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ABSTRACT

Though synchronization of complex dynamical systems has been widely studied in the past few decades, few studies pay attention to the
impact of network parameters on synchronization in hypernetworks. In this paper, we focus on a specific hypernetwork model consisting
of coupled Rössler oscillators and investigate the impact of inner-coupling and time delay on the synchronized region (SR). For the sake of
simplicity, the inner-coupling matrix is chosen from three typical forms, which result in classical bounded, unbounded, and empty SR in a
single-layer network, respectively. The impact of inner-couplings or time delays on unbounded SR is the most interesting one among the
three types of SR. Once the SR of one subnetwork is unbounded, the SR of the whole hypernetwork is also unbounded with a different inner-
coupling matrix. In a hypernetwork with unbounded SR, the time delays change not only the size but also the type of SR. In a hypernetwork
with bounded or empty SR, the time delays have almost no effect on the type of SR.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091626

In recent years, the synchronization of hypernetworks has
attracted much attention. However, there is currently a lack of
research on how the inner-coupling and the time delay affect the
synchronization region of hypernetworks. Most of the previous
work has focused on single-layer networks, while relatively little
research has been done on hypernetworks. In addition, many real
systems can be modeled as hypernetworks. Therefore, it is neces-
sary to study the synchronization of hypernetworks. In this paper,
the impact of inner-coupling and time delay on the synchroniza-
tion region of both single-layer networks and hypernetworks is
studied by numerical simulations, and some interesting results
are obtained.

I. INTRODUCTION

In the past two decades, network science has developed rapidly,
which helps us better understand various complex systems in

real life, such as biological systems, social systems, and engineer-
ing systems. Previously, a common strategy for studying com-
plex systems was to abstract them into single-layer networks.
The rise and rapid development of single-layer networks pro-
vide new directions for better research on the real world.1–5 Later,
researchers found that the structure of many complex systems can-
not be simply described as a single-layer network, but a multi-
layer network.6–10 A multi-layer network is the research front and
hotspot of network science. Researchers have studied epidemic
transmission,11 diffusion processes,12 evolutionary games, and social
interactions in a multi-layered framework. This paper mainly stud-
ies the hypernetwork,13–15 which is a specific type of multi-layer
network.

In a hypernetwork, the nodes have two or more independent
interaction modes corresponding to different network topologies.
For example, fish use their visual perception and chemical
sense to locate their mates to maintain coordinated movement
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of the entire school;16 neurons communicate through two dis-
tinct interactions: chemical synaptic junctions and electrical gap
junctions.17 Computer communication networks, interdependent
networks,18 and networks of networks19 can all be viewed as
hypernetworks. In recent years, hypernetworks and its synchro-
nization are becoming an important research topic. There are
many types of synchronization, such as phase synchronization,20

cluster synchronization,21 and complete synchronization.22,23 In
this paper, the complete synchronization of hypernetworks is
considered.

As one of the methods to study network synchronization, the
master stability function24,25 method has received extensive atten-
tion. According to the master stability function method, the fac-
tors that affect the synchronized region (SR) of networks include
not only the node dynamics and the network topology, but also
the inner-coupling functions and the coupling delays. In 2018,
Tang et al.9 studied the influence of three different types of inter-
layer coupling functions on the intra-synchronized regions in a
duplex network with coupling delays. Through numerical simula-
tions, they found that there exists an inter-layer coupling function,
which makes the inter-layer coupling strength neither increase nor
decrease the intra-layer synchronizability. Shortly after, Wu et al.10

investigated the impact of different inner-coupling functions on
synchronization of duplex networks with identical and noniden-
tical intra-layer structures. They have shown that the intra-layer
structural differences of the duplex network weaken both intra-layer
and inter-layer synchronizability. However, focusing on duplex net-
works alone is not enough. Hypernetwork, as a typical multilayer
network, becomes the object of the master stability function method
in the paper.

In 2012, Sorrentino13 derived the master stability equation
for hypernetworks and then proposed an approach to decou-
pling the master stability equation for three cases. Shortly after-
ward, Irving and Sorrentino14 proposed a general framework to
study the stability of synchronous solutions for hypernetworks
and showed that arbitrarily large networks can be reduced to a
set of subsystems of no more than two dimensions by diagonal-
ization of matrix blocks. In 2014, Bilal and Ramaswamy15 ana-
lyzed the connection matrix of hypernetworks and found that a
sufficiently small row sum of the connection matrix can lead to
the phenomenon of amplitude or oscillation death. However, lit-
tle attention has been paid to the impact of inner-coupling and
time delay on the synchronization of hypernetworks. In reality,
time delay on networks is generally unavoidable and has a signif-
icant impact on the stability of a synchronous solution.26 There-
fore, it is necessary and meaningful to investigate the impact
of both the inner-coupling and the time delay on hypernetwork
synchronization.

