x∗

2 + · · · + x∗
N) − Nµ∗

2 = 0. (13)

Combine Eq. (13) with the third equation of Eq. (11) and get µ∗
2 = 0.

Substitute µ∗
2 = 0 into Eq. (12) and consider two cases: µ∗

1 = 0 and
µ∗

1 6= 0.
If µ∗

1 is equal to 0, substitute µ∗
1 = 0 into Eq. (12) and focus

on the ith and jth rows. It can be seen that x∗
i is equal to x∗

j ,

or equivalently, −(x∗
i − x∗

j )
2 = 0. This solution is obviously not

optimal. If µ∗
1 is not equal to 0, focus on the rows of Eq. (12)

except the ith and jth rows. It is seen that all the N components
of x

∗ except the ith and jth components are 0. Solve Eq. (11) and

get the optimal solution x
∗ as (0, . . . , 0,

√
2

2
, 0, . . . , 0, −

√
2

2
, 0, . . . , 0)

T

or (0, . . . , 0, −
√

2
2

, 0, . . . , 0,
√

2
2

, 0, . . . , 0)
T
. In this case, −(x∗

i − x∗
j )

2

= −2.
Based on the above analysis, it is obtained that max (xi − xj)

2 is
equal to 2. Thus, from Eq. (10), one obtains

λ2(L
′) − λ2(L) ≤ max (xi − xj)

2 = 2. (14)

In other words, when an edge is added to the network, the maximum
increment of the second smallest eigenvalue is 2. �

Similarly, delete one edge to make graph G′ become G, Lapla-
cian matrix L′ become L. Conversely, graph G′ can be regarded as
graph G by adding an edge. From Eq. (14), then λ2(L

′) − λ2(L) ≤ 2.
Therefore, when an edge is deleted from the network, the maximum
drop of the second smallest eigenvalue is 2.

Actually, Theorem 1 can also be proved by the conclusion of
Sec. 1.3 in Ref. 20. It is concluded that when an edge is added
to (deleted from) the network, the increment (drop) of its second
smallest eigenvalue is at most 2. The situation where the increment
(drop) is equal to 2 exists. When G′ is equal to KN, λ2(L

′) is equal
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to N. From Lemma 3, λ2(L) ≤ δ(G) = N − 2. Thus, λ2(L
′) − λ2(L)

≥ 2. On the other hand, from Theorem 1, λ2(L
′) − λ2(L) ≤ 2. To

sum up, when G′ is equal to KN, λ2(L
′) − λ2(L) = 2.

IV. THE IMPACT OF COMPLETE STRUCTURE ON

SUPERDIFFUSION

In this section, the relation between the number of deleted
edges and the superdiffusible network is studied. Specifically,
G1 ∪ G2 can be obtained from the complete graph KN by deleting
some edges. According to different values of the complete index ν

and the overlap index ω, we will present our discussion in three
cases.

Case 1: When ν = 1 and ω = 0
When ν is equal to one and ω is equal to zero, graph G1 is the

complement of G2, which means G1 is equal to (KN − G2).
In this case, λs is equal to N

2
. If 0 ≤ λ1

2 ≤ · · · ≤ λ1
N are the

Laplacian eigenvalues of G1, then 0 ≤ N − λ1
N ≤ · · · ≤ N − λ1

2 are
the Laplacian eigenvalues of G2.20 Therefore, the duplex network is
superdiffusible provided that λ1

2 < N
2

and λ1
N > N

2
. Using Lemmas 2

and 3, Theorem 2 is derived.
Theorem 2: Assume that G1 and G2 are connected incom-

plete single graphs with N nodes. If

(a) G1 is the complement of G2,
(b) δ(G1) < N

2
,

(c) 1(G1) > N
2

− 1,

where δ(G1) and 1(G1) are the minimum and maximum degrees of
G1, respectively, then the duplex network composed of G1 and G2 is
superdiffusible.

Proof. According to the assumption that G1 is the complement
of G2, one obtains

λs = λ2

(

L1 + L2

2

)

=
N

2
. (15)

When G1 is an incomplete graph and δ(G1) < N
2
, from Lemma 3,

one has

λ1
2 ≤ δ(G1) <

N

2
. (16)

On the other hand, when G1 is the complement of G2 and G2 is an
incomplete graph, it implies that G1 is a graph with at least one edge.
Since 1(G1) > N

2
− 1, it is derived that

λ1
N ≥ 1(G1) + 1 >

N

2
(17)

from Lemma 2. According to Lemma 1 and Eq. (17), then one
obtains

λ2
2 = N − λ1

N <
N

2
. (18)

Combining Eqs. (15), (16), and (18), one gets λs > max
{

λ1
2, λ

2
2

}

. �

Remark 1: When G1 is the complement of G2, δ(G1) < N
2

and 1(G1) > N
2

− 1 are equivalent to 1(G2) > N
2

− 1 and δ(G2)

< N
2
, respectively. So, there are actually four different forms to state

Theorem 2. One of them is consistent with Theorem 4.3.2 in Ref. 22.

