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Abstract
We survey some recent results on vacuum free boundary
problems in three-dimensional ideal compressible mag-
netohydrodynamics, restate the main theorems in our
works (Secchi and Trakhinin, Nonlinearity 27(1) (2014)
105–169; Trakhinin andWang, Arch. Ration. Mech. Anal.
239(2) (2021) 1131–1176; Trakhinin andWang,Math. Ann.
383(1–2) (2022) 761–808; Trakhinin and Wang, SIAM
J. Math. Anal. 54(6) (2022) 5888–5921), and provide
an alternative proof for the linear well-posedness of
the full plasma–vacuum interface problem under the
noncollinearity condition.
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1 INTRODUCTION

We survey some recent results on vacuum free boundary problems in three-dimensional (3D)
ideal compressible magnetohydrodynamics (MHD), which can describe the evolution of an invis-
cid perfectly conducting fluid (e.g., plasma, liquid metal) interacting with a magnetic field and
separated from a vacuum.
Let Ω ⊂ ℝ3 be the reference domain occupied by the fluid and the vacuum. In the fluid region

Ω+(𝑡) ⊂ Ω, the motion is governed by the following ideal compressible MHD equations (see
Landau–Lifshitz [31, section 65]):

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝜌 + ∇ ⋅ (𝜌𝑣) = 0,

𝜕𝑡(𝜌𝑣) + ∇ ⋅ (𝜌𝑣 ⊗ 𝑣 − 𝐻 ⊗𝐻) + ∇𝑞 = 0,

𝜕𝑡𝐻 − ∇ × (𝑣 × 𝐻) = 0,

𝜕𝑡

(
𝜌𝐸 +

1

2
|𝐻|2) + ∇ ⋅ (𝜌𝐸𝑣 + 𝑝𝑣 + 𝐻 × (𝑣 × 𝐻)) = 0,

(1.1)

together with the divergence-free equation

∇ ⋅𝐻 = 0. (1.2)

Here density 𝜌, fluid velocity 𝑣 = (𝑣1, 𝑣2, 𝑣3)
𝖳, magnetic field 𝐻 = (𝐻1,𝐻2,𝐻3)

𝖳, and pressure 𝑝
are unknown functions of time 𝑡 and space variable 𝑥 = (𝑥1, 𝑥2, 𝑥3). We denote by 𝑞 = 𝑝 + 1

2
|𝐻|2

the total pressure and by 𝐸 = 𝔢 + 1

2
|𝑣|2 the specific total pressure, where 𝔢 is the specific internal

energy. It is known from thermodynamics that the density 𝜌 and the internal energy 𝔢 are given
functions of the pressure 𝑝 and the specific entropy 𝑆, which renders the system of equations (1.1)
closed for the primary unknowns 𝑈 ∶= (𝑝, 𝑣,𝐻, 𝑆)𝖳 ∈ ℝ8. The constitutive relations 𝜌 = 𝜌(𝑝, 𝑆)

and 𝔢 = 𝔢(𝑝, 𝑆) are assumed to be smooth and satisfy the physical condition that the sound speed
𝑎 = 𝑎(𝜌, 𝑆) is positive:

𝑎(𝜌, 𝑆) ∶=

√
𝜕𝑝

𝜕𝜌
(𝜌, 𝑆) > 0 for all 𝜌 ∈ (𝜌∗, 𝜌

∗), (1.3)

where 𝜌∗ and 𝜌∗ are some nonnegative constants. Our constitutive relations are very general and
include the polytropic and barotropic cases as special examples.
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VACUUM FREE BOUNDARY PROBLEMS IN IDEAL COMPRESSIBLE MHD 2089

To symmetrize equations (1.1), we take into account the Gibbs relation 𝜗 d𝑆 = d𝔢 + 𝑝 d(1∕𝜌),
where 𝜗 > 0 is the absolute temperature. In view of (1.2)–(1.3), we find that smooth solutions of
(1.1) with 𝜌∗ < 𝜌 < 𝜌∗ satisfy the equivalent symmetric hyperbolic system

𝐴+
0
(𝑈)𝜕𝑡𝑈 +

3∑
𝑗=1

𝐴+
𝑗
(𝑈)𝜕𝑗𝑈 = 0 in Ω+(𝑡), (1.4)

where 𝐴+
0
(𝑈) ∶= diag(1∕(𝜌𝑎2), 𝜌, 𝜌, 𝜌, 1, 1, 1, 1) and

𝐴+
𝑗
(𝑈) ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑣𝑗

𝜌𝑎2
𝐞𝖳
𝑗

0 0

𝐞𝑗 𝜌𝑣𝑗𝐼3 𝐞𝑗 ⊗ 𝐻 −𝐻𝑗𝐼3 0

0 𝐻 ⊗ 𝐞𝑗 − 𝐻𝑗𝐼3 𝑣𝑗𝐼3 0

0 0 0 𝑣𝑗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
for 𝑗 = 1, 2, 3.

Here and below, 𝐞𝑗 ∶= (𝛿1𝑗, 𝛿2𝑗, 𝛿3𝑗)
𝖳 and 𝐼𝑚 ∶= (𝛿𝑖𝑗)𝑚×𝑚 with 𝛿𝑖𝑗 being the Kronecker delta. In

[51, 52, 63–65], we adopt a different symmetrization by taking the total pressure 𝑞 instead of the
pressure 𝑝 as one of the primary unknowns. According to the local existence results in [30] or [37,
chapter 2] for general symmetric hyperbolic systems, the Cauchy problem of the compressible
MHD equations (1.1)–(1.3) allows smooth nonvacuum solutions within a short time.
In the vacuum region Ω−(𝑡) ⊂ Ω, for vacuum magnetic field ℎ = (ℎ1, ℎ2, ℎ3)

𝖳 and vacuum
electric field 𝑒 = (𝑒1, 𝑒2, 𝑒3)

𝖳, we consider the pre-Maxwell equations

∇ × ℎ = 0, ∇ ⋅ ℎ = 0, (1.5)

∇ × 𝑒 = −𝜕𝑡ℎ, ∇ ⋅ 𝑒 = 0, (1.6)

where we have neglected the displacement current from Maxwell’s equations in vacuum as in
nonrelativistic MHD. The vacuum electric field 𝑒 in (1.5)–(1.6) is a secondary variable, so that the
dynamics in Ω−(𝑡) can be described by the elliptic (div-curl) system (1.5), or equivalently,

3∑
𝑗=1

𝐴−
𝑗 𝜕𝑗ℎ = 0 in Ω−(𝑡), (1.7)

where the constant matrices 𝐴−
1
, 𝐴−

2
, and 𝐴−

3
are defined by

𝐴−
1 ∶=

⎛⎜⎜⎜⎜⎜⎝

0 0 0

0 0 −1

0 1 0

1 0 0

⎞⎟⎟⎟⎟⎟⎠
, 𝐴−

2 ∶=

⎛⎜⎜⎜⎜⎜⎝

0 0 1

0 0 0

−1 0 0

0 1 0

⎞⎟⎟⎟⎟⎟⎠
, 𝐴−

3 ∶=

⎛⎜⎜⎜⎜⎜⎝

0 −1 0

1 0 0

0 0 0

0 0 1

⎞⎟⎟⎟⎟⎟⎠
.

We refer the interested reader to [6, 7, 38, 42, 61] for the stability of nonrelativistic or relativistic
plasma–vacuum interfaces with displacement current in vacuum.
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2090 SECCHI et al.

For technical simplicity, we assume that Ω±(𝑡) = {𝑥 ∈ Ω ∶ 𝑥1 ≷ 𝜑(𝑡, 𝑥′)} and the plasma–
vacuum interface is given by the form of a graph

Σ(𝑡) ∶= {𝑥 ∈ Ω ∶ 𝑥1 = 𝜑(𝑡, 𝑥′)} with 𝑥′ = (𝑥2, 𝑥3),

where the interface function 𝜑 is to be determined. The case of more general interfaces can be
dealt with by standard but technically involved arguments as in [59, Remark 2.3]. To unify the
presentation, we focus on the case of Ω = (−1, 1) × 𝕋2 with boundaries Σ± ∶= {±1} × 𝕋2, where
𝕋2 denotes the 2-torus and can be thought of as the unit squarewith periodic boundary conditions.
For the plasma–vacuum system the boundary conditions read as

𝑞 − 1

2
|ℎ|2 = 𝔰(𝜑), 𝜕𝑡𝜑 = 𝑣 ⋅𝑁 on Σ(𝑡), (1.8a)

𝐻 ⋅𝑁 = 0, ℎ ⋅𝑁 = 0 on Σ(𝑡), (1.8b)

𝐻1 = 0, 𝑣1 = 0 on Σ+, (1.8c)

ℎ × 𝐞1 = 𝒋c on Σ−, (1.8d)

where 𝔰 ⩾ 0 is the constant surface-tension coefficient,(𝜑) is twice the mean curvature of Σ(𝑡)
defined by

