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ABSTRACT 

A novel fatigue model under Cosserat peridynamic framework is proposed to 

investigate concrete fatigue performance. In this model, a novel cyclic bond failure 

criterion is established to measure the combined tension/compressive-shear fatigue 

failure in concrete, which is derived from the Bresler-Pister criterion. Three 

benchmarks with different fatigue crack modes in concrete are designed. Results show 

that the mode Ⅰ and mixed mode Ⅰ-Ⅱ fatigue crack patterns are predicted. In the three-

point-bend beam fatigue test, the numerical result matches well with the experimental 

result, in the uniaxial compressive fatigue test, the effects of Cosserat parameters on 

fatigue crack patterns are discussed. Results found that the Cosserat parameters reflect 

the effects of concrete microstructures on crack patterns, and the larger Cosserat shear 

modulus accelerates the fatigue crack propagation process. 

KEYWORDS: Cyclic bond failure criterion; Concrete fatigue failure; Cosserat 

peridynamic model; Crack propagation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1. Introduction 

Concrete infrastructure facilities exist throughout the industrial production and living 

activities of human beings. In concrete facilities, fatigue failure is one of the main 

failure modes (Chaboche and Lesne, 1988, Sun and Xu, 2021). Due to the cyclic loads, 

the minor existing imperfection expands (Cachim, et al., 2002) and forms macroscopic 

cracks, which increases the possibility of accidents. Hence, it is prominent to investigate 

the fatigue performance and crack patterns in concrete materials. 

To describe the concrete fatigue performance, a series of empirical methods are 

proposed: Aas-Jakobsen (Aas-Jakobsen, 1970) proposed the concrete S-N curve to 

correspond fatigue life with stress levels, the concrete S-N curve was extended in the 

following research (Tepfers and Kutti, 1979, Hsu, 1981, Saucedo, et al., 2013); Baluch 

et al. (Baluch, et al., 1989) and Perdikaris et al. (Perdikaris and Calomino, 1989) 

proposed the concrete Paris law to describe fatigue crack growth, the concrete Paris law 

was modified in subsequent studies (Forman, et al., 1967, Elber, 1970, Klesnil and 

Lukáš, 1972, Priddle, 1972, Bazant and Xu, 1991, Sain and Kishen, 2008, Carpinteri, 

et al., 2010, Ray and Kishen, 2011, Ray and Chandra Kishen, 2012). Besides, based on 

fracture mechanics, the cohesive crack model for concrete fatigue failure was proposed 

and developed by the following works (Hillerborg, et al., 1976, Hordijk, 1993, Yang, et 

al., 2001), which deal with a single crack (Ding, et al., 2019); based on damage 

mechanics, researchers (Marigo, 1985, Papa and Taliercio, 1996, Mai, et al., 2012) 

established the damage evolution law to deal with concrete fatigue failure. Notice that 

the crack growth rate equations (McEvily and Wei, 1972, Pearson, 1972, Branco, et al., 

1975, Miller, 1993) are appropriate for fatigue problems. However, most of the existing 

crack growth rate equations focus on metal materials such as steel and aluminum alloy 

(Forman, et al., 1967, Elber, 1970, Klesnil and Lukáš, 1972, McEvily and Wei, 1972, 

Pearson, 1972, Priddle, 1972, Branco, et al., 1975, Miller, 1993). 

With the development of computer science, several numerical methods are applied 

to investigate concrete fatigue failure such as the finite element method (FEM) (Pryl, 

et al., 2014, Lesiuk, et al., 2020, Wang, et al., 2020, Sun and Xu, 2021), and continuum 



 

 

damage mechanics (CDM) (Maitra, et al., 2014, Ding and Li, 2018, Ding, et al., 2019, 

Wu, et al., 2019). However, these approaches within the continuum mechanics 

encounter difficulties in dealing with discontinuity problems, and extra criteria are 

introduced. 

Peridynamics (PD) is a nonlocal continuum theory proposed by Silling (Silling, 

2000). In PD, the body is divided into material points containing volume and mass, the 

material points interact with others within a specific range. The motion equations are 

rewritten with integrals instead of differentials to deal with discontinuous problems 

(Wan, et al., 2020, Chen and Chu, 2021, Chen and Chu, 2022, Chen, et al., 2022, Feng 

and Zhou, 2022). Bond-based PD (BPD) is a traditional peridynamic model, in which 

the interactions between material points are called bonds (Guo, et al., 2021). In BPD, 

the Poisson's ratio is limited due to the one parameter describing micro elastic bond 

stretch response. To deal with the limitation, state-based peridynamics (SPD) 

(Breitenfeld, et al., 2014, Madenci and Oterkus, 2016) and several extended bond-based 

peridynamics (EBPD), which contain multiple elastic parameters, were proposed 

(Gerstle, et al., 2007, Prakash and Seidel, 2015, Yaghoobi and Chorzepa, 2017, Zhu and 

Ni, 2017, Zhou, et al., 2018, Chen, et al., 2019, Diana and Casolo, 2019, Huang, et al., 

2019, Gu and Zhang, 2020). In the latest work of Diana (Diana, 2022), the revised bond-

based peridynamic theory with oriented material points is proposed to deal with 

anisotropic elasticity, fracture and diffusion-type problems, in which a consistent 

micro-macro moduli correspondence between material parameters of anisotropic 

peridynamics and classical continuum physics is established. 

To investigate the fatigue performance of metal materials, based on BPD, Silling 

and Askari (Silling and Askari, 2014) proposed a peridynamic model for fatigue 

cracking, the remaining life of the bond is introduced, which relates to the cyclic bond 

strain. Based on Silling's work (Silling and Askari, 2014), several extended 

peridynamic models for fatigue cracking are proposed (Zhang and Bobaru, 2016, Zhang, 

et al., 2016, Hu and Madenci, 2017, Jung and Seok, 2017, Nguyen, et al., 2021) Han et 

al. (Han and Chen, 2020) proposed an alternative ordinary state‐based peridynamic 

model for fatigue cracking. Ni et al. (Ni, et al., 2023) proposed a bond-based 



 

 

peridynamic model to simulate fatigue crack propagation in composite materials and 

structures. Notice that most of the existing PD fatigue models focus on metal materials 

like aluminum alloy (Sajith, et al., 2020, Bang, et al., 2021, Bang and Ince, 2022, Li, et 

al., 2022), and few have proposed PD fatigue models for concrete. Due to the difference 

in the mechanical properties between metal and concrete, those existing PD fatigue 

models cannot be directly applied to investigate concrete fatigue failure. 