Motivated by above discussions, in this paper, we further
investigate the impact of different inner-couplings and time delays
on synchronization of a single-layer network and a hypernet-
work, respectively. Particularly, the Rössler chaotic oscillator is
employed to be the node dynamics. The rest of this paper is orga-
nized as follows. The model of a hypernetwork composed of two
interaction layers is introduced in Sec. II. The impact of different
inner-couplings and time delays is studied in detail in Sec. III.
Finally, some conclusions are given in Sec. IV.

II. MODEL

Consider a hypernetwork consisting of N oscillators with two
interaction layers,

ẋi(t) = f(xi(t)) − c1

N
∑

j=1

l(1)ij H(1)(xj(t − τ1)) − c2

N
∑

j=1

l(2)ij H(2)(xj(t − τ2)),

(1)

where i = 1, 2, . . . , N, and xi = (x1
i , x

2
i , . . . , xm

i )
T

denotes the
m-dimensional state of the ith node, f : R

m → R
m is a function

describing the dynamics of an isolated oscillator, ck (k = 1, 2) rep-
resents the intra-coupling strength of the kth interaction layer,

L(k) = (l(k)ij )
N×N

is the Laplacian matrix describing the topology of

the kth interaction layer and satisfying the property of zero row
sum, H(k) : R

m → R
m is the inner-coupling function determining

how the oscillators are coupled, and τk is the time delay in the kth
interaction layer.

The well-known Rössler chaotic oscillator is employed to be the
node dynamics f due to the fact that the Rössler system is widely used
for secure communication, which is described by











ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = x3(x1 − c) + b,

with a = b = 0.2 and c = 9.

III. MAIN RESULTS

In this section, the master stability function of the hypernet-
work (1) is derived. The hypernetwork (1) satisfies the four condi-
tions proposed by Pecora and Carroll.24 Furthermore, the impact of
inner-coupling and time delay on SR of a single-layer network and a
hypernetwork is illustrated.

A. The master stability function

The hypernetwork (1) achieves complete synchronization if the
states of all the oscillators are identical; i.e.,

x1(t) = x2(t) = · · · = xN(t) = s(t),

where s(t) represents the synchronous state27 described by ṡ(t)
= f(s(t)).

Linearizing Eq. (1) at s(t) gives

δẋi(t) = Jf(s(t))δxi(t)

− c1

N
∑

j=1

l(1)ij JH(1)(s(t − τ1))δxj(t − τ1)

− c2

N
∑

j=1

l(2)ij JH(2)(s(t − τ2))δxj(t − τ2), (2)

where δxi(t) = xi(t) − s(t). Jf represents the Jacobian matrix of the

function f. Denoting δX(t) = [δx1(t)
T, δx2(t)

T, . . . , δxN(t)T]
T
, Eq. (2)
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can be rewritten in the following compact form:

δẊ(t) = IN ⊗ Jf(s(t))δX(t)

− c1L
(1) ⊗ JH(1)(s(t − τ1))δX(t − τ1)

− c2L
(2) ⊗ JH(2)(s(t − τ2))δX(t − τ2), (3)

where ⊗ is the Kronecker product. For simplicity, H(k)(x)
= H(k)x.

Assume that the two Laplacian matrices L(1) and L(2) are sym-
metric and commutable.28 Then, there exists an orthogonal matrix

P such that PTL(k)P = D(k), where Dk = diag{λ(k)
1 , λ(k)

2 , . . . , λ(k)
N }

and 0 = λ
(k)
1 < λ

(k)
2 ≤ · · · ≤ λ

(k)
N . Obviously, the main diagonal

elements of the matrix D(k) are the eigenvalues of the matrix
L(k). The columns of the matrix P are the corresponding
eigenvectors.