From Theorem 2, it is concluded that if two layers of a duplex
network are completely complementary, the smaller the minimum
degree and the larger the maximum degree of one layer, the more
likely the duplex network is to be superdiffusible. In addition,
according to Remark 1, we realize when the minimum degrees
of the two layers are small, the duplex network is likely to be
superdiffusible. An example is given in Sec. V A.

Case 2: When ν ≈ 1 and ω = 0
When ν is approximately equal to one and ω is equal to

zero, G1 ∪ G2 is close to the complete graph KN. As a subgraph
of KN, G1 ∪ G2 can be obtained by deleting some edges from KN.
Therefore, λs can be regarded as a disturbance of N

2
. The esti-

mated value of λs is related to the number of deleted edges. Define
Gd as the graph (KN − G1 ∪ G2). Then, ε(Gd) is equal to

(

N(N−1)
2

− ε(G1 ∪ G2)
)

. From Theorem 1, it is seen that if one edge is deleted
from the graph, the drop in the second smallest eigenvalues between
the original and new Laplacian matrices will not exceed 2. Thus,
Theorem 3 is obtained.

Theorem 3: Suppose the complete index ν is approximately
equal to one, the overlap index ω is equal to zero, and both G1 and
G2 are incomplete single graphs. If

ε(Gd) < min

{

N

2
− δ(G1),

N

2
− δ(G2)

}

, (19)

then the duplex network composed of G1 and G2 is superdiffusible.
Proof. When ν is approximately equal to one, the graph

G1 ∪ G2 can be obtained by deleting some edges from KN. Let ε(Gd)

represents the edge of the graph (KN − G1 ∪ G2). From Theorem 1,
it is seen that if one edge is deleted from the graph, the eigenvalue
drop of the original Laplacian matrix is at most 2; thus,

λs ≥
N − 2ε(Gd)

2
.

For incomplete single graphs G1 and G2, one obtains λ1
2 ≤ δ(G1) and

λ2
2 ≤ δ(G2) from Lemma 3.

If ε(Gd) < min
{

N
2

− δ(G1),
N
2

− δ(G2)
}

, then one has
N−2ε(Gd)

2

> max {δ(G1), δ(G2)}, and, therefore, λs > max
{

λ1
2, λ

2
2

}

. �

In fact, Theorem 2 can be regarded as a special case of
Theorem 3. By comparing Theorems 2 and 3, we find that if a
duplex network satisfies the conditions of Theorem 2, then it is still
superdiffusible after some of its edges are deleted. Equation (19)
gives an estimate of the number of edges allowed to be deleted. How-
ever, this estimate is somewhat conservative, because each time we
delete one edge, we make the drop of λ2 equal to two.

Theorem 3 tells us that if the duplex network satisfies the con-
ditions of Theorem 3, then the smaller the minimum degrees of the
two layers are and the closer G1 ∪ G2 is to KN, the more likely the
duplex network is to be superdiffusible.

Case 3: When ν ≈ 1
The condition that ω is equal to zero can be relaxed. When ω is

not equal to zero, it means that there is an overlap part between G1

and G2. Then,

L1 + L2 = (L1 − Lc + L2 − Lc + Lc) + Lc, (20)

Chaos 33, 023133 (2023); doi: 10.1063/5.0133712 33, 023133-5

Published under an exclusive license by AIP Publishing

 21 Septem
ber 2023 05:11:56

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

where Lc represents the Laplacian matrix of G1 ∩ G2. The term in the
bracket is exactly the Laplacian matrix of G1 ∪ G2. Actually, G1 ∪ G2

can be obtained by deleting some edges from KN.
Theorem 4: Suppose the complete index ν is approximately

equal to one and both G1 and G2 are incomplete single graphs. If

ε(Gd) < min

{

N

2
− δ(G1),

N

2
− δ(G2)

}

,

then the duplex network composed of G1 and G2 is superdiffusible.
Proof. Denote L+ as the Laplacian matrix of graph G1 ∪ G2.

Considering Lc is a positive semi-definite matrix, one then obtains20

2λs = λ2(L1 + L2) ≥ λ2(L+)

from Eq. (20). It is inferred from Theorem 1 when ε(Gd) = N(N−1)
2

− ε(G1 ∪ G2), then

λ2(L+)

2
>

N − 2ε(Gd)

2
.

In addition, for incomplete single graphs G1 and G2, one gets
λ1

2 ≤ δ(G1) and λ2
2 ≤ δ(G2) from Lemma 3.