Under Cosserat peridynamic framework, this study proposes a novel fatigue model 

for concrete fatigue cracking (F-CPD). In this model, a novel cyclic bond failure 

criterion is established to measure the combined tension/compressive-shear fatigue 

failure in concrete, which is derived from the Bresler-Pister criterion (Bresler and Pister, 

1958). The novel concrete fatigue failure model consists of three phases: the crack 

nucleation phase (phase Ⅰ), the crack growth phase (phase Ⅱ), and the rapid crack 

growth phase (phase Ⅲ). In phase I, the fatigue iteration parameters are derived from 

the traditional concrete S-N curve proposed by Aas-Jakobsen (Aas-Jakobsen, 1970); in 

phase Ⅱ, the fatigue iteration parameters are derived from the concrete Paris law 

modified by Bazant (Bazant and Xu, 1991); in phase Ⅲ, the static bond failure criterion 

is proceeded. Three concrete fatigue failure benchmarks with different loading 

conditions are designed. In the three-point-bend beam fatigue test, the numerical result 

matches well with the experimental result; in the uniaxial compressive fatigue test, the 

effects of Cosserat parameters on fatigue crack patterns are discussed; In the biaxial 

compressive concrete fatigue test, a discussion of the effect of confining pressure on 

fatigue crack is performed. 

This study is constructed as follows: Section 2 introduces the peridynamic theory 

and the Cosserat peridynamic model; Section 3 introduces the novel fatigue model 

under Cosserat peridynamic framework for concrete fatigue cracking; Section 4 shows 

three benchmarks: the fatigue test of a three-point-bend beam, the uniaxial compressive 

concrete fatigue test, and the biaxial compressive concrete fatigue test; Section 5 

presents the summary and conclusions. 

2. Peridynamic theory 

2.1. Bond-based Peridynamic theory 



 

 

 

FIGURE 1. Material point interacts with others within its peridynamic horizon (Guo, et al., 

2021). 

In BPD, a material point x interacts with others through fictitious bonds within a 

specific range named horizon, noted by 𝛿 . We conventionally denote Hx={x'||x' −

x|<δ}. The kinematic equation of material point x at time t is expressed as: 

  ρü(x, t)=∫ f (u(x', t) − u(x, t),x' − x)dV'+b(x, t)
Hx

           (1) 

In which ρ  is the density, u denotes the displacement vector field, b denotes the 

prescribed body force density field, and f denotes the pairwise force function, whose 

value is the force vector per unit volume squared. The relative position in the reference 

configuration ξ is given as: 

ξ = x' − x                          (2) 

The relative displacement η is denoted as: 

η = u(x', t) − u(x, t)                      (3) 

ξ + η denotes the current relative position vector. According to Silling's research (Silling 

and Askari, 2005), the general form of f is expressed as: 

f(η, ξ)=
ξ + η

|ξ + η|
f ( y(t), ξ, t)     ∀ξ, η                 (4) 

where f represents the scalar bond force, and y denotes the current relative position: 

                        y = |ξ + η|                         (5) 

With Equation (5), the relative bond stretch s is defined as: 

                         s = 
| ξ + η | − | ξ |

| ξ |
=

 y − | ξ |

| ξ |
                    (6) 

Considering a prototype micro elastic brittle (PMB) material (Silling and Askari, 2005), 

f is defined as: 

                          f(y(t), ξ)=𝜇0(t, ξ)cs                       (7) 



 

 

in which c represents micro-modulus. A notion 𝜇0  is introduced to predict bond 

breaking, which is a history-dependent damage function: 

                       𝜇0(t, ξ)= {
1     if s(t, ξ)< sc   ∀0≤ t ≤  t'

0     otherwise                     
          (8) 

where sc represents the critical bond stretch. The local damage index φ(x, t) at material 

point x is defined as: 

                         φ(x, t)=1−
∫ 𝜇0(x, t, ξ)dVξHx

∫ dVξHx

                     (9) 

where 0 ≤ φ ≤ 1, φ(x, t) = 0 means the virgin state, and φ(x, t) = 1 means all the bonds 

connected to material point x are broken. 

The micro-modulus c is calculated by comparing and equating the strain energy density 

distribution under isotropic extension (Silling and Askari, 2005): 

                  c = 

{
 
 

 
 

  

6E

π(1−ν)δ
3
th

                  in plane stress problem

6E

π(1+ν)(1−2ν)δ
3
th
            in plane strain problem

18κ

πδ
4              in 3D and plane strain problem

     (10) 

where E represents the elasticity modulus, ν represents Poisson's ratio, th denotes the 

thickness in the plane stress problem.  

2.2. Cosserat peridynamics in 2D conditions 

Concrete is a granular material bonded by aggregates of sand and gravel or crushed 

rock [63], which complicates the microstructures and micro-rotations. The traditional 

Cauchy continuum cannot describe the micro-rotations accurately, nor can it investigate 

the size effects of concrete microstructures. The Cosserat continuum considers the 

independent rotation degree of freedoms (DOFs) and the couple stresses, and the 

Cosserat parameters related to microstructure (Tang and Hu, 2017) are introduced. 

Hence, the Cosserat theory is appropriate to describe concrete's mechanical behavior 

and size effects (Trovalusci and Masiani, 2003, Trovalusci, et al., 2015). Different from 

the Cauchy continuum, the Cosserat continuum considers the microstructure of matter 

and independent rotational DOFs, and each material point has three DOFs: 

u=[ux,uy,ωz]
T
,                         (11) 



 

 

where ux and uy represent the translational DOFs and ωz represents the rotational 

DOF. The stress and strain vectors are defined as follows: 

σ = [σxx,  σyy,  σzz,  σxy,  σyx,  mzx/lc,  mzy/lc]
T
,               (12) 

               ε = [εxx,  εyy,  εzz,  εxy,  εyx,  κzxlc,  κzylc]
T
,               (13) 

where κzx and κzy denote micro-curvatures, mzx and mzy denote couple-stresses, lc 

represents internal length, which relates to microstructures. 