By introducing ξ(t) = (PT ⊗ Im)δX(t), Eq. (3) transforms into

ξ̇ (t) = IN ⊗ Jf(s(t))ξ(t)

− c1D
(1) ⊗ JH(1)(s(t − τ1))ξ(t − τ1)

− c2D
(2) ⊗ JH(2)(s(t − τ2))ξ(t − τ2). (4)

Denote ξ(t) = [ξ1(t), ξ2(t), . . . , ξN(t)]T. Equation (4) can be reduced
to an N independent variational equation,

ξ̇p(t) = Jf(s(t))ξp(t)

− c1λ
(1)
p JH(1)(s(t − τ1))ξp(t − τ1)

− c2λ
(2)
p JH(2)(s(t − τ2))ξp(t − τ2), (5)

where p = 1, 2, . . . , N. Consequently, to investigate the stability of

system (5), define α = c1λ
(1)
p , β = c2λ

(2)
p and then consider the

following master stability equation:

ẏ(t) = Jf(s)y(t)

− αJH(1)(s(t − τ1))y(t − τ1)

− βJH(2)(s(t − τ2))y(t − τ2). (6)

Fixing the functions f and H(k), the largest Lyapunov exponent
LLE(α, β , τ1, τ2) of Eq. (6) would be a function of α, β , τ1, and τ2,
which is the so-called master stability function.

When adding a small perturbation to the synchronous state,
the perturbation will decrease exponentially if LLE(α, β , τ1, τ2) is
negative. That is, the synchronous solution is stable and the synchro-
nization is achieved. Precisely, a network is more synchronizable if
LLE(α, β , τ1, τ2) is smaller. On the contrary, the sychronous solution
is unstable if LLE(α, β , τ1, τ2) > 0. The SR of the hypernetwork (1)
is denoted by {(α, β , τ1, τ2)|LLE(α, β , τ1, τ2) < 0}.

Fixing τ1 and τ2, the SRs of the hypernetwork (1) can
be classified into three types29 according to the master stability
function:

Type I: LLE(α, β , τ1, τ2) < 0 within a bounded area of the half
plane (α > 0, β > 0), meaning that the SR of the hypernetwork (1)
is bounded.

Type II: LLE(α, β , τ1, τ2) < 0 within an unbounded area of the
half plane(α > 0, β > 0), meaning that the SR of the hypernetwork
(1) is unbounded.

Type III: LLE(α, β , τ1, τ2) is always positive in the half plane
(α > 0, β > 0), meaning that the SR of the hypernetwork (1) is
empty, or equivalently, the synchronous solution of the hypernet-
work (1) is always unstable whatever the topology is.

B. Impact of inner-coupling

This subsection numerically investigates the impact of different
inner-coupling matrices on SR of the hypernetwork (1). The inner-
coupling matrices in all simulations are chosen from the following
three typical ones:

I11 =





1 0 0
0 0 0
0 0 0



 , I22 =





0 0 0
0 1 0
0 0 0



 , I33 =





0 0 0
0 0 0
0 0 1



 .

To better demonstrate the impact of inner-coupling matrices,
set time delay τ1 = τ2 = 0 in this subsection. Then, the hypernet-
work (1) reduces to

ẋi = f(xi) − c1

N
∑

j=1

l(1)ij H(1)(xj) − c2

N
∑

j=1

l(2)ij H(2)(xj), (7)

where i = 1, 2, . . . , N. The master stability equation (6) is simplified
to

ẏ =
[

JF(s) − αJH(1)(s) − βJH(2)(s)
]

y. (8)

If H(1) = 0 or H(2) = 0, the network (7) becomes a single-
layer network. Alternatively, if both of them are nonzero, then the
network (7) is a hypernetwork.

1. Single-layer network

Consider that one of the matrices H(1) and H(2) is zero. With-
out loss of generality, assume that H(2) = 0 and H(1) = Iii, i = 1, 2, 3,
then the hypernetwork (7) transforms into a single-layer network,
and the corresponding master stability equation is given by

ẏ =
[

JF(s) − αJH(1)(s)
]

y. (9)

In general, different inner-coupling matrices result in different
SRs. The variation of LLE of the hypernetwork (7) with parameter
α is shown in Fig. 1. The small panel in Fig. 1 shows the case when
parameter α is taken from 6 to 500. It is found that when H(1) is
set as I11, I22, or I33, the SR of the hypernetwork (7) is bounded,
unbounded, or empty, respectively.