If ε(Gd) < min
{

N
2

− δ(G1),
N
2

− δ(G2)
}

, then one has
N−2ε(Gd)

2

> max {δ(G1), δ(G2)}, and, therefore, λs > max
{

λ1
2, λ

2
2

}

. �

By comparing Theorems 3 and 4, we find that, in some cases,
whether there is an overlap between two layers has little influence
on the emergence of superdiffusion, which is consistent with the
numerical result in Ref. 13. For example, if one selects a network
that satisfies the conditions of Theorem 3, and adds some edges in
G2 instead of G1 to G1 while ensuring δ(G1) unchanged, then the
network is still superdiffusible.

Theorem 4 reveals that, if the duplex network satisfies the con-
ditions of Theorem 4, then the smaller the minimum degrees of the
two layers are and the closer G1 ∪ G2 is to KN, the more likely the
duplex network is to be superdiffusible.

The above results show that as long as G1 ∪ G2 is approximately
equal to KN and max {δ(G1), δ(G2)} < N

2
, then the duplex network

composed of G1 and G2 is superdiffusible. Thus, whether a duplex
network is superdiffusible has no direct relation with the overlap of
its two layers. In other words, the emergence of superdiffusion does
not depend on the overlap but on the complete structure.

V. NUMERICAL SIMULATION

In this section, two examples are displayed to verify the effec-
tiveness of our theoretical results.

A. Example 1: Verification of Theorem 2

A duplex network is shown in Fig. 2. It satisfies the three condi-
tions of Theorem 2: G1 is the complement of G2, δ(G1) = 2 < N

2
= 3

, and 1(G1) = 3 > N
2

− 1 = 2.
The second smallest eigenvalues of the Laplacians of the net-

work are plotted in Fig. 3. The dashed line represents the value
of λs and the dashed-dotted line the value of λ1

2 and λ2
2. The blue

solid line represents the value of 32. Figure 3 shows that, when Dx

increases, 32 will gradually increase and approach λs. This phe-
nomenon has been revealed previously in Ref. 12. Moreover, it

FIG. 3. Comparison of the second smallest eigenvalues of the Laplacians of the
network in Fig. 2. Here, λ1

2 = λ2
2 = 1. It is seen that 32 > max

{

λ1
2, λ

2
2

}

when
Dx > Dc. Thus, the duplex network is superdiffusible.

can also be seen that when Dx > Dc, 32 > max
{

λ1
2, λ

2
2

}

. Thus, the
network is superdiffusible.

B. Example 2: Verification of Theorem 3

In order to verify the effectiveness of Theorem 3, a duplex
network is employed: the first layer is shown in Fig. 4 and
the second layer is the complement of the first layer. Obvi-
ously, δ(G1) = 3, δ(G2) = 5 and N = 39. From Theorem 3, if
ε < min

{

N
2

− δ(G1),
N
2

− δ(G2)
}

= 14.5, the network is superdif-
fusible. In other words, if the number of deleted edges from the

FIG. 4. A network with 39 nodes and 171 edges.
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FIG. 5. Comparison of the second smallest eigenvalues of the Laplacians
of a network satisfying the conditions of Theorem 3. When Dx > Dc,
32 > max

{

λ1
2, λ

2
2

}

is satisfied; thus, the duplex network is superdiffusible.

duplex network is smaller than 14.5, the duplex network keeps
superdiffusible.

Randomly delete 14 edges while keeping δ(G1) = 3 and
δ(G2) = 5 unchanged. Figure 5 displays the second smallest
eigenvalues of the Laplacians of the network. It is seen that
λs > max

{

λ1
2, λ

2
2

}

, and, thus, the duplex network is superdiffusible.
Each of the 100 stochastic simulations is similar to one shown
in Fig. 5.

VI. CONCLUSIONS

Based on the optimization theory, this manuscript theoretically
analyzes the greatest impact of one edge on the network diffu-
sion speed and gives a quantitative conclusion. Further, the relation
between the number of deleted edges and the superdiffusible net-
work is studied and some superdiffusion criteria on duplex networks
are proposed. It is proved that if G1 ∪ G2 is approximately equal
to KN and max {δ(G1), δ(G2)} < N

2
, the duplex network composed

of G1 and G2 is superdiffusible. The results supplement the proof
for the numerical results in Ref. 13: the emergence of superdiffu-
sion does not depend on the overlap. In addition, it is interesting
to note that the emergence of superdiffusion depends on the com-
plete structure. The result can be used to discover and construct
a superdiffusible duplex network. In addition, a method has been
developed to judge whether a multiplex network is superdiffusible,
as shown in the proof of Theorem 4 in detail. Obviously, the method
can be extended to the research of the multiplex network with more
than two layers. Compared with the previous studies on superdif-
fusible multiplex networks, the manuscript provides a new angle
from which we can use disturbance theory to estimate λs based on
the known quantities.
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