The Cosserat peridynamics (CPD) proposed by Chen et al. (Chen, et al., 2019) and Guo 

et al. (Guo, et al., 2021) is proven to successfully predict the mode Ⅱ crack, and the 

convergence of CPD is verified in Chen's work (Chen, et al., 2019). Compared with 

BPD, the Cosserat peridynamics can capture the micro-curvatures and couple-stresses, 

which reflects the micro-rotations in concrete granular and solves the limitation of 

Poisson’s ratio. Take the plane stress condition for example. The strain energy density 

w is written as: 

w =
1

2
(σxxεxx+σyyεyy+σxyεxy+σyxεyx+mzxκzx+mzyκzy)            (14) 

 

FIGURE 2. Interaction between material points in CPD refers to the discrete element method (DEM) 

interaction form. M1f denotes the moment from the transverse force f
1t

, M1θ denotes the moment 

from micro-rotation. (M = M1θ + M1f) 

In CPD, the pairwise force can be divided into transverse and axial directions, see 

FIGURE 2: 

f
1n

=kn(u2n − u1n)                          (15) 

f
1t

=kt(u2t − u1t)+kt∙ld(θ1+θ2)                       (16) 

where f
1n

,  f
1t

  are axial and transverse components of pairwise force; kn, kt  denote 



 

 

stiffness coefficients; uin, uit (i=1, 2)  denote displacement elements; θi (i=1, 2) 

denote the rotation components. The pairwise moments arise from rotation and 

transverse forces, which are defined as follows: 

M1θ = kr∙(θ2 − θ1)                       (17) 

M1f  = f
1t

∙ld = kt∙ld(u2t − u1t) + kt∙ld
2(θ1+θ2)             (18) 

M =M1θ+M1f=kr∙(θ2 − θ1)+kt∙ld(u2t − u1t)+kt∙ld
2(θ1+θ2)         (19) 

With Equations (15)-(19), the matrix form of pairwise forces and displacement is 

written as: 

{
  
 

  
 

f
1n

f
1t

M1

f
2n

f
2t

M2}
  
 

  
 

=

[
 
 
 
 
 
 
 
 
 −

kn

r
0 0

kn

r
0 0

0 −
kt

r3

kt

r3
∙ld 0

kt

r3

kt

r3
∙ld

0 −
kt

r3
∙ld

kt

r3
∙ld

2 − kr 0
kt

r3
∙ld

kt

r3
∙ld

2+kr

kn

r
0 0 −

kn

r
0 0

0
kt

r3

kt

r3
∙ld 0 −

kt

r3

kt

r3
∙ld

0
kt

r3
∙ld

kt

r3
∙ld

2+kr 0 −
kt

r3
∙ld

kt

r3
∙ld

2 − kr]
 
 
 
 
 
 
 
 
 

∙

{
 
 

 
 

u1n
u1t

θ1

u2n

u2t

θ2 }
 
 

 
 

    (20) 

The force component from material point 1 to material point 2 is omitted by rewriting 

Equation (20) with relative displacements (û = u2n − u1n, v̂ = u2t − u1t): 

{

f
1n

f
1t

M1

}=

[
 
 
 
 
kn

r
0 0 0

0
kt

r3
−

kt

r3
∙ld −

kt

r3
∙ld

0 −
kt

r3
∙ld

kt

r3
∙ld

2 − kr
kt

r3
∙ld

2+kr]
 
 
 
 

∙{

û

v̂

θ1

θ2

}            (21) 

Where wc(x, y)  represents the strain energy density. {F}c, {u}c, [K]c  are defined as 

the PD force components, material point displacements, and stiffness matrix, 

respectively: 

{F}c= [K]c∙ {u}c                      (22) 

In CPD, the calculation of strain energy wc(x, y) at point (x, y) is derived by adding 

half of every bond's energy to the point (x, y): 

wc(x, y)=
1

4
th∬ {F}c

T
∙{u}cds=

1

4H* th ∫ (∫ {F}c
T

∙{u}c
δ

0
dr)dθ

2π

0
        (23) 

where th is the thickness of the plate, ds is the area differential, r is the radius, and 𝜃 

is the rotation. 



 

 

The transformation matrix Q  is introduced to transform the PD force-displacement 

relation from local coordinates to global coordinates: 

                           {F}g=Q
T

∙[K]c∙Q∙{u}g                   (24) 

Where Q is expressed as: 

              Q = [

cosθ sinθ 0 0

−sinθ cosθ 0 0

0 0 1 0

0 0 0 1

]                   (25) 

The strain energy wg(x, y) in global coordinates is written as: 

               wg(x, y)=
1

4
th ∫ (∫ {u}g

T
∙Q

T
∙[K]c∙Q∙{u}g

δ

0
dr)dθ

2π

0
         (26) 

Comparing Equation (26) with Equation (14), the material parameters are derived: 

                             kn=
6E

thπδ
3
(1−μ)

                       (27) 

                             kt=
2E(1−3μ)

thπδ(1−μ2)
                       (28) 

                            ld =√
Gc(1−μ2)

2E(1−3μ)
δ                     (29) 

                            kr=
4Gc

tπδ
2 −

16Glc
2

tπδ
4                      (30) 

Finally, [K]c in Equation (26) is expressed as: 

[
 
 
 
 
 

6E

thπδ
3
(1−μ)

∙
1

r
0 0 0

0
2E(1−3μ)

thπδ(1−μ2)
∙

1

r3
−√

2GcE(1−3μ)

1-μ2
∙

1

thπ
∙

1

r3
−√

2GcE(1−3μ)

1−μ2
∙

1

thπ
∙

1

r3

0 −√
2GcE(1−3μ)

1−μ2
∙

1

thπ
∙

1

r3

Gc∙δ

thπ
∙

1

r3
−

4Gc

thπδ
2+

16Glc
2

thπδ
4

Gc∙δ

thπ
∙

1

r3
+

4Gc

thπδ
2 −

16Glc
2

thπδ
4 ]
 
 
 
 
 

 (31) 

As for the relationship between Cosserat internal length lc and peridynamic horizon, 

according to Chen’s work (Chen and Chu, 2021), the Cosserat internal length lc has an 

upper limit, and the Cosserat shear modulus Gc has a lower limit: lc≤√
Gc

4G
∙δ, Gc≥

4lc
2

δ
2 ∙G. 

Hence, the Cosserat internal length lc and Gc will affect the lower bound of peridynamic 

length scale δ. 

3. Fatigue model under Cosserat peridynamic framework 

3.1. Fatigue model under Bond-based peridynamic framework. 

Silling et al. (Silling and Askari, 2014) proposed a peridynamic model for fatigue 



 

 

cracking (F-BPD), which focuses on the fatigue performance of the aluminum alloy. In 

F-BPD, the fatigue failure process is divided into three phases: the crack nucleation 

phase (phase Ⅰ), the crack growth phase (phase Ⅱ), and the rapid crack growth phase 

(phase Ⅲ). The cyclic bond strain εij
N  between material points i and j at a specific 

loading cycle N is defined as: 

εij
N=|sij

+ − sij
−|=|sij

+(1− R)|                     (32) 

Where sij
+, sij

− represent bond stretch corresponding to the maximum load Pmax and 

Pmin, respectively. R is the load ratio (R=Pmax/Pmin).  