2. Hypernetwork

Consider that both H(1) and H(2) are nonzero. Different
H(1)-H(2) pairs lead to different SRs. There are in total six differ-
ent H(1)-H(2) pairs, and the corresponding SRs are demonstrated in
Fig. 2.

When β = 0, the two-dimensional SR degenerate into one-
dimensional ones of single-layer networks with H(1) = Iii and H(2)

= 0. From Fig. 2(c), it is interesting to see the unbounded SR of the
hypernetwork (7), even if the SR of the first subnetwork is empty and
that of the second subnetwork is bounded. Besides, once the SRs of
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FIG. 1. The LLE of the hypernetwork (7) as a function of parameter α, where
H

(2) = 0 and H(1) are set as I11, I22, and I33, respectively.

one subnetwork is unbounded, the SR of the whole hypernetwork is
unbounded too. To summarize, the type of SR of the hypernetwork
(7) with different inner-coupling matrices is depicted in Table I. It
is seen that the SR belongs to type I if and only if H(1) = H(2) = I11,
type III if and only if H(1) = H(2) = I33, and type II for all the other
cases. Therefore, the inner-coupling matrix has a significant impact
on the type of SR.

C. Impact of time delay

In this subsection, we investigate the impact of different time
delays on SR. For simplicity, let τ1 = τ2 = τ . Then, Eq. (1) can be
rewritten as

ẋi(t) = f(xi(t)) − c1

N
∑

j=1

l(1)ij H(1)(xj(t − τ)) − c2

N
∑

j=1

l(2)ij H(2)(xj(t − τ)),

(10)

and the master stability equation (6) becomes

ẏ = JF(s)y −
[

αJH(1)(s) + βJH(2)(s)
]

y(t − τ). (11)

(a) (b) (c)

(e) (f) (g)

FIG. 2. SRs of the hypernetwork (7) in the parameter space of α and β , where H
(1) and H

(2) are chosen from {I11, I22, I33}. The SR (i.e., LLE < 0) is shown in blue.
(a) H(1) = I11, H

(2) = I11. (b) H
(1) = I22, H

(2) = I11. (c) H
(1) = I33, H

(2) = I11. (d) H
(1) = I22, H

(2) = I22. (e) H
(1) = I33, H

(2) = I22. (f) H
(1) = I33, H

(2) = I33.
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TABLE I. The type of SR of the hypernetwork (7) with different inner-coupling matrix

combination. Type I, type II, and type III represent bounded, unbounded, and empty

SR, respectively. The types in bold represent the typical bounded, unbounded, and

empty SR.

H(2)

H(1) 0 I11 I22 I33

0 . . . Type I Type II Type III
I11 Type I Type I Type II Type II
I22 Type II Type II Type II Type II
I33 Type III Type II Type II Type III

1. Single-layer network

Without loss of generality, assume that H(2) = 0. Then, Eq. (11)
turns to

ẏ = JF(s)y − αJH(1)(s)y(t − τ). (12)

The variation of the LLE of the hypernetwork (10) with respect to
α is plotted in Fig. 3, where coupling delay τ = 0, 0.1, 0.3, and 0.5,
respectively. When H(1) = I11 and H(2) = 0, it is found from panel
(a) of Fig. 3 that the function LLE(α) has two intersection points
with the α-axis regardless of the value of τ , which are denoted as
α1 and α2. Hence, the SR of the hypernetwork (10) is a bounded
interval, and the interval is (α1, α2). The impact of coupling delay τ

on the SR (α1, α2) is interesting. The relation of α1 and α2 with τ

is displayed in the small panel of Fig. 3(a). It is seen that α1 almost
does not vary with τ ; that is, the lower bound of SR is insensitive
to time delay. On the contrary, time delay τ has a remarkable influ-
ence on the upper bound α2 of SR. When τ ∈ [0, τc] with τc = 0.32,
α2 changes little with τ . When τ is bigger than the critical point τc,
however, α2 becomes smaller with the increase of τ . That is, a large
enough delay could shrink SR of the hypernetwork (10). To sum up,
SR is insensitive to the time delay τ if τ is smaller than the critical
point τc, and SR shrinks if τ gets bigger than τc. When H(1) = I22

and H(2) = 0, the SRs corresponding to different time delays are
displayed in panel (b) of Fig. 3. When time delay τ = 0, function

FIG. 4. The SRs of the hypernetwork (10) in the parameter space of α and
β , where the inner-coupling matrices H

(1) = H
(2) = I11 and the time delay

τ = 0, 0.1, 0.3, and 0.5, respectively. The SR and the ASR are shown in blue
and gray, respectively.