(𝜑) ∶= D𝑥′ ⋅

(
D𝑥′𝜑√

1 + |D𝑥′𝜑|2
)

with D𝑥′ ∶=

(
𝜕2
𝜕3

)
,

and 𝑁 ∶= (1, −𝜕2𝜑, −𝜕3𝜑)
𝖳 is the normal to Σ(𝑡). The vector function 𝒋c represents a given sur-

face current that forces oscillations onto the plasma–vacuum system. For laboratory plasmas, this
external excitation may be caused by a system of coils; see [19, section 4.6] for a thorough dis-
cussion of the condition (1.8d). The first condition in (1.8a) comes from the balance of the normal
stresses at the interface [17], while the second condition in (1.8a) means that the interface moves
with the motion of the fluid. Note that the effect of surface tension becomes especially impor-
tant in modeling the flows of liquid metals [45]. Conditions (1.8b) state that the fluid and vacuum
magnetic fields are tangential to the interface, while conditions (1.8c) are the perfectly conducting
wall and impermeable conditions.
We supplement (1.4) and (1.7)–(1.8) with the initial conditions

𝜑|𝑡=0 = 𝜑0, 𝑈|𝑡=0 = 𝑈0, (1.9)

where ‖𝜑0‖𝐿∞(𝕋2) < 1. Note that the vacuum magnetic field ℎ ∈ ℝ3 can be uniquely determined
from the elliptic problem consisting of (1.7), the second condition in (1.8b), and (1.8d) when the
interface function 𝜑 is given. It is worth mentioning that system (1.4), (1.7)–(1.9) is a nonlinear
hyperbolic–elliptic coupled problem with a characteristic free boundary.
The absence of the magnetic field (𝐻 = ℎ ≡ 0) reduces the system into the compressible Euler

equations with free boundary. For zero surface tension (𝔰 = 0), Ebin [18] showed that the free-
boundary incompressible Euler equations is ill-posed provided the followingTaylor sign condition
fails:

𝒏 ⋅∇𝑝 ⩽ −𝜅 < 0 on Σ(𝑡), (1.10)
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VACUUM FREE BOUNDARY PROBLEMS IN IDEAL COMPRESSIBLE MHD 2091

where 𝒏 denotes the outward unit normal to the interface Σ(𝑡) and 𝜅 is a positive constant. The
local well-posedness for two-dimensional (2D) and 3D irrotational ideal flows was established in
the seminal works ofWu [66, 67]. Without irrotationality, the local existence was proved in [15, 33,
69] and [34, 40, 59], respectively, for incompressible and compressible liquids (𝜌|Σ(𝑡) > 0) under
the Taylor sign condition (1.10), and in [16, 29, 36] for gases (𝜌|Σ(𝑡) = 0) under the physical vacuum
condition. For positive surface tension (𝔰 > 0), the local existence was obtained in [3, 4, 14, 15, 55]
for liquids without imposing the Taylor sign condition (1.10). The results of [3, 4, 14, 15, 55] indicate
that surface tension provides a regularizing effect on the moving vacuum boundary. We refer to
[3, 4, 14, 54] for the zero surface tension limit of the free-boundary Euler equations.
The full plasma–vacuum interface problem (1.4), (1.7)–(1.9) appears in the mathematical mod-

eling of plasma confinement by magnetic fields [19, section 4.6]. In this model, the plasma is
confined inside a rigid, perfectly conducting wall and separated from a vacuum. The extensive
study of this model began from the middle of the last century; see Bernstein et al. [5] for the
stability criteria of equilibrium states and Grad [20] for a survey of some early works.
For model (1.4), (1.7)–(1.9) with zero surface tension (𝔰 = 0), the second author [60] proposed

two different well-posedness conditions for the linearization. The first one is the noncollinearity
condition, stating that the magnetic fields on either side of the interface are not collinear:

|𝐻 × ℎ| ⩾ 𝜅 > 0 on Σ(𝑡), (1.11)

which enhances the regularity of the moving interface and stems from the study of compressible
current-vortex sheets in [57, 58] (see also [9, 10]). The second one is the MHD counterpart of the
Taylor sign condition (1.10), which reads as

𝒏 ⋅∇
(
𝑞 −

1

2
|ℎ|2) ⩽ −𝜅 < 0 on Σ(𝑡). (1.12)

In [60], basic a priori estimates were derived, respectively, for the variable coefficient linearized
problem under the noncollinearity condition (1.11) and for the constant coefficient linearized
problem under the Taylor-type sign condition (1.12).
Based on the linear results in [51, 60], the first two authors [52] proved the first local well-

posedness theorem for the full plasma–vacuum interface problem (1.4), (1.7)–(1.9) with 𝔰 = 0

under condition (1.11). However, the noncollinearity condition (1.11) excludes the important case
with zero magnetic field. Motivated by this fact, the second and third authors [63] studied the
free boundary problem (1.4), (1.8)–(1.9) for ℎ ≡ 0 and showed the first local well-posedness result
under the Taylor-type sign condition (1.12). Recently Lindblad–Zhang [35] established the a priori
estimates without loss of anisotropic regularity and hence improved the nonrelativistic result in
[63]. Even so, it is still an open problem to extend the results in [35, 63] to the case of gases (cf. [16,
29, 36]). Moreover, the local well-posedness for the plasma–vacuum interface problem (1.4), (1.7)–
(1.9) is still unknown for nontrivial vacuummagnetic field without the noncollinearity condition
(1.11); see [62] for a thorough discussion of this issue.
In view of the works [3, 4, 14, 15, 55], we would expect that surface tension could have

a stabilizing effect also on the motion of plasma–vacuum interfaces. This expectation was
confirmed rigorously by the second and third authors in [64, 65], where they proved the local
existence of solutions to the nonlinear problem (1.4), (1.7)–(1.9) with surface tension replacing
the Taylor-type sign condition (1.12) and the noncollinearity condition (1.11). Regarding the
incompressible plasma–vacuum interfaces, we refer to [49, 53] for the qualitative behavior of
surface waves, [23–25, 27, 43, 56] and [26], respectively, for the well-posedness and ill-posedness
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2092 SECCHI et al.

without surface tension, [21, 32] for the well-posedness with surface tension, [22, 32] for the
zero surface tension limit. It will be interesting to investigate the zero surface tension limit for
compressible plasma–vacuum interface problems.
The approach for solving the nonlinear problem (1.4), (1.7)–(1.9) in our works [52, 63–65]

involves the reduction to a fixed domain, the application of Alinhac’s good unknowns, the
existence and tame estimates in certain functional spaces for the linearized problem, and an
appropriate Nash–Moser iteration scheme. We work in the anisotropic Sobolev spaces 𝐻𝑚

∗
first introduced by Chen [11] with different regularity in the normal and tangential directions.
See [47] for the well-posedness of general characteristic symmetric hyperbolic systems and
[9, 46, 58, 68] for the study of other characteristic boundary problems in ideal compressible
MHD.
To solve the linearized problem of the hyperbolic–elliptic coupled system (1.4), (1.7)–(1.9) for

𝔰 = 0, the first two authors [51, 52] introduced a fully hyperbolic 𝜀-regularization and proved
the existence of solutions by the fixed point argument with the noncollinearity condition (1.11)
satisfied for the basic state. Then passing to the limit as 𝜀 → 0 yields the linear well-posedness.
For the case of vanishing magnetic field and the case of positive surface tension, the second and
third authors [63–65] proved the existence of the linearized problem by the duality argument.
In [52, 63–65], the high-order energy estimates for the linearized problem exhibit a fixed loss of
regularity from the basic state and source terms to the solution, and the local solutions for the
nonlinear problem are constructed by an appropriate modification of the Nash–Moser iteration
scheme developed by Hörmander [28] and Coulombel–Secchi [13]. In particular, a smooth inter-
mediate state is introduced and estimated, so that the state around which we linearize at each
iteration step can satisfy certain constraints for the linear solvability. See Alinhac–Gérard [2] and
Secchi [50] for a more general presentation of the Nash–Moser method.
The plan of the rest of this paper is as follows. In Section 2, we reduce the system (1.4), (1.7)–

(1.9) to an equivalent fixed-boundary problem and restate the main theorems in our works [52,
63–65]. In Section 3, we sketch the proof of linearwell-posedness in the case of zero surface tension
under the noncollinearity condition by employing the duality argument as in [63–65], which is
alternative to the method used in [51, 52].

2 NONLINEARWELL-POSEDNESS THEOREMS

In this section, we reduce the nonlinear free boundary problem (1.4), (1.7)–(1.9) to an equivalent
fixed-boundary problem, introduce anisotropic Sobolev spaces for later use, and restate the main
theorems in our works [52, 63–65].

2.1 Equivalent fixed-boundary problems

Let us reformulate the free boundary problem (1.4), (1.7)–(1.9) into an equivalent fixed-boundary
problem by introducing 𝑈♯(𝑡, 𝑥) ∶= 𝑈(𝑡, Φ(𝑡, 𝑥), 𝑥′) and ℎ♯(𝑡, 𝑥) ∶= ℎ(𝑡, Φ(𝑡, 𝑥), 𝑥′). We choose
the lifting function Φ as

Φ(𝑡, 𝑥) ∶= 𝑥1 + 𝜒(𝑥1)𝜑(𝑡, 𝑥
′),

where 𝜒 ∈ 𝐶∞
0
(−1, 1) is the cut-off function that satisfies ‖𝜒′‖𝐿∞(ℝ) < 4∕(‖𝜑0‖𝐿∞(𝕋2) + 3) and

equals to 1 on a small neighborhood of the origin. See [12, 52] for another change of variables,
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VACUUM FREE BOUNDARY PROBLEMS IN IDEAL COMPRESSIBLE MHD 2093

which can gain one half derivative. The free boundary problem (1.4), (1.7)–(1.9) can be reduced to
the following nonlinear fixed boundary problem:

𝕃+(𝑈,Φ) ∶= 𝐿+(𝑈,Φ)𝑈 = 0 in Ω+ ∶= (0, 1) × 𝕋2, (2.1a)

𝕃−(ℎ, Φ) ∶= 𝐿−(Φ)ℎ = 0 in Ω− ∶= (−1, 0) × 𝕋2, (2.1b)

𝔹(𝑈, ℎ, 𝜑) = 0 on Σ3 × Σ+ × Σ−, (2.1c)

𝑈|𝑡=0 = 𝑈0, 𝜑|𝑡=0 = 𝜑0, (2.1d)

where we have dropped the subscript “♯” for convenience, Σ ∶= {0} × 𝕋2, and

𝐿+(𝑈,Φ) ∶= 𝐴+
0
(𝑈)𝜕𝑡 + 𝐴+

1
(𝑈,Φ)𝜕1 + 𝐴+

2
(𝑈)𝜕2 + 𝐴+

3
(𝑈)𝜕3, (2.2)

𝐿−(Φ) ∶= 𝐴−
1 (Φ)𝜕1 + 𝐴−

2 𝜕2 + 𝐴−
3 𝜕3, (2.3)

𝔹(𝑈, ℎ, 𝜑) ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑡𝜑 − 𝑣 ⋅𝑁

𝑞 − 1

2
|ℎ|2 − 𝔰(𝜑)

ℎ ⋅𝑁

𝑣1

ℎ × 𝐞1 − 𝒋c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.4)

with 𝐴−
1
(Φ) ∶= (𝐴−

1
− 𝜕2Φ𝐴

−
2
− 𝜕3Φ𝐴

−
3
)∕𝜕1Φ and

𝐴+
1
(𝑈,Φ) ∶=

1

𝜕1Φ

(
𝐴+
1
(𝑈) − 𝜕𝑡Φ𝐴

+
0
(𝑈) − 𝜕2Φ𝐴

+
2
(𝑈) − 𝜕3Φ𝐴

+
3
(𝑈)

)
.

In (2.1c), we employ the notation Σ3 × Σ+ × Σ− to denote that the first three components of this
vector equation are taken on Σ, the fourth one on Σ+, and the fifth one on Σ−. The equations for
𝐻 contained in (2.1a) can be written as

ℍ(𝐻, 𝑣, Φ) ∶=
(
𝜕Φ𝑡 + 𝑣 ⋅∇Φ

)
𝐻 − (𝐻 ⋅∇Φ)𝑣 + 𝐻∇Φ ⋅ 𝑣 = 0 in Ω+, (2.5)

where

𝜕Φ𝑡 ∶= 𝜕𝑡 −
𝜕𝑡Φ

𝜕1Φ
𝜕1, ∇

Φ ∶=
(
𝜕Φ1 , 𝜕

Φ
2 , 𝜕

Φ
3

)𝖳
, 𝜕Φ1 ∶=

𝜕1
𝜕1Φ

, 𝜕Φ𝑗 ∶= 𝜕𝑗 −
𝜕𝑗Φ

𝜕1Φ
𝜕1 (2.6)

for 𝑗 = 2, 3. In the new variables, Equation (1.2) and first conditions in (1.8b)–(1.8c) become

∇Φ ⋅𝐻 = 0 in Ω+, 𝐻 ⋅𝑁 = 0 on Σ, 𝐻1 = 0 on Σ+, (2.7)

which can be regarded as initial constraints, meaning that they hold for 𝑡 > 0 as long as they are
satisfied initially; see [58, appendix A] for the detailed proof.
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2094 SECCHI et al.

2.2 Anisotropic Sobolev spaces

Let us introduce the anisotropic Sobolev spaces to be used in this paper. We denote

D𝛼
∗ ∶= 𝜕

𝛼0
𝑡 (𝜎𝜕1)

𝛼1𝜕
𝛼2
2
𝜕
𝛼3
3
𝜕
𝛼4
1

for 𝛼 ∶= (𝛼0, … , 𝛼4) ∈ ℕ5, (2.8)

where 𝜎 = 𝜎(𝑥1) is a positive 𝐶∞–function on (0,1) such that 𝜎(𝑥1) = 𝑥1 in a neighborhood of
the origin and 𝜎(𝑥1) = 1 − 𝑥1 in a neighborhood of 𝑥1 = 1. For𝑚 ∈ ℕ and 𝐼 ⊂ ℝ, the anisotropic
Sobolev space𝐻𝑚

∗ (𝐼 × Ω+) is defined as

𝐻𝑚
∗ (𝐼 × Ω+) ∶= {𝑢 ∈ 𝐿2(𝐼 × Ω+) ∶ D𝛼

∗𝑢 ∈ 𝐿2(𝐼 × Ω+) for ⟨𝛼⟩ ⩽ 𝑚},

and equipped with the norm ‖ ⋅ ‖𝐻𝑚
∗ (𝐼×Ω+), where

⟨𝛼⟩ ∶= 3∑
𝑖=0

𝛼𝑖 + 2𝛼4, ‖𝑢‖2
𝐻𝑚
∗ (𝐼×Ω+)

∶=
∑

⟨𝛼⟩⩽𝑚 ‖D𝛼
∗𝑢‖2𝐿2(𝐼×Ω+)

.

By definition,𝐻𝑚(𝐼 × Ω+) ↪ 𝐻𝑚
∗ (𝐼 × Ω+) ↪ 𝐻⌊𝑚∕2⌋(𝐼 × Ω+) for all𝑚 ∈ ℕ and 𝐼 ⊂ ℝ, where ⌊𝑠⌋

denotes the floor function of 𝑠 ∈ ℝ that maps 𝑠 to the greatest integer less than or equal to 𝑠. We
refer to [11, 41, 48], and references therein for an extensive study of anisotropic Sobolev spaces.

2.3 Main theorems

To present the main theorems, we first introduce the compatibility conditions on the initial data.
For this purpose, we assume that for some integer 𝑚 ⩾ 3, the initial data 𝑈0 ∈ 𝐻𝑚+3∕2(Ω+) and
𝜑0 ∈ 𝐻𝑚+2(𝕋2) satisfy ‖𝜑0‖𝐿∞(𝕋2) < 1 and the hyperbolicity condition

𝜌∗ < inf
Ω+

𝜌(𝑈0) ⩽ sup
Ω+

𝜌(𝑈0) < 𝜌∗, (2.9)

where the nonnegative constants 𝜌∗, 𝜌∗ are specified in (1.3). Then

𝜕1Φ0 ⩾
3
(
1 − ‖𝜑0‖𝐿∞(𝕋2)

)
3 + ‖𝜑0‖𝐿∞(𝕋2)

> 0 for Φ0(𝑥) ∶= 𝑥1 + 𝜒(𝑥1)𝜑0(𝑥
′).

The initial vacuum magnetic field ℎ0 can be uniquely determined by the div-curl system

𝐿−(Φ0)ℎ0 = 0 in Ω−, ℎ0 ⋅𝑁0 = 0 on Σ, ℎ0 × 𝐞1 = 𝒋c(0) on Σ−,

where 𝐿− is the operator given by (2.3) and𝑁0 ∶= (1, −𝜕2𝜑0, −𝜕3𝜑0)
𝖳. Define𝑈(𝑗) ∶= 𝜕

𝑗
𝑡 𝑈|𝑡=0 and

𝜑(𝑗) ∶= 𝜕
𝑗
𝑡 𝜑|𝑡=0 for any 𝑗 ∈ ℕ. Taking 𝑗 time derivatives of the interior equations (2.1a) and the first

condition in (2.1c), we evaluate the resulting identities at the initial time to determine 𝑈(𝑗) and
𝜑(𝑗) inductively. Then we set ℎ(𝑗) ∶= 𝜕

𝑗
𝑡 ℎ|𝑡=0 as the unique solution of the elliptic problem that

results from taking 𝑗 time derivatives of the equations (2.1b), the third condition in (2.1c), and the
second condition in (2.1d). More precisely, we have the following result (see [52, section 9] for the
proof).
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Lemma 2.1. Let𝑚 ∈ ℕ with𝑚 ⩾ 3 and 𝒋c ∈ 𝐻𝑚+3∕2([0, 𝑇0] × Σ−) for some 𝑇0 > 0. Assume that
(𝑈0, 𝜑0) ∈ 𝐻𝑚+3∕2(Ω+) × 𝐻𝑚+2(𝕋2) satisfy ‖𝜑0‖𝐿∞(𝕋2) < 1 and (2.9). Then the procedure described
above determines 𝑈(𝑗) ∈ 𝐻𝑚+3∕2−𝑗(Ω+), 𝜑(𝑗) ∈ 𝐻𝑚+2−𝑗(𝕋2), and ℎ(𝑗) ∈ 𝐻𝑚+3∕2−𝑗(Ω−), for
𝑗 = 0, 1, … ,𝑚, satisfying

𝑚∑
𝑗=0

(‖𝑈(𝑗)‖𝐻𝑚+3∕2−𝑗(Ω+) + ‖𝜑(𝑗)‖𝐻𝑚+2−𝑗(𝕋2) + ‖ℎ(𝑗)‖𝐻𝑚+3∕2−𝑗(Ω−)

)
⩽ 𝐶(𝑀0),

where 𝑀0 ∶= ‖𝑈0‖𝐻𝑚+3∕2(Ω+) + ‖𝜑0‖𝐻𝑚+2(𝕋2) + ‖𝒋c‖𝐻𝑚+3∕2([0,𝑇0]×Σ
−) and 𝐶(𝑀0) > 0 is some con-

stant depending on𝑀0.

Taking 𝑗 time derivatives of the second condition in (2.1c) yields the following terminology for
the compatibility conditions on the initial data.

Definition 2.1. Assume that all the conditions of Lemma 2.1 are satisfied. The initial data (𝑈0, 𝜑0)

are said to fulfill the compatibility conditions up to order 𝑚, if 𝑈(𝑗), 𝜑(𝑗), and ℎ(𝑗) satisfy the
boundary conditions 𝑣1(𝑗)|Σ+ = 0 and

𝑞(𝑗) =

𝑗−1∑
𝑖=0

(
𝑗 − 1

𝑖

)
ℎ(𝑖) ⋅ ℎ(𝑗−𝑖)

+ 𝔰
∑
𝛼𝑖∈ℕ

2|𝛼1|+⋯+𝑗|𝛼𝑗|=𝑗
D𝑥′ ⋅

(
D
𝛼1+⋯+𝛼𝑗

𝜁
𝔣
(
𝜁(0)

)
𝑗!

𝑗∏
𝑖=1

1

𝛼𝑖!

(
𝜁(𝑖)

𝑖!

)𝛼𝑖
)

on Σ,

for 𝑗 = 0,… ,𝑚, where 𝜁(𝑖) ∶= D𝑥′𝜑(𝑖) ∈ ℝ2 and 𝔣(𝜁) ∶= 𝜁∕
√
1 + |𝜁|2.

Now we are ready to restate the main theorems in [52, 63–65].

Theorem 2.1 [52, Theorem 5]. Assume that 𝔰 = 0 and 𝒋c ∈ 𝐻𝑚+3∕2([0, 𝑇0] × Σ−) for some 𝑇0 > 0

and𝑚 ∈ ℕ with𝑚 ⩾ 20. Assume further that the initial data (𝑈0, 𝜑0) ∈ 𝐻𝑚+3∕2(Ω+) × 𝐻𝑚+2(𝕋2)

satisfy ‖𝜑0‖𝐿∞(𝕋2) < 1, the constraints (2.7), the hyperbolicity condition (2.9), the compatibility
conditions up to order𝑚, and the noncollinearity condition

|𝐻0 × ℎ0|||Σ ⩾ 𝛿0 > 0 (2.10)

for some fixed constant 𝛿0. Then problem (2.1) admits a unique solution (𝑈, ℎ, 𝜑) in 𝐻𝑚−9
∗ ([0, 𝑇] ×

Ω+) × 𝐻𝑚−9([0, 𝑇] × Ω−) × 𝐻𝑚−9([0, 𝑇] × 𝕋2) for some 𝑇 > 0.

Theorem 2.2 [63, Theorem 2.1]. Let 𝔰 = 0 and 𝒋c ≡ 0. Suppose that the initial data (𝑈0, 𝜑0) ∈

𝐻𝑚+3∕2(Ω+) × 𝐻𝑚+2(𝕋2) satisfy ‖𝜑0‖𝐿∞(𝕋2) < 1, the constraints (2.7), the hyperbolicity condition
(2.9), the compatibility conditions up to order𝑚, and the sign condition

𝜕1𝑞0||Σ ⩾ 𝛿0 > 0 (2.11)

for some fixed constant 𝛿0. Then problem (2.1) admits a unique solution (𝑈, 0, 𝜑) on [0, 𝑇] for some
𝑇 > 0 satisfying𝑈 ∈ 𝐻𝑚−9

∗ ([0, 𝑇] × Ω+) and 𝜑 ∈ 𝐻𝑚−9([0, 𝑇] × 𝕋2).
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2096 SECCHI et al.

Remark 2.1. In our case of a simply connected vacuum domainΩ−, the assumption 𝒋c ≡ 0 implies
that the vacuummagnetic field ℎ vanishes on the whole domain. For zero vacuummagnetic field,
we refer to [35] for a priori estimates without loss of anisotropic regularity and [63] for existence
of solutions in the relativistic case.

Theorem 2.3 [65, Theorem 2.1]. Assume that 𝔰 > 0 and 𝒋c ∈ 𝐻𝑚+3∕2([0, 𝑇0] × Σ−) for some
𝑇0 > 0 and 𝑚 ∈ ℕ with 𝑚 ⩾ 20. Assume further that (𝑈0, 𝜑0) ∈ 𝐻𝑚+3∕2(Ω+) × 𝐻𝑚+2(𝕋2) sat-
isfy ‖𝜑0‖𝐿∞(𝕋2) < 1, the constraints (2.7), the hyperbolicity condition (2.9), and the compatibility
conditions up to order 𝑚. Then there exists a small time 𝑇 > 0, such that problem (2.1) has a
unique solution (𝑈, ℎ, 𝜑) in 𝐻𝑚−9

∗ ([0, 𝑇] × Ω+) × 𝐻𝑚−9([0, 𝑇] × Ω−) × 𝐻𝑚−9([0, 𝑇] × 𝕋2) satisfy-
ing D𝑥′𝜑 ∈ 𝐻𝑚−9([0, 𝑇] × 𝕋2).

Remark 2.2. The main result of [64] gives the existence of solutions to the problem (2.1) (or equiv-
alently, the free boundary problem (1.4), (1.7)–(1.9)) in the case of positive surface tension and zero
vacuum magnetic field, which corresponds to Theorem 2.3 with 𝒋c ≡ 0.

3 WELL-POSEDNESS FOR THE LINEARIZED PROBLEM

This section is devoted to sketching the proof of existence and high-order estimates for the lin-
earized problem with zero surface tension 𝔰 = 0 under the noncollinearity condition (2.10) by
means of the duality argument in [63–65], which is alternative to the method used in [51, 52].

3.1 Linearization

We first perform the linearization of the nonlinear problem (2.1) with 𝔰 = 0 around a suitable
basic state.

3.1.1 Basic state

Assume that the basic state (�̊�(𝑡, 𝑥), ℎ̊(𝑡, 𝑥), �̊�(𝑡, 𝑥′)) is a sufficiently smooth vector-function
defined on Ω+

𝑇
× Ω−

𝑇
× Σ𝑇 and satisfies

‖�̊�‖𝐿∞(Σ𝑇)
⩽

1

2
(‖𝜑0‖𝐿∞(𝕋2) + 1), (3.1)

𝜌∗ < 𝜌(�̊�) < 𝜌∗ on Ω+
𝑇
, (3.2)

‖�̊�‖𝐻10
∗ (Ω+

𝑇
) + ‖ℎ̊‖𝐻10(Ω−

𝑇
) + ‖�̊�‖𝐻10(Σ𝑇)

⩽ 𝐾 (3.3)

for some constant 𝐾 > 0, where �̊� = (�̊�, �̊�, �̊�, �̊�)𝖳 ∈ ℝ8, ℎ̊ = (ℎ̊1, ℎ̊2, ℎ̊3)
𝖳 ∈ ℝ3,Ω±

𝑇
∶= (−∞,𝑇) ×

Ω±, and Σ𝑇 ∶= (−∞,𝑇) × Σ. Then we have 𝜕1Φ̊ > 0 on Ω𝑇, where Ω𝑇 ∶= (−∞,𝑇) × Ω and
Φ̊(𝑡, 𝑥) ∶= 𝑥1 + Ψ̊(𝑡, 𝑥) with Ψ̊(𝑡, 𝑥) ∶= 𝜒(𝑥1)�̊�(𝑡, 𝑥

′). We also assume that

ℍ(�̊�, �̊�, Φ̊) = 0 in Ω+
𝑇 , (3.4)
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𝜕𝑡�̊� = �̊� ⋅ �̊�, ℎ̊ ⋅ �̊� = 0 on Σ𝑇, (3.5)

𝜕1ℎ̊ ⋅ �̊� + 𝜕2ℎ̊2 + 𝜕3ℎ̊3 = 0 on Σ𝑇, (3.6)

�̊�1 = 0 on Σ+𝑇 , ℎ̊ × 𝐞1 = 𝒋c on Σ−𝑇 , (3.7)

where ℍ is the operator defined in (2.5), �̊� ∶= (1, −𝜕2Φ̊, −𝜕3Φ̊)
𝖳, and Σ±

𝑇
∶= (−∞,𝑇) × Σ±. It

follows from (3.4) that the identities

∇Φ̊ ⋅ �̊�||Ω+
𝑇
= 0 �̊� ⋅ �̊�||Σ𝑇 = 0, �̊�1

||Σ+
𝑇
= 0 (3.8)

are satisfied if they hold at the initial time (see [58, appendix B] for the proof). As such, we require
that the conditions (3.8) are satisfied at 𝑡 = 0. Moreover, we assume that the noncollinearity
condition holds for the basic state (cf. (2.10)):

||�̊� × ℎ̊|| ⩾ 𝛿0
2

> 0 on Σ𝑇. (3.9)

3.1.2 Linearized problem

Introduce the good unknowns of Alinhac [1]:

�̇� ∶= 𝑉 −
Ψ

𝜕1Φ̊
𝜕1�̊�, ℎ̇ ∶= ℎ −

Ψ

𝜕1Φ̊
𝜕1ℎ̊, (3.10)

for 𝑉 ∶= (𝑝, 𝑣,𝐻, 𝑆)𝖳 and Ψ(𝑡, 𝑥) ∶= 𝜒(𝑥1)𝜓(𝑡, 𝑥
′). Then the linearized operators for Equations

(2.1a)–(2.1b) around the basic state (�̊�, ℎ̊, �̊�) are defined and simplified as (cf. [39, Proposition
1.3.1])

𝕃′+(�̊�, Φ̊)(𝑉, Ψ) ∶=
d

d𝜃
𝕃+(�̊� + 𝜃𝑉, Φ̊ + 𝜃Ψ)

||||𝜃=0
=𝐿+(�̊�, Φ̊)�̇� + +(�̊�, Φ̊)�̇� +

Ψ

𝜕1Φ̊
𝜕1𝕃+(�̊�, Φ̊), (3.11)

𝕃′−(ℎ̊, Φ̊)(ℎ, Ψ) ∶=
d

d𝜃
𝕃−(ℎ̊ + 𝜃ℎ, Φ̊ + 𝜃Ψ)

||||𝜃=0 = 𝐿−(Φ̊)ℎ̇ +
Ψ

𝜕1Φ̊
𝜕1𝕃−(ℎ̊, Φ̊), (3.12)

where 𝐿± are the operators defined in (2.2)–(2.3) and

+(𝑈,Φ)𝑉 ∶=

8∑
𝑘=1

𝑉𝑘

(
𝜕𝐴+

1

𝜕𝑈𝑘
(𝑈,Φ)𝜕1𝑈 +

∑
𝑖=0,2,3

𝜕𝐴+
𝑖

𝜕𝑈𝑘
(𝑈)𝜕𝑖𝑈

)
.

For the boundary operator 𝔹 defined by (2.4), we have

𝔹′(�̊�, ℎ̊, �̊�)(𝑉, ℎ, 𝜓) ∶=
d

d𝜃
𝔹(�̊� + 𝜃𝑉, ℎ̊ + 𝜃ℎ, �̊� + 𝜃𝜓)

||||𝜃=0
= ((𝜕𝑡 + �̊�′ ⋅ D𝑥′)𝜓 − 𝑣 ⋅ �̊�, 𝑝 + �̊� ⋅𝐻 − ℎ̊ ⋅ ℎ, ℎ ⋅ �̊� − ℎ̊′ ⋅ D𝑥′𝜓, 𝑣1, ℎ × 𝐞1)

𝖳
,

where we denote 𝑧′ ∶= (𝑧2, 𝑧3)
𝖳 for any vector 𝑧 ∶= (𝑧1, 𝑧2, 𝑧3)

𝖳.
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2098 SECCHI et al.

We apply the good unknowns (3.10) and neglect the last terms in (3.11)–(3.12) to study the
following effective linear problem:

𝕃′𝑒+(�̊�, Φ̊)�̇� ∶= 𝐿+(�̊�, Φ̊)�̇� + +(�̊�, Φ̊)�̇� = 𝑓+ in Ω+
𝑇 , (3.13a)

𝐿−(Φ̊)ℎ̇ = 𝑓− in Ω−
𝑇 , (3.13b)

𝔹′
𝑒(�̊�, ℎ̊, �̊�)(�̇�, ℎ̇, 𝜓) = g on Σ3𝑇 × Σ+𝑇 × Σ−𝑇 , (3.13c)

(�̇�, 𝜓)||𝑡<0 = 0, ℎ̇||𝑡<0 = 0, (3.13d)

where

𝔹′
𝑒(�̊�, ℎ̊, �̊�)(�̇�, ℎ̇, 𝜓) ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(𝜕𝑡 + �̊�′ ⋅ D𝑥′ + �̊�1)𝜓 − �̇� ⋅ �̊�

�̇� + �̊� ⋅ �̇� − ℎ̊ ⋅ ℎ̇ + �̊�2𝜓

ℎ̇ ⋅ �̊� − D𝑥′ ⋅ (ℎ̊
′𝜓)

�̇�1

ℎ̇ × 𝐞1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.14)

with �̊�1 ∶= −𝜕1�̊� ⋅ �̊� and �̊�2 ∶= 𝜕1�̊� + �̊� ⋅ 𝜕1�̊� − ℎ̊ ⋅ 𝜕1ℎ̊, thanks to the identity 𝔹′
𝑒(�̊�, ℎ̊, �̊�)

(�̇�, ℎ̇, 𝜓) = 𝔹′(�̊�, ℎ̊, �̊�)(𝑉, ℎ, 𝜓), the definitions (3.10), and the constraint (3.6). The last terms in
(3.11)–(3.12) will be considered as error terms at each iteration step.
The source terms 𝑓± and g are supposed to vanish in the past, so that the second equation in

(3.13d) follows from (3.13b), the third and fifth equations in (3.13c), and the first equation in (3.13d).
In particular, the fifth, sixth, and seventh components of (3.13a) read as

ℍ′
𝑒(�̊�, �̊�, Φ̊)(�̇�, �̇�) ∶=

(
𝜕Φ̊𝑡 + �̊� ⋅∇Φ̊

)
�̇� − (�̊� ⋅∇Φ̊)�̇� + �̊�∇Φ̊ ⋅ �̇� + (�̇� ⋅∇Φ̊)�̊�

− (�̇� ⋅∇Φ̊)�̊� + �̇�∇Φ̊ ⋅ �̊� =
(
𝑓+
5 , 𝑓

+
6
, 𝑓+

7

)𝖳
, (3.15)

where 𝜕Φ̊𝑡 and ∇Φ̊ are defined by (2.6).

3.1.3 Reformulation

Let us reformulate the effective linear problem (3.13) for obtaining its solvability. First, we
transform the equations (3.13b) to(

∇ × (𝜕1Φ̊�̊�
−𝖳ℎ̇)

∇ ⋅ (�̊�ℎ̇)

)
=

(
�̊� 0

0 𝜕1Φ̊

)
𝑓− =∶ 𝑓− in Ω−

𝑇 , (3.16)

where

�̊� ∶=

⎛⎜⎜⎜⎝
1 −𝜕2Φ̊ −𝜕3Φ̊

0 𝜕1Φ̊ 0

0 0 𝜕1Φ̊

⎞⎟⎟⎟⎠ .
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VACUUM FREE BOUNDARY PROBLEMS IN IDEAL COMPRESSIBLE MHD 2099

Then we decompose ℎ̇ as ℎ̇ = ℎ♭ + ℎ♮ with ℎ♮ solving the div-curl boundary value problem
(cf. (3.16), (3.13c), and (3.14))

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
∇ × (𝜕1Φ̊�̊�

−𝖳ℎ♮)

∇ ⋅ (�̊�ℎ♮)

)
= 𝑓− in Ω−

𝑇 ,

ℎ♮ ⋅ �̊� = g3 on Σ𝑇, ℎ♮ × 𝐞1 = g5 on Σ−𝑇 ,

(𝑥2, 𝑥3) → ℎ♮(𝑡, 𝑥1, 𝑥2, 𝑥3) is 1-periodic.

(3.17)

The next lemma gives the𝐻𝑚-estimate for the above problem (3.17) with𝑚 ⩾ 6 (see [52, section 6]
for the proof of the resolution and𝐻2-estimate). We denote by 𝐶 some universal positive constant
and by 𝐶(⋅) some positive constant depending on the quantities listed in the parenthesis. We use
𝐴 ≲𝑎1,…,𝑎𝑚

𝐵 to denote that 𝐴 ⩽ 𝐶(𝑎1, … , 𝑎𝑚)𝐵 for given parameters 𝑎1, … , 𝑎𝑚.

Lemma 3.1. Let (𝑓−, g3, g5) belong to 𝐻𝑚−1(Ω−
𝑇
) × 𝐻𝑚−1∕2(Σ𝑇) × 𝐻𝑚−1∕2(Σ−

𝑇
) for some integer

𝑚 ⩾ 6. Assume that the compatibility conditions

g5 ⋅ 𝐞1|Σ− = 0, ∫Σ− 𝑢 ⋅ g5 = ∫Ω−
𝑢 ⋅ 𝑓−

hold for all vectors 𝑢 ∈ 𝐻1(Ω−) satisfying 𝑢2 = 𝑢3 = 0 on Σ and∇ × 𝑢 = 0 inΩ−. Then the problem
(3.17) has a unique solution ℎ♮ in𝐻𝑚(Ω−

𝑇
) and

‖ℎ♮‖𝐻𝑚(Ω−
𝑇
) ≲𝐾

(
1 + ‖�̊�‖𝐻𝑚+1(Σ𝑇)

)‖(𝑓−, g3, g5)‖𝐻5(Ω−
𝑇
)×𝐻5(Σ𝑇)×𝐻

5(Σ−
𝑇
)

+ ‖𝑓−‖𝐻𝑚−1(Ω−
𝑇
) + ‖g3‖𝐻𝑚−1∕2(Σ𝑇)

+ ‖g5‖𝐻𝑚−1∕2(Σ−
𝑇
), (3.18)

where 𝐾 is the upper bound given in (3.3).

Next we reduce (3.13) into a problem with homogeneous boundary conditions. To this end, we
introduce the decomposition �̇� = 𝑉♭ + 𝑉♮ for 𝑉♮ = (𝑞♮, 𝑣♮, 𝐻♮, 0)

𝖳 ∈ ℝ8, where

𝑣♮ =
(
𝑣♮
1
, 0, 0

)𝖳
with 𝑣♮

1
∶= 𝜒(𝑥1)ℜ𝑇(−g1) + 𝜒(1 − 𝑥1)ℜ̃𝑇g4, (3.19)

forℜ𝑇 ∶ 𝐻𝑚(Σ𝑇) → 𝐻𝑚+1
∗ (Ω+

𝑇
) and ℜ̃𝑇 ∶ 𝐻𝑚(Σ+

𝑇
) → 𝐻𝑚+1

∗ (Ω+
𝑇
) being the continuous extension

operators [44],𝐻♮ is the unique solution of

ℍ′
𝑒(�̊�, �̊�, Φ̊)(𝐻♮, 𝑣♮) = (𝑓+

5 , 𝑓
+
6
, 𝑓+

7 )
𝖳 in Ω+

𝑇 (3.20)

for ℍ′
𝑒(�̊�, �̊�, Φ̊) being defined by (3.15), and

𝑝♮ ∶= ℜ𝑇

(
g2 + ℎ̊ ⋅ ℎ♮ − �̊� ⋅𝐻♮

)
. (3.21)

It follows from (3.13), (3.17), (3.19), and (3.21) that vectors 𝑉♭ = �̇� − 𝑉♮ and ℎ♭ = ℎ̇ − ℎ♮ solve the
problem

𝕃′𝑒+(�̊�, Φ̊)𝑉 = 𝑓+ ∶= 𝑓+ − 𝕃′𝑒+(�̊�, Φ̊)𝑉♮ in Ω+
𝑇 , (3.22a)

 14692120, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12913 by W

uhan U
niversity, W

iley O
nline L

ibrary on [03/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2100 SECCHI et al.

∇ ×
(
𝜕1Φ̊�̊�

−𝖳ℎ
)
= 0, ∇ ⋅ (�̊�ℎ) = 0 in Ω−

𝑇 , (3.22b)

𝔹′
𝑒(�̊�, ℎ̊, �̊�)(𝑉, ℎ, 𝜓) = 0 on Σ3𝑇 × Σ+𝑇 × Σ−𝑇 , (3.22c)

(𝑉, ℎ, 𝜓) = 0 if 𝑡 < 0, (3.22d)

where we have dropped the subscript “♭” for notational simplicity. Utilize (3.15) and (3.20) to get
(𝑓+

5 , 𝑓
+
6
, 𝑓+

7 ) = 0, which implies that solutions of (3.22) satisfy

𝜕1(𝐻 ⋅ �̊�) + 𝜕2(𝜕1Φ̊𝐻2) + 𝜕3(𝜕1Φ̊𝐻3) = 0 in Ω+
𝑇 , (3.23)

𝐻 ⋅ �̊� = �̊�2𝜕2𝜓 + �̊�3𝜕3𝜓 − 𝜕1�̊� ⋅ �̊�𝜓 on Σ𝑇, (3.24)

𝐻1 = 0 on Σ+𝑇 , (3.25)

thanks to [58, Proposition 2].
By virtue of (3.22b), we can rewrite the problem (3.22) in terms of the scalar potential 𝜉

determined by

∇𝜉 = 𝜕1Φ̊�̊�
−𝖳ℎ in Ω−

𝑇 . (3.26)

Then ∇ ⋅ (�̊�∇𝜉) = ∇ ⋅ (�̊�ℎ) = 0 in Ω−
𝑇
, where

�̊� ∶=
1

𝜕1Φ̊
�̊��̊�𝖳. (3.27)

Moreover, we set

𝑊 ∶= (𝑝 + �̊� ⋅𝐻, 𝑣 ⋅ �̊�, 𝑣2, 𝑣3, 𝐻 ⋅ �̊�, 𝐻2,𝐻3, 𝑆)
𝖳 = 𝐽(Φ̊)−1𝑉,

where

𝐽(Φ̊) ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −�̊�1 −�̊�1𝜕2Φ̊ − �̊�2 −�̊�1𝜕3Φ̊ − �̊�3 0

0 1 𝜕2Φ̊ 𝜕3Φ̊ 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 𝜕2Φ̊ 𝜕3Φ̊ 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the problem (3.22) can be reduced to

𝐋𝑊 ∶=

3∑
𝑖=0

𝑨𝑖𝜕𝑖𝑊 + 𝑨4𝑊 = 𝒇 ∶= 𝐽(Φ̊)𝖳𝑓+ in Ω+
𝑇 , (3.28a)
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VACUUM FREE BOUNDARY PROBLEMS IN IDEAL COMPRESSIBLE MHD 2101

∇ ⋅ (�̊�∇𝜉) = 0 in Ω−
𝑇 , (3.28b)

𝑊2 = (𝜕𝑡 + �̊�′ ⋅ D𝑥′ + �̊�1)𝜓 on Σ𝑇, (3.28c)

𝑊1 = ℎ̊′ ⋅ D𝑥′𝜉 − �̊�2𝜓 on Σ𝑇, (3.28d)

(�̊�∇𝜉)1 = D𝑥′ ⋅ (ℎ̊
′𝜓) on Σ𝑇, (3.28e)

𝑊2 = 0 on Σ+𝑇 , 𝜉 = 0 on Σ−𝑇 , (𝑊, 𝜉, 𝜓)|𝑡<0 = 0, (3.28f)

where 𝑨𝑖 ∶= 𝐽(Φ̊)𝖳𝐴+
𝑖
(�̊�)𝐽(Φ̊) for 𝑖 = 0, 2, 3, 𝑨1 ∶= 𝐽(Φ̊)𝖳𝐴+

1
(�̊�, Φ̊)𝐽(Φ̊), and 𝑨4 ∶=

𝐽(Φ̊)𝖳𝕃′𝑒+(�̊�, Φ̊)𝐽(Φ̊). Besides, the identities (3.23)–(3.25) become

𝜕1𝑊5 + 𝜕2(𝜕1Φ̊𝑊6) + 𝜕3(𝜕1Φ̊𝑊7) = 0 in Ω+
𝑇 , (3.29)

𝑊5 = �̊�2𝜕2𝜓 + �̊�3𝜕3𝜓 − 𝜕1�̊� ⋅ �̊�𝜓 on Σ𝑇, (3.30)

𝑊5 = 0 on Σ+𝑇 . (3.31)

It follows from (3.5) and (3.7)–(3.8) that

𝑨1
||Σ = 𝑨1

||Σ+ =

⎛⎜⎜⎜⎝
0 1 0

1 0 0

0 0 𝑂6

⎞⎟⎟⎟⎠ =∶ 𝑨(1)
1
, (3.32)

where 𝑂𝑚 denotes the zero matrix of order 𝑚. We introduce 𝑨(0)
1

∶= 𝑨 − 𝑨(1)
1

so that 𝑨(0)
1
|Σ =

𝑨(0)
1
|Σ+ = 0.

3.2 Existence for the 𝜺-regularization

Let us introduce for the problem (3.28) a suitable 𝜀-regularization so that we can close the 𝐿2

estimates of the 𝜀-regularization and its dual problem, which allows us to derive the existence of
solutions to the regularized problem for any small fixed 𝜀 > 0 by using the duality argument.

3.2.1 Regularized problem

To solve the problem (3.28), we introduce the following 𝜀-regularization:

3∑
𝑖=0

𝑨𝑖𝜕𝑖𝑊 − 𝜀𝑱𝜕1𝑊 + 𝑨4𝑊 = 𝒇 in Ω+
𝑇 , (3.33a)

∇ ⋅ (�̊�∇𝜉) = 0 in Ω−
𝑇 , (3.33b)
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2102 SECCHI et al.

𝑊2 = (𝜕𝑡 + �̊�′ ⋅ D𝑥′ + �̊�1)𝜓 on Σ𝑇, (3.33c)

𝑊1 = ℎ̊′ ⋅ D𝑥′𝜉 − �̊�2𝜓 on Σ𝑇, (3.33d)

(�̊�∇𝜉)1 = D𝑥′ ⋅ (ℎ̊
′𝜓) + 𝜀Δ𝑥′𝜉 on Σ𝑇, (3.33e)

𝑊2 = 0 on Σ+𝑇 , 𝜉 = 0 on Σ−𝑇 , (𝑊, 𝜉, 𝜓)|𝑡<0 = 0, (3.33f)

where 𝑱 ∶= diag (0, 1, 0, 0, 0, 0, 0, 0), the matrix �̊� is defined in (3.27), and Δ𝑥′ ∶= D𝑥′ ⋅ D𝑥′ . As in
[64, section 2.3] for the problem with positive surface tension and zero vacuum magnetic field,
we add the term −𝜀𝑱𝜕1𝑊 in (3.33a) to derive the 𝐿2 estimate for regularization (3.33). The term
𝜀Δ𝑥′𝜉 contained in (3.33e) helps us to obtain the 𝐿2 estimate for the dual problem of (3.33). It is
important to note that (3.29)–(3.31) hold also for solutions of the regularized problem (3.33).

3.2.2 𝐿2 estimate for the regularized problem

Let us first show the 𝐿2 a priori estimate for the regularized problem (3.33). Taking the scalar
product of (3.33a) by𝑊, we utilize (3.32), (3.33d), and (3.33f) to discover

∫Ω+
𝑨0𝑊 ⋅𝑊 +

𝜀

2
‖𝑊2‖2𝐿2(Σ𝑡) ≲𝐾,𝜀 ‖(𝒇,𝑊)‖2

𝐿2(Ω+
𝑡 )
+ ‖(𝜓, D𝑥′𝜉)‖2𝐿2(Σ𝑡). (3.34)

To control the last term in (3.34), we multiply (3.33c) with 𝜓 to infer

‖𝜓(𝑡)‖2
𝐿2(Σ)

⩽ 𝝐𝜀‖𝑊2‖2𝐿2(Σ𝑡) + 𝐶(𝐾, 𝝐𝜀)‖𝜓‖2
𝐿2(Σ𝑡)

(3.35)

for all 𝝐 > 0. Multiplying (3.33e) by 𝜉 leads to

∫Σ𝑡 𝜉(�̊�∇𝜉)1 +
𝜀

2
‖D𝑥′𝜉‖2𝐿2(Σ𝑡) ≲𝐾,𝜀 ‖𝜓‖2𝐿2(Σ𝑡). (3.36)

Combine the estimates (3.34)–(3.36), utilize the identity

∫Σ𝑡 𝜉(�̊�∇𝜉)1 = ∫Ω−
𝑡

∇ ⋅ (𝜉(�̊�∇𝜉)) = ∫Ω−
𝑡

�̊�∇𝜉 ⋅∇𝜉,

and take 𝝐 > 0 small enough to deduce

‖𝑊(𝑡)‖2
𝐿2(Ω+)

+ ‖𝜓(𝑡)‖2
𝐿2(Σ)

+ ‖∇𝜉‖2
𝐿2(Ω−

𝑡 )
+ ‖(𝑊2,D𝑥′𝜉)‖2𝐿2(Σ𝑡)

≲𝐾,𝜀 ‖(𝒇,𝑊)‖2
𝐿2(Ω+

𝑡 )
+ ‖𝜓‖2

𝐿2(Σ𝑡)
.

Applying Grönwall’s and Poincaré’s inequalities to the last estimate yields

‖𝑊(𝑡)‖2
𝐿2(Ω+)

+ ‖𝜓(𝑡)‖2
𝐿2(Σ)

+ ‖(𝜉, ∇𝜉)‖2
𝐿2(Ω−

𝑡 )

+ ‖(𝑊2,D𝑥′𝜉)‖2𝐿2(Σ𝑡) ≲𝐾,𝜀 ‖𝒇‖2𝐿2(Ω+
𝑡 )
, (3.37)

which is the desired 𝜀-dependent 𝐿2 estimate for the regularization (3.33).
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VACUUM FREE BOUNDARY PROBLEMS IN IDEAL COMPRESSIBLE MHD 2103

3.2.3 𝐿2 estimate for the dual problem

We will apply the duality argument to show the existence of solutions of the regularized problem
(3.33). For the dual problem of (3.33), we pass to the back time 𝑡 ∶= 𝑇 − 𝑡 and obtain(

𝑨0𝜕𝑡 −

3∑
𝑖=1

𝑨𝑖𝜕𝑖 + 𝜀𝑱𝜕1 + 𝑨𝖳
4 −

3∑
𝑖=0

𝜕𝑖𝑨𝑖

)
𝑊∗ = 𝒇∗ in Ω+, (3.38a)

∇ ⋅ (�̊�∇𝜉∗) = 0 in Ω−, (3.38b)

𝜕𝑡𝑤
∗ − D𝑥′ ⋅ (�̊�

′𝑤∗) + �̊�1𝑤
∗ + ℎ̊′ ⋅ D𝑥′𝜉

∗ − �̊�2𝑊
∗
2 = 0 on Σ, (3.38c)

(�̊�∇𝜉∗)1 = D𝑥′ ⋅ (ℎ̊
′𝑊∗

2 ) + 𝜀Δ𝑥′𝜉
∗ on Σ, (3.38d)

𝑊∗
2 = 0 on Σ+, 𝜉∗ = 0 on Σ−, (𝑊∗, 𝜉∗)|𝑡<0 = 0, (3.38e)

with 𝑤∗ ∶= 𝑊∗
1
− 𝜀𝑊∗

2
, where we have dropped the tildes for convenience.

Taking the scalar product of (3.38a) with𝑊∗, we use (3.32) and (3.38e) to derive

∫Ω+
𝑨0𝑊

∗ ⋅𝑊∗ +
𝜀

2
‖𝑊∗

2‖2𝐿2(Σ𝑡) ≲𝐾,𝜀 ‖(𝒇∗,𝑊∗)‖2
𝐿2(Ω+

𝑡 )
+ ‖𝑤∗‖2

𝐿2(Σ𝑡)
. (3.39)

From (3.38b) and (3.38d)–(3.38e), we have

∫Ω−
𝑡

�̊�∇𝜉∗ ⋅∇𝜉∗ = ∫Σ𝑡 𝜉
∗(�̊�∇𝜉∗)1 = −∫Σ𝑡 𝑊

∗
2 ℎ̊

′ ⋅ D𝑥′𝜉
∗ − 𝜀 ∫Σ𝑡 |D𝑥′𝜉

∗|2,
which implies

‖∇𝜉∗‖2
𝐿2(Ω−

𝑡 )
+ ‖D𝑥′𝜉

∗‖2
𝐿2(Σ𝑡)

≲𝐾,𝜀 ‖𝑊∗
2‖2𝐿2(Σ𝑡). (3.40)

Moreover, multiplying the boundary condition (3.38c) by 𝑤∗ leads to

‖𝑤∗(𝑡)‖2
𝐿2(Σ)

≲𝐾 ‖(𝑤∗,𝑊∗
2 , D𝑥′𝜉

∗)‖2
𝐿2(Σ𝑡)

. (3.41)

In view of (3.39)–(3.41), we use Grönwall’s and Poincaré’s inequalities to deduce

‖𝑊∗(𝑡)‖2
𝐿2(Ω+)

+ ‖𝑤∗(𝑡)‖2
𝐿2(Σ)

+ ‖(𝜉∗, ∇𝜉∗)‖2
𝐿2(Ω−

𝑡 )

+ ‖(𝑊∗
2 , D𝑥′𝜉

∗)‖2
𝐿2(Σ𝑡)

≲𝐾,𝜀 ‖𝒇∗‖2
𝐿2(Ω+

𝑡 )
. (3.42)

With the 𝜀-dependent 𝐿2 estimates (3.37) and (3.42), we can deduce the existence of weak
solutions (𝑊, 𝜉) ∈ 𝐿2(Ω+

𝑇
) × 𝐿2(Ω−

𝑇
) to the regularization (3.33) for any small fixed parame-

ter 𝜀 ∈ (0, 1) by the standard duality argument in [8]. For the given source term 𝑊2|𝑥1=0 ∈
𝐿2(Σ𝑇) and zero initial data 𝜓|𝑡=0 = 0, we can derive that the Cauchy problem for the trans-
port equation (3.33c) for 𝜓 has a unique solution 𝜓 ∈ 𝐶([0, 𝑇], 𝐿2(𝕋2)). Therefore, for any small
and fixed parameter 𝜀 > 0, we obtain the existence of solutions (𝑊, 𝜉, 𝜓) ∈ 𝐿2(Ω+

𝑇
) × 𝐿2(Ω−

𝑇
) ×

𝐿2((−∞,𝑇]; 𝐿2(𝕋2)) to the regularized problem (3.33).
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2104 SECCHI et al.

3.3 Uniform-in-𝜺 estimates

Let us derive the uniform-in-𝜀 high-order energy estimates for the regularized problem (3.33) in
order to establish the existence of solutions for the linearized problem (3.28) by passing to the limit.
Apply the operator D𝛼

∗ (cf. (2.8)) with ⟨𝛼⟩ ∶= ∑3
𝑖=0 𝛼𝑖 + 2𝛼4 ⩽ 𝑚 to (3.33a) and take the scalar

product of the resulting equations with D𝛼
∗𝑊 to get (cf. [65, section 3.5])

∫Ω+
𝑨0D

𝛼
∗𝑊 ⋅ D𝛼

∗𝑊 + 𝜀‖D𝛼
∗𝑊2‖2𝐿2(Σ𝑡) ⩽ 𝛼(𝑡) + 𝐶(𝐾)1(𝑡), (3.43)

where

𝛼(𝑡) ∶= 2∫Σ𝑡 D
𝛼
∗𝑊1D

𝛼
∗𝑊2 + ∫Σ+𝑡

(
𝜀|D𝛼

∗𝑊2|2 − 2D𝛼
∗𝑊1D

𝛼
∗𝑊2

)
,

1(𝑡) ∶= ‖(𝒇,𝑊)‖2
𝐻𝑚
∗ (Ω+

𝑡 )
+ C̊𝑚+4‖(𝒇,𝑊)‖2

𝑊2,∞
∗ (Ω+

𝑡 )
(3.44)

with ‖𝑢‖
𝑊2,∞

∗ (Ω+
𝑡 )

∶=
∑⟨𝛼⟩⩽1 ‖D𝛼

∗𝑢‖𝑊1,∞(Ω+
𝑡 )
and

C̊𝑚 ∶= 1 + ‖�̊�‖𝐻𝑚
∗ (Ω+

𝑇
) + ‖ℎ̊‖𝐻𝑚(Ω−

𝑇
) + ‖�̊�‖𝐻𝑚(Σ𝑇)

.

As in [65, section 3.5], we can obtain∑
⟨𝛼⟩⩽𝑚, 𝛼1+𝛼4>0

(‖D𝛼
∗𝑊(𝑡)‖2

𝐿2(Ω+)
+ 𝜀‖D𝛼

∗𝑊2‖2𝐿2(Σ𝑡)) ≲𝐾 1(𝑡). (3.45)

Let us focus on the case of 𝛼1 = 𝛼4 = 0 so thatD𝛼
∗ = 𝜕

𝛼0
𝑡 𝜕

𝛼2
2
𝜕
𝛼3
3
and 𝛼0 + 𝛼2 + 𝛼3 ⩽ 𝑚. By virtue

of the boundary conditions (3.33f) and (3.33d), we infer

𝛼(𝑡) = 2∫Σ𝑡 D
𝛼
∗𝑊1D

𝛼
∗𝑊2 = ∫Σ𝑡 𝑄1 + ∫Σ𝑡 𝑄2 + ∫Σ𝑡 𝑄4 (3.46)

for 𝑄1 ∶= 2[D𝛼
∗ , ℎ̊

′ ⋅ D𝑥′]𝜉D
𝛼
∗𝑊2,𝑄2 ∶= 2ℎ̊′ ⋅ D𝑥′D

𝛼
∗𝜉D

𝛼
∗𝑊2,𝑄4 ∶= −2D𝛼

∗(�̊�2𝜓)D
𝛼
∗𝑊2. As in [65,

section 3.5], we have

∫Σ𝑡 𝑄1 ≲𝐾 𝝐
∑

⟨𝛽⟩⩽𝑚 ‖D𝛽
∗𝑊(𝑡)‖2

𝐿2(Ω+)
+ 𝐶(𝝐)1(𝑡) + 𝐶(𝝐)2(𝑡) (3.47)

for all 𝝐 > 0, where2(𝑡) is defined by

2(𝑡) ∶= ‖∇𝜉‖2
𝐻𝑚(Ω−

𝑡 )
+ C̊𝑚+4‖∇𝜉‖2𝐿∞(Ω−

𝑡 )
. (3.48)

It follows from (3.33c) that

∫Σ𝑡 𝑄4 = −2∫Σ𝑡 D
𝛼
∗

(
�̊�2𝜓

)
⋅
{
(𝜕𝑡 + �̊�′ ⋅ D𝑥′)D

𝛼
∗𝜓 + [D𝛼

∗ , �̊�
′ ⋅ D𝑥′]𝜓 + D𝛼

∗(�̊�1𝜓)
}
,
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VACUUM FREE BOUNDARY PROBLEMS IN IDEAL COMPRESSIBLE MHD 2105

which can be estimated as for the integrals(1)
𝛼 (𝑡) and(3)

𝛼 (𝑡)defined in [64, section 2.4]. Precisely,
we can get

∫Σ𝑡 𝑄4 ≲𝐾 ‖D𝛼
∗𝜓(𝑡)‖2𝐿2(Σ) +3(𝑡), (3.49)

where

3(𝑡) ∶= ‖𝜓‖2
𝐻𝑚(Σ𝑡)

+ C̊𝑚+4‖𝜓‖2𝐿∞(Σ𝑡)
. (3.50)

It remains to estimate the integral of 𝑄2 that can be decomposed as

𝑄2 = 2D𝑥′D
𝛼
∗𝜉 ⋅ D𝛼

∗𝜕𝑡(ℎ̊
′𝜓)

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
𝑄2𝑎

+ 2ℎ̊′ ⋅ D𝑥′D
𝛼
∗𝜉(�̊�

′ ⋅ D𝑥′)D
𝛼
∗𝜓

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑄2𝑏

+𝑄2𝑑 (3.51)

with 𝑄2𝑑 ∶= −2D𝑥′D
𝛼
∗𝜉 ⋅ [D𝛼

∗𝜕𝑡, ℎ̊
′]𝜓 + 2ℎ̊′ ⋅ D𝑥′D

𝛼
∗𝜉{[D

𝛼
∗ , �̊�

′ ⋅ D𝑥′]𝜓 + D𝛼
∗(�̊�1𝜓)}. Similar to [65,

(3.80)], we can deduce

∫Σ𝑡 𝑄2𝑎 + ∫Ω−
�̊� D𝛼

∗∇𝜉 ⋅ D𝛼
∗∇𝜉 + 𝜀‖D𝛼

∗D𝑥′𝜉(𝑡)‖2𝐿2(Σ) ≲𝐾 2(𝑡), (3.52)

where2(𝑡) is defined by (3.48). Moreover, we have

∫Σ𝑡 𝑄2𝑏 = 2∫Σ𝑡 �̊�
′ ⋅ D𝑥′D

𝛼
∗𝜉D

𝛼
∗(�̊�∇𝜉)1

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
3𝑎

−2𝜀 ∫Σ𝑡 �̊�
′ ⋅ D𝑥′D

𝛼
∗𝜉D

𝛼
∗Δ𝑥′𝜉

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
3𝑏

−2
∑
𝑖=2,3

∫Σ𝑡 �̊�
′ ⋅ D𝑥′D

𝛼
∗𝜉 [D

𝛼
∗𝜕𝑖, ℎ̊𝑖]𝜓

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
4

+∫Σ𝑡 c̊1D
𝛼
∗𝜓D

𝛼
∗D𝑥′𝜉

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
5

,

where c̊𝑚 denotes a generic and smooth matrix-valued function of {(D𝛼�̊�, D𝛼ℎ̊, D𝛼Ψ̊) ∶ |𝛼| ⩽ 𝑚}

andD𝛼 ∶= 𝜕
𝛼0
𝑡 𝜕

𝛼1
1
𝜕
𝛼2
2
𝜕
𝛼3
3
for𝛼 ∶= (𝛼0, … , 𝛼3) ∈ ℕ4. It follows from (3.33b) and integration by parts

that

3𝑎 = ∫Ω−
𝑡

c̊2∇D
𝛼
∗𝜉 ⋅

{
D𝛼
∗(c̊1∇𝜉) + [D𝑥′D

𝛼
∗ , c̊1]∇𝜉

}
≲𝐾 2(𝑡), (3.53)

where2(𝑡) is defined by (3.48). The integral 3𝑏 can be estimated as

3𝑏 = 2𝜀 ∫Σ𝑡 D𝑥′(�̊�
′ ⋅ D𝑥′)D

𝛼
∗𝜉 ⋅ D𝑥′D

𝛼
∗𝜉 ≲𝐾 𝜀‖D𝑥′𝜉‖2𝐻𝑚(Σ𝑡)

. (3.54)

A direct calculation shows

4 + 5 + ∫Σ𝑡 𝑄2𝑑 = ∫Σ𝑡 c̊1D
𝛼
∗𝜓D𝑥′D

𝛼
∗𝜉

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
1

+
∑

𝑖=0,2,3

∑
𝛽⩽𝛼, |𝛽|=1∫Σ𝑡 c̊1D

𝛼−𝛽
∗ 𝜕𝑖𝜓D𝑥′D

𝛼
∗𝜉

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
2

 14692120, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12913 by W

uhan U
niversity, W

iley O
nline L

ibrary on [03/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2106 SECCHI et al.

+
∑

0<𝛽⩽𝛼
∫Σ𝑡 c̊1D

𝛽
∗c̊1D

𝛼−𝛽
∗ 𝜓D𝑥′D

𝛼
∗𝜉

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
3

+
∑

𝑖=0,2,3

∑
𝛽⩽𝛼, |𝛽|>1∫Σ𝑡 c̊1D

𝛽
∗c̊0D

𝛼−𝛽
∗ 𝜕𝑖𝜓D𝑥′D

𝛼
∗𝜉

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
4

.

Utilize the trace theorem and the Moser-type calculus inequalities to obtain

3 ≲𝐾

∑
0<𝛽⩽𝛼

‖c̊1D𝛽
∗c̊1D

𝛼−𝛽
∗ 𝜓‖𝐻1(Σ𝑡)

‖D𝑥′D
𝛼
∗𝜉‖𝐻−1(Σ𝑡)

≲𝐾

∑
0<𝛽⩽𝛼

‖D𝛽
∗c̊1D

𝛼−𝛽
∗ 𝜓‖𝐻1(Σ𝑡)

‖D𝑥′𝜉‖𝐻𝑚(Ω−
𝑡 )

≲𝐾 2(𝑡) +3(𝑡), (3.55)

where2(𝑡) and3(𝑡) are defined by (3.48) and (3.50), respectively. The integral term 4 can be
estimated in an entirely similar way. The noncollinearity condition (3.9) is useful in controlling
the terms 1 and 2. More precisely, thanks to (3.9), we get from (3.30), (3.33e), and (3.33c) that

(𝜕𝑡𝜓, 𝜕2𝜓, 𝜕3