For each bond, the remaining life λ (x, ξ, N) is defined as: 

λ ={
λ ij

N=0
=1,   

dλij
N

dN
= − A1(εij

N)
m1

 when A1>0,   m1>0  for phase I

   λ ij
N=0

=1,    
dλij

N

dN
=− A2(εij

N)
m2
  when A2>0,   m2>0  for phase II

     (33) 

Where A1, m1, A2, m2 are fatigue iteration parameters. In phase Ⅰ, consider a bond 

ξ1 has the largest cyclic bond strain ε1 in the body, the bond ξ1 will first be broken, 

compute the corresponding cycle N1: 

N1=
1

A1ε
1

m1                      (34) 

Take the log of both sides of Equation (34): 

log (ε1) =−
1

m1
log(N1) −

log (A1)

m1
                (35) 

−
1

m1
  and −

log (A1)

m1
  are coefficients of log (ε1)  and log(N1)  linear function, see 

FIGURE 3. Hence, A1 and m1 can be obtained from S(strain)-N physical test data.  

 

FIGURE 3. Theoretical and fitting curves of log(ε)-log(N) relationship (Nguyen, et al., 2021). 

In phase Ⅱ, to obtain the fatigue iteration parameters A2, m2, the Paris law is applied: 

da

dN
=CΔK

M
                       (36) 



 

 

Where a denotes the crack length, N denotes the number of loading cycles, and ΔK 

represents the stress intensity factor range. C and M denote material constants for the 

Paris equation. The fatigue iteration parameter m2  is derived from the material 

constant M for the Paris equation: 

m2=M                         (37) 

Notice that A2 cannot be derived from the Paris law directly. Hence, a trial fatigue 

simulation with a trial value A2
'
 needs to be operated. In the trial simulation, a crack 

growth rate (da/dN)
'
 is predicted, while the real crack growth rate da/dN is derived 

from the physical experiment. Therefore, the calibrated value for A2 is calculated by: 

A2=A2
' da/dN

(da/dN)
'                        (38) 

Notice that m1 , A1  and m2  are independent of the horizon size, while the fatigue 

parameter A2 is dependent on the horizon size. According to Silling's research (Silling 

and Askari, 2014), the relationship between the parameter A2 and the horizon size δ is 

presented as: 

A2(δ)=Â2δ
(m2−2)/2

                     (39) 

Where Â2 is independent of δ.  

As for the transition from phase Ⅰ to phase Ⅱ, for a particular material point x, if any 

material points within its horizon have the damage index ϕ < ϕ
0
, point x is in phase Ⅰ; 

if the damage index exceeds the critical damage index ϕ
0
 , point x is in phase Ⅱ. 

According to Nguyen's research (Nguyen, et al., 2021), the empirical value ϕ
0
=0.398 

is applied to decide the transition from phase Ⅰ to phase Ⅱ.  

As for the transition from phase Ⅱ to phase Ⅲ, if any bond strain sij exceeds the 

critical bond strain sc, the structure turns to the rapid crack growth phase (phase Ⅲ), 

then Equation (8) is applied to measure the bond breaking. 

It should be noted that most of the S-N curves applied in F-BPD are in the form of 

strain cycles (Silling and Askari, 2014, Zhang, et al., 2016, Hu and Madenci, 2017, Jung 

and Seok, 2017, Han and Chen, 2020, Sajith, et al., 2020, Bang, et al., 2021, Nguyen, 



 

 

et al., 2021, Bang and Ince, 2022, Li, et al., 2022), while most of the concrete S-N 

curves are in the form of stress cycles (Aas-Jakobsen, 1970, Tepfers and Kutti, 1979, 

Hsu, 1981, Saucedo, et al., 2013), which means under the framework of F-BPD, the 

concrete fatigue iteration parameters in phase Ⅰ cannot be derived from concrete S-N 

curves directly. Besides, considering the fatigue failure performance of concrete, the F-

BPD needs a proper cyclic failure criterion to measure the combined 

tension/compressive-shear fatigue failure in concrete. Hence, it is necessary to propose 

a novel fatigue model with a novel cyclic failure criterion for concrete fatigue failure. 

3.2. A Novel fatigue model under Cosserat peridynamic framework. 

This study proposes a novel fatigue model under Cosserat peridynamic framework 

(F-CPD) for concrete fatigue failure. In this model, to measure the combined 

tension/compressive-shear concrete fatigue failure, a novel cyclic bond failure criterion 

is defined from the Bresler-Pister criterion. The novel concrete fatigue failure model 

consists of three phases: the crack nucleation phase (phase Ⅰ), the crack growth phase 

(phase Ⅱ), and the rapid crack growth phase (phase Ⅲ). 

In F-CPD, each bond is subjected to both normal and tangential effects for a given 

bond ξ  connecting material points x1 and x2 , the equivalent cyclic bond force is 

defined as follows: 

f
bn

=f
1n

                           (40) 

              f
bt

=β
0
√(f

1t
)2 + (

M1

|ξ|
)2                      (41) 

It is assumed that each bond is regarded as a fictitious micro-beam subjected to 

tensile/compressive-shear effects, hence, every bond is affected by normal and 

tangential actions. The axial force component f
1n

 is regarded as the equivalent axial 

bond force f
bn

  in the bond between material point 1 and 2. f
bt

  is the equivalent 

tangential bond force acted by both tangential force component  f
1t

  and pairwise 

moment M1.  

 Considering that the tangential effect deforms and rotates the bond, only the effect on 



 

 

the deformation part should be considered. Hence, the empirical coefficient β
0
  is 

introduced to regulate the tangential effect (β
0
 = 0.3 is appropriate in this study).  

To derive the novel cyclic bond failure criterion, the Bresler-Pister criterion is 

introduced. Bresler-Pister criterion was proposed by Bresler (Bresler and Pister, 1958) 

in 1958, measuring the combined tension/compressive-shear failure in concrete beams. 

In this criterion, the normal octahedral stress σoct and tangential octahedral stress 𝜏oct 

are applied to measure the tension/compression-shear strength: 

τoct

σ0
= − 1.16

σoct

σ0
+0.086                   (42) 

    σoct=
1

3
(σx+σy)                       (43) 

τoct=
1

3
√(σx − σy)

2+σx
2+σy

2+6τxy
2                   (44) 

Where σ0 is the compressive strength. Take the plane stress condition for example. 

The criterion is expressed as follows: 

𝜏𝑥𝑦

σ0
= √0.011094− 0.09976 (

σx

σ0
+

σy

σ0
) − 0.10907 [(

σx

σ0
)

2

+ (
σy

σ0
)

2

]+0.78187 (
σx

σ0
) (

σy

σ0
) (45) 

 

(a)                              (b) 

FIGURE 4. (a) Relation curve of tensile/compression-shear zone of the beam and test points; (b) 

Relation curve of tensile/compression-shear zone of the bond. 

FIGURE 4(a) shows the envelope of beam strength, the positive side of the σ/σ0 axis 

means compression. When the point falls outside the envelope, the beam is damaged.   

In F-CPD, each bond is assumed to be a fictitious micro concrete beam subjected to 

combined tensile/compressive shear effects, and Equation (45) is rewritten as: 

f
bt

f
max

= √0.011094− 0.09976
f
bn

f
max

− 0.10907 (
f
bn

f
max

)
2

            (46) 

Where f
max

=scrcc , scrc is the maximum compressive strain of the bond, the relation 



 

 

curve of the tensile/compression-shear zone of the bond is obtained. In FIGURE 4 (b), 

for a given bond ξ, if the bond failure state lies in point A, the cyclic bond failure state 

is expressed as: 

SA=(1 − R)
OA

OAmax
                       (47) 

Where R is the load ratio (R=Pmax/Pmin). In F-CPD, the cyclic process is replaced by a 

quasi-static failure process, hence, the load ratio R is introduced to consider the cyclic 

effects. 

For each bond, the remaining life λ (x, ξ, N) is defined as: 

λ ={
λ ij

N=0
=1,   

dλij
N

dN
= −A1(Sij

N)
m1

 when A1>0,   m1>0  for phase I

   λ ij
N=0

=1,    
dλij

N

dN
=− A2(Sij

N)
m2
  when A2>0,   m2>0  for phase II

    (48) 

To obtain the fatigue iteration parameter A1 and m1 in phase I, The S-N curve for 

concrete is introduced. Aas-Jakobsen (Aas-Jakobsen, 1970) et al. proposed a traditional 

Smax-N curve, in which the cyclic stress ratio R = σmin/σmax is considered: 

Smax=
σmax

f
0

=1 − β(1− R) log N                 (49) 

Where σmin , σmax  denote the minimum and the maximum stresses, respectively. f
0
 

denotes the static reference strength, β denotes the material parameter, calibrated to 

0.0685 according to Tepfers' research (Tepfers and Kutti, 1979).  

Considering a bond ξ1 has the largest cyclic bond failure state S1 in the body, 

then the bond ξ1 will firstly be broken, compute the corresponding cycle N1: 

N1=
1

A1S1

 m1                         (50) 

Take the log of both sides of Equation (50): 

log (S1) = −
1

m1
log(N1) −

log (A1)

m1
                (51) 

Based on the Smax -N curve of concrete proposed by Aas-Jakobsen (Aas-Jakobsen, 

1970), the log(S)-log(N) curve is plotted as: 



 

 

 

FIGURE 5. Theoretical and fitting curves of log(S)-log(N) relationship in the present model. 

In FIGURE 5, an oblique line fits the theoretical log(S)-log(N) relationship. Hence, the 

slope and the intersection of the slope with the log(S) axis are equal to −
1

m1
  and 

−
log (A1)

m1
, respectively. Hence, the fatigue iteration parameters m1 and A1 are derived. 

To derive the fatigue iteration parameters A2, m2 in phase Ⅱ, the concrete Paris 

law is applied. The classical equations, including S(stress)-N curve and Paris law 

modified by Baz ant (Bazant and Xu, 1991) are used to obtain the fatigue iteration 

parameters, which are widely mentioned in concrete failure research (Kim and Kim, 

1999, Gaedicke, et al., 2009, Chen, et al., 2013, Bhowmik and Ray, 2018, Chen, et al., 

2019). The size-adjusted Paris law for concrete is written as: 

Δa

ΔN
=C[

ΔKΙ

KΙc
]
n

                        (52) 

In which ΔKΙ is the amplitude of the stress intensity factor, KΙc is the critical value of 

the stress intensity factor. The fatigue parameter m2  is obtained from the material 

constant M for the Paris equation: 

m2=n                          (53) 

the remaining life λ(x, ξ, N) in the phase Ⅱ is defined as: 

λ ij
N=0

=1,    
dλij

N

dN
=− A2(Sij

N)
m2

                (54) 

The fatigue parameter A2 cannot be calculated directly from Equation (52), and a trial 

peridynamic fatigue simulation with an arbitrary A2
'
  is needed. Then, a trial crack 

growth rate (da/dN)
'
 is obtained, while the real crack growth rate da/dN is obtained 

by physical experiment, the calibrated value for A2 in the present model is calculated 

as Equation (38). The fatigue parameters m1 , A1  and m2  are independent of the 



 

 

horizon size, the fatigue parameter A2  is dependent on the horizon size. The 

relationship between the parameter A2 and the horizon size δ is presented as Equation 

(39). 

Similar to F-BPD, phase transition conditions are necessary for F-CPD. For a given 

material point x, if all the material points within the horizon have the damage index 

ϕ < ϕ
0
, then the point x is in phase Ⅰ, if the damage index exceeds the critical damage 

index ϕ
0
, then the point x is in phase Ⅱ.  

As for the transition from phase Ⅱ to phase Ⅲ, suppose a given bond ξ, the cyclic 

bond failure state lies in point A, refer to FIGURE 4(b). If point A is inside the envelope 

of the relation curve, the cyclic bond failure state is obtained, and the fatigue crack 

propagation is operated; if point A exceeds the envelope (
OA

OAmax
≥1 ) the fatigue 

simulation stops, and the rapid crack growth phase (phase Ⅲ) is used. In phase Ⅲ, the 

bond is broken if 
OA

OAmax
≥1. 

4. Numerical simulations 

4.1. The fatigue test of the concrete three-point-bend beam. 

In this section, mode Ι fatigue damage on the 2D model is predicted, considering 

a 2D concrete beam with sizes of 406.4mm×152.4mm×38.1mm, and the length of the 

pre-existing notch is 40mm . The maximum measured load for monotonic loading is 

Pmax=5182N, the average fatigue life test result is N= 983, load ratio R = 0 (the load 

minimum is zero, and the load maximum is equal to 80 percent of the monotonic peak 

load Pmax). In this section, the effects of thickness are not considered. The observed 

fatigue crack patterns are on the surface. Hence, the plane stress condition is considered. 

The physical parameters are applied: modulus of elasticity E=27.12GPa, the Poisson’s 

ratio ν=0.2 , the limit stretch sc  =2.7926×10
-5

 , the concrete tensile strength 

ft=2.86MPa. 

In the numerical simulation, a square block is formed to apply fatigue load, see 

FIGURE 6. The concrete beam is discretized into 14970 material points, the discretized 

scale is 0.203mm, and the horizon size is δ=3.015∙dx=0.612045mm. The Cosserat shear 



 

 

modulus Gc=0.5G=6.408×10
9
Pa (G is the shear modulus: G=

E

2(1+ν)
) and the internal 

length is lc=0.1mm. 

 

FIGURE 6. Initial configuration  

Refer to Equations (46) and (48), the fatigue parameters (A1, m1 ) for phase Ⅰ are 

obtained as: 

A1=0.1492 

m1=21.7391 

The fatigue parameter m2=9.27 is obtained from the physical experiments in Bažant's 

research (Bazant and Xu, 1991), a trial value A2(trial)=2.0 is applied to obtain the trial 

fatigue crack growth rate (da/dN)
(trial)

, to compare the trial and experimental data, the 

final A2 = 2.65  is derived. Further numerical experiments are based on fatigue 

parameters in section 4.1 to avoid re-calculation of fatigue parameters due to the 

different concrete materials. 



 

 

 

FIGURE 7. The damage evolution process of the concrete three-point-bend beam with the fatigue 

loading in cycles: (a)25; (b)500; (c)750; (d)1000, and the stress distribution in 𝜎𝑥𝑥 in cycles: 

(e)25; (f)500; (g)750; (h)1000. 

In FIGURE 7 (a)-(d), mode Ⅰ fatigue crack pattern is predicted. Notice that the damage 

areas initiate at the constraint due to the stress concentration. The crack tip begins to 

extend at cycle = 25 and spreads to 1/3 of the width in cycle = 1000. FIGURE 7 (e)-

(h) shows the peridynamic stress (Li, et al., 2022) distribution in 𝜎𝑥𝑥  (the positive 

value indicates tension). It is observed that the stress concentration area locates at the 

crack tip during fatigue crack propagation. 



 

 

 

FIGURE 8. Numerical and physical relative crack length a/d with load cycles. 

In FIGURE 8, the numerical relative crack length curve generally agrees with the 

physical experiment (Bazant and Xu, 1991). As for the numerical curve divided into 

phase Ⅰ and phase Ⅱ, in phase Ⅰ, the crack tip extends to a/d= 0.2133. With the cyclic 

load applied, damage accumulates at the crack tip and forms the plateau of the 

numerical curve. When the damage index φ at the crack tip exceeds 0.398, fatigue crack 

propagation is transformed into phase Ⅱ, and a steady fatigue crack propagation occurs, 

corresponding to the ascending part of the numerical curve. The final predicted fatigue 

life is Np=1000(cycles), and the relative error of the final fatigue life is obtained as: 

error(%)=
Np − Ne

Ne

×100=1.7% 

4.2. The uniaxial compressive concrete fatigue test.                        

This section predicts a mixed mode Ⅰ-Ⅱ fatigue crack pattern in 2D conditions. 

According to Viswanath's experiment (Viswanath, et al., 2021), see FIGURE 9 (a), a 

rectangular plate is applied to investigate the compressive-shear concrete fatigue failure 

in 2D conditions. Consider a 101.6×203.2mm rectangular plate. See FIGURE 9 (b). 

The plate is subjected to cyclic loading with maximum loading Pmax = 4736N. 

          

(a)            (b)                               (c) 



 

 

FIGURE 9(a) Fatigue loading process(Viswanath, et al., 2021); (b) initial configuration; (c) damage 

evolution process of uniaxial compressive fatigue test in the homogeneous group. 

In the numerical simulation, two rigid blocks are separately formed at the upper 

and lower ends of the plate, which come into contact with the rectangular plate as 

uniaxial compressions. The sample is divided into 5000 points. The discretized scale is 

0.203mm, and the horizon size is δ=3.015∙dx =0.612045mm . The Cosserat shear 

modulus Gc=0.5G=6.408×10
9
Pa, and the internal length is lc=0.1mm.  

In FIGURE 9 (c), damage initiates from the angular boundaries of the plate, then 

intersects and extends vertically into the center of the plate, and finally, a symmetric X 

- shaped crack is formed. The Weibull distribution of the intensity of material points is 

introduced (Feng and Zhou, 2022) to simulate the heterogeneity of concrete materials. 

The probability density of the Weibull distribution is expressed as: 

                 f
w
(x)= {

mw

ηw

(
x

ηw

)
mw−1

e−(x/ηw
)

mw

   x≥0

0                                  x<0

                 (55) 

In which mw is the shape parameter, η
w

 is the scale parameter. The random variable 

x represents the intensity of the material point.  

                  

(a)                             (b) 

FIGURE 10. (a) The probability density of the Weibull distribution f
w

 with mw=9.0, η
w

=1.0; (b) 

Weibull distribution of the intensity of material points. 

The intensity of every material point is set to 1.0 in the homogeneous case to 

consider the heterogeneity of concrete. The Weibull distribution assigns each material 

point with an intensity Ω (i). See FIGURE 10 (b). the intensity of the bond connecting 

material points xi and xj is denoted by 0.5(Ω  (i)+ Ω  (j)). Hence, Equation (45) is 

rewritten as: 



 

 

λ ={
λ ij

N=0
=1,   

dλij
N

dN
=− A1 (

Sij
N

 0.5(Ω (i)+ Ω (j))
)

m1

 when A1>0,   m1>0  for phase I

λ ij
N=0

=1,    
dλij

N

dN
=− A2 (

Sij
N

 0.5(Ω (i)+ Ω (j))
)

m2

  when A2>0,   m2>0  for phase II

  (53) 

 

 
(a)          (b)          (c)          (d)               (e) 

FIGURE 11. The damage evolution process of uniaxial compressive fatigue test with cycles: 

(a)4200; (b)4800; (c)5200; (d)5300; (e)experiment result 

In FIGURE 11 (a)-(d), the crack propagation is asymmetric in the non-homogeneous 

case. Crack initiates from the upper boundary and propagates to the lower boundary. 

The oblique cracks caused by compression-shear effects are similar to the experimental 

result in Viswanath's work (Viswanath, et al., 2021). Generally speaking, to tell the 

crack patterns that are persistent over samples, it is important to include the spread of 

experimental results. However, we searched for the compression fatigue experiments 

of concrete, there are rarely compressive fatigue experiments, only a few described the 

failure types due to the limitations of materials and experimental equipment. 

Considering that the Cosserat shear modulus Gc and Cosserat internal length lc 

describe the mechanical behavior of microstructure, the effect of Gc and lc on crack 

patterns should be investigated. 

4.2.1. The effect of Cosserat shear modulus Gc on fatigue crack pattern. 

In this section, the effect of Cosserat shear modulus Gc is discussed, the internal length 

lc is fixed to be lc = 1.0×10
-4

m, Gc is set to vary from 0G to 0.5G. 



 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



 

 

FIGURE 12. The damage evolution process of uniaxial compressive fatigue test with different Gc: 

(a) Gc=0G; (b) Gc=0.1G; (c) Gc=0.3G; (d) Gc=0.5G. 

In FIGURE 12, the crack propagations are not synchronized among these groups, 

which means that fatigue crack patterns in the same propagation stage have different 

load cycles. Notice that the crack bifurcation occurs in groups (a) and (b), in group (b)-

(d), with different Gc, the main direction of fatigue crack propagation does not change 

obviously, while the larger Gc corresponds to less fatigue life, which means the larger 

Cosserat shear modulus Gc   accelerates the fatigue crack propagation process. To 

further investigate the effect of Cosserat shear modulus Gc on fatigue life, numerical 

groups with different Gc are designed to calculate the fatigue life distribution. 

  

(a)                               (b) 

FIGURE 13. (a)Fatigue life distribution of numerical groups with different Cosserat shear 

modulus Gc; (b) support force-cycle curves with different Gc. 

In FIGURE 13(a), the effect of Gc  on fatigue life works little between Gc= 0 and 

Gc=0.1 G, as Gc increases and fatigue life decreases from 12500 to 5300. The finding 

that the larger Cosserat shear modulus Gc  accelerates the fatigue crack propagation 

process is true between Gc=0.1G and Gc=0.5G. To investigate the oscillation between 

Gc=0 and Gc=0.1 G, several groups with different Gc are taken for further numerical 

simulation. The support force-cycle curves are plotted to measure the fatigue life of 

these groups, see FIGURE 13(b).  

In FIGURE 13(b), Notice that the fatigue life of all groups falls within the interval 

of 12200 to 13000. The maximum difference in fatigue life is 7.1%. Different from the 



 

 

findings in FIGURE 13(a), the group with a larger Gc does not correspond to smaller 

fatigue life, and the oscillation happens. After getting stable, curves show three states 

with different support forces corresponding to three crack patterns. For comparison, 

groups of Gc =0.01G, Gc =0.03G, Gc =0.05G are chosen to represent three crack 

patterns, respectively. 

 

(a)              (b)            (c) 

FIGURE 14. Crack patterns with different Gc: (a) Gc=0.01G; (b) Gc=0.03G; (c) Gc=0.05G. 

In FIGURE 14, When Gc=0.01G, the crack initiates from the upper left corner of the 

specimen and spreads to the lower right, as extending to the middle of the specimen, 

the crack expands to the upper right; when Gc=0.03G, the crack initiates from the upper 

left corner of the specimen and spreads to the lower right. Meanwhile, the crack 

bifurcates from the initiation point and spreads horizontally to the right. As the 

bifurcation part propagates to the right boundary, fatigue failure occurs, and the oblique 

crack stop growing; when Gc=0.05G, the crack initiates from the upper left corner of 

the specimen and spreads to the lower right. As the crack propagates to the right 

boundary, fatigue failure occurs. In summary, Gc effects the fatigue crack patterns and 

makes the oscillation of fatigue life happens with Gc increases from 0 to 0.1G. The 

acceleration effect of Gc  on fatigue crack propagation becomes obvious when Gc 

exceeds 0.1G. 

 

4.2.2. The effect of Cosserat internal length lc on fatigue crack pattern. 

In this section, the effect of lc is discussed, the Cosserat shear modulus Gc is fixed to 

be Gc = 0.5G, lc is set to vary from 1.0×10
-5

m to 5.0×10
-4

m. 



 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

FIGURE 15. The damage evolution process of uniaxial compressive fatigue test with different lc: 

(a) lc=1.0×10-5m; (b) lc=5.0×10-5m; (c) lc=1.0×10-4m; (d) lc=5.0×10-4m. 



 

 

In FIGURE 15, fatigue life is similar in groups (a)-(c), and crack bifurcation exists in 

groups (a) and (d). In group (a), the main crack bifurcates at cycle=5200, while in group 

(d), the crack propagates simultaneously along the main and bifurcation directions. 

Groups (b) and (c) show the same crack patterns. Hence, different lc reflects different 

microstructures and multiple crack patterns are predicted. 

 Notice that in the simulations, the width of the damaged region around the crack 

paths are very wide. On the one hand, concrete is composed of densely packed particles 

bound together by a matrix partially filling the interstitial pore space, connecting 

adjacent grains and forming cemented grain-to-grain contacts. Hence, the concrete 

fragments will form and spall near the crack surface when the fatigue fracture happens. 

On the other hand, the region with high damage value (damage > 0.8) is considered as 

the region where cracks occur. the damaged region around the crack paths means that 

the high damage areas (damage > 0.8) are vulnerable, and may peel off the specimen in 

the form of crushed grains, which makes the damaged region around the crack paths 

wide. The micro-crack forms in the other damage area (0< damage < 0.8) and reduces 

the intensity, but will not form the main crack.  

4.2.3. Discussion about contact force between crack surfaces 

As for the compressive fatigue test for concrete, the post-failure response should be 

discussed in detail, which means that it is important to consider the crack faces 

interaction, and the crack surface tracking method as well as the contact forces should 

be introduced. 

To apply the contact force between crack faces, the crack surface should be traced. 

Unlike XFEM and other traditional methods, PD cannot directly represent the location 

and trend of fractures since the fractures are the accumulation of microdamage (Qin, et 

al., 2021). To deal with this difficulty, Qin et al. (Qin, et al., 2021) proposed a crack 

surface tracing and characterization method, in which the influence of the location of 

macrocracks on the damage value of material points is discussed. Hamarat et al. 

(Hamarat and Kaewunruen, 2023) proposed a PD damage assessment method, which 

defines that damage occurs between two close neighbor material points if they lose their 

direct and first-degree indirect contact, and the crack plane is created between those 



 

 

material points. These two method could be chose to trace the crack surface. 

 As for the contact force, the contact model for peridynamics is usually local (short-

range force model) (Wan, et al., 2020). Referring to the contact model of Macek (Macek 

and Silling, 2007) and Wan (Wan, et al., 2020), the normal contact force is expressed 

as: 

f
c

 n
=min {0, cs(

|y(k)-y(i)|

dc
-1)} ∙n∙(1-R)∙γ           (54) 

Where 𝒇𝑐
𝑛 is the contact force density vector imposed by material point x(k) on 

x(i),  cs is the spring constant harmonic mean value of material point i and k, according 

to Wan (Wan, et al., 2020), 𝑐𝑠 =
2𝑐(𝑖)𝑐(𝑗)

𝑐(𝑖)+𝑐(𝑗)
. 𝒏 is the unit normal vector pointing from 

𝒚(𝑖) to 𝒚(𝑘). dc is the representative distance, which is dl in this discussion. R is the 

load ratio. Considering that the interaction between crack surfaces could be weaker than 

the interaction between typical no-damage samples due to the high damage area in crack 

surfaces, an empirical coefficient γ is used to adjust the contact force, further parameter 

analysis will be carried out in the future work. 

Notice that the tangential contact force is not discussed in Macek’s work or Wan’s 

work. As for the concrete material, the normal and tangential contact forces should obey 

Mohr-Coulomb criteria, which means the tangential contact force cannot exceed the 

maximum friction, hence, the tangential contact force is expressed as: 

𝒇𝑐
𝑡 = {

0                                                                                                                         𝑖𝑓 𝒇𝑐
𝑛 = 0

min {𝑐𝑠 (
|𝒚(𝑘)−𝒚(𝑖)|

𝑑𝑐
− 1) ∙ 𝑡𝑎𝑛𝜙,  𝑐𝑠(

|𝒚(𝑘)−𝒚(𝑖)|

𝑑𝑐
− 1)} ∙ 𝝉 ∙ (1 − 𝑅) ∙ γ   𝑖𝑓  𝒇𝑐

𝑛 ≠ 0
         (55) 

Where 𝝉  is the unit tangential vector pointing from 𝒚(𝑖)  to 𝒚(𝑘) . 𝑡𝑎𝑛𝜙  is the 

frictional dilution. 

Consider the amount of work required for further investigation, and the multiple 

choices of crack surface tracing methods, the discussion of describing contact forces 

between crack surfaces in the compressive fatigue tests needs further theoretical and 

numerical examinations, and is not enough to be added into this manuscript. 

4.3. Biaxial compressive concrete fatigue test. 

In this section, a biaxial compressive concrete fatigue test is performed. According 



 

 

to Wang's experiments (Wang and Song, 2011), consider a concrete cube with a size of 

200×200mm  subjected to cyclic compression loads. In this section, the effects of 

thickness are not considered. The observed fatigue crack patterns are on the surface. 

Hence, the plane stress condition is considered.  

                 

(a)                               (b)                   

FIGURE 16(a) initial configuration; (b) Weibull distribution of the intensity of material points. 

In the numerical simulation, the upper and lower ends of the specimen are subjected to 

uniaxial cyclic load P1, while the left and right ends of the specimen are subjected to 

cyclic loads P2 , which represents the action of confining pressure. The sample is 

divided into 10000 points, the discretized scale is 0.203mm, and the horizon size is 

δ=3.015∙dx=0.612045mm. The Cosserat shear modulus Gc=0.5G=6.408×10
9
Pa (G is 

the shear modulus: G=
E

2(1+ν)
 ) and the internal length is lc=0.1mm . Referring to 

Equation (52), the Weibull distribution of the intensity of material point is applied. 

Four groups with different confining pressure are set to investigate the influence of 

confining pressure on fatigue failure. The uniaxial cyclic load P1=7124N,  the 

confining cyclic load P2 varies from 0.1P1 to 0.4P1. 

 

(a) 



 

 

 

(b) 

 

(c) 

 

(d) 

FIGURE 17. The damage evolution process of biaxial compressive fatigue test with different P2: 

(a) P2=0.1P1; (b) P2=0.2P1; (c) P2=0.3P1; (d) P2=0.4P1. 

In FIGURE 17, notice that minor defects appear in the interior of the plate and form 

macroscopic cracks with cycles. In group (a), unlike the other three groups, the 

crack presents a relatively dense oblique crack form. With the increase of confining 

pressure, the crack failure becomes localized. As the confining pressure increases, 

fatigue life increases obviously, which shows that the more significant confining 

pressure makes concrete structures more difficult to fail. Besides, the macroscopic 

cracks tend to develop horizontally with the confining pressure, corresponding to the 

physical experiment results (Wang and Song, 2011). In a word, the confining pressure 

limits the action of compression-shear effects. 



 

 

 

FIGURE 18. Fatigue life distribution of numerical groups with different confining cyclic load P2. 

To investigate the influence of confining pressure on fatigue life, numerical groups with 

different P2 are designed to calculate the fatigue life distribution, see FIGURE 18. 

With P2 increases, fatigue life increases from 4000 to 150000. The result shows that 

the confining pressure significantly impacts fatigue life, as observed in Wang's 

experiment. 

5. Summary and Conclusion 

This study proposes a novel fatigue model under Cosserat peridynamic framework 

for concrete fatigue cracking (F-CPD). The cyclic bond failure criterion derived from 

the Bresler-Pister criterion is defined to measure the combined tension/compressive-

shear fatigue failure in concrete. 

The benchmark of the fatigue test of a three-point-bend concrete beam is designed to 

validate the proposed model, and the mode Ⅰ crack is simulated. The result shows that 

the crack length generally agrees with the experimental curve.  

In the uniaxial compressive concrete fatigue test benchmark, the Ⅰ-Ⅱ mix mode crack 

is predicted in the non-homogeneous case. The fatigue iteration parameters are based 

on the calculated data in the mode Ⅰ crack simulation benchmark, which should be 

revised with the result of the physics experiments in future work. 

In the benchmark of the uniaxial compressive concrete fatigue test, the effects of Gc, 

lc on fatigue crack patterns are discussed. Both the Cosserat shear modulus and the 

Cosserat internal length reflect the microstructures. Crack patterns reflect differently 



 

 

with varied Cosserat shear modulus and the Cosserat internal length. As for the Cosserat 

shear modulus Gc, Gc affects the crack patterns and makes the oscillation of fatigue 

life happens with Gc increases from 0 to 0.1G. The acceleration effects of Gc on the 

fatigue crack propagation become obvious when Gc exceeds 0.1G. 

In the biaxial compressive concrete fatigue test benchmark, the more significant 

confining pressure makes concrete structures more difficult to fail and makes the 

macroscopic cracks propagate horizontally. 
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