LLE(α) has only one intersection point with the α-axis, which is
denoted as α3. This indicates that SR of the hypernetwork (10) is
an unbounded interval (α3, +∞). When increasing time delay, the
function LLE(α) has another intersection point with the α-axis,
which is denoted as α4, indicating that SR becomes bounded. The
relation between α4 and τ is displayed in the small panel of Fig. 3(b).
When continue to increase the time delay, SR is still bounded, and
the bounded interval shrinks if enlarging τ according to the small
panel of Fig. 3(b). Therefore, the time delay can change not only
the size but also the type of SR. Particularly, the lower bound α3 of
SR is insensitive to the time delay, which is the same as the case of
H(1) = I11 and H(2) = 0. When H(1) = I33 and H(2) = 0, panel (c) of
Fig. 3 demonstrates that SR of the hypernetwork (10) is empty what-
ever the time delay τ is; i.e., the SR is always of type III. Therefore,
the hypernetwork (10) cannot achieve synchronization if H(1) = I33

and H(2) = 0.

(a) (b) (c)

FIG. 3. The variation of LLE as a function of parameter α. The coupling delay τ = 0, 0.1, 0.3, and 0.5, respectively. (a) H(1) = I11, H
(2) = 0. (b) H(1) = I22, H

(2) = 0.
(c) H(1) = I33, H

(2) = 0.
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FIG. 5. The SRs of the hypernetwork (10) in the parameter space of α and
β , where the inner-coupling matrices H

(1) = H
(2) = I22 and the time delay

τ = 0, 0.1, 0.3, and 0.5, respectively. The SR and the ASR are shown in blue
and gray, respectively.

2. Hypernetwork

Consider the hypernetwork (10) with nonzero inner-coupling
matrices H(1) and H(2). It has been shown in Table I that when
inner-coupling matrices are chosen as H(1) = H(2) = I11, H

(1) = H(2)

= I22 and H(1) = H(2) = I33, the SRs are bounded, unbounded, and
empty, respectively. Hence, the three cases are considered. SRs of the
hypernetwork (10) corresponding to different coupling delays are
illustrated in Figs. 4 and 5, where SR is in blue and the asynchronized
region is in gray.

When H(1) = H(2) = I11, Fig. 4 demonstrates that SR is a
bounded area, and the ASR consists of two connected components
whatever time delay τ is. Denote the connected component around
0 as D1 and the other one as D2. It is found that the component D1

almost does not vary with the time delay, while the component D2

keeps constant when τ ≤ 0.3 and enlarges when increasing τ to 0.5.
Therefore, time delay τ has no impact on the type of SR, but shrinks
the size of SR when τ is large enough. Particularly, the results here
are consistent with those of the single-layer case.

When H(1) = H(2) = I22, SR is shown in Fig. 5. It is found
that SR of the hypernetwork (10) is an unbounded area only in the
case of τ = 0. However, when τ 6= 0, SR of the hypernetwork (10)
changes from an unbounded to a bounded region. The type of SR
also changed from type II to type I. Moreover, SR shrinks with the
increase of τ . In general, SR is sensitive to the time delay. The time
delay can change not only the size but also the type of SR.

When H(1) = H(2) = I33, SR of the hypernetwork (10) is always
empty regardless of the change of time delay τ .

IV. CONCLUSIONS

In conclusion, this paper has studied the variation of SR of
hypernetworks with three types of inner-coupling matrices and dif-
ferent time delays. The results show that the inner-coupling matrix
has a significant impact on the type of SR of a hypernetwork, and the

synchronization stability of hypernetworks can be achieved by cou-
pling an unstable networked layer with a stable one. Once the SRs
of the subnetworks are unbounded, the SR of the whole hypernet-
work is unbounded too. The SR of the whole hypernetwork is empty
(bounded) if and only if the SRs of all the subnetworks are empty
(bounded). In addition, the time delay plays an important role in
the synchronization of hypernetworks. With bounded or empty SR,
there exists an interval in which the time delay has almost no effect
on the stability of the synchronous state. With unbounded SR, the
time delay can change not only the size but the type of SR. Future
works include the hypernetworks consisting of other oscillators and
coupling matrices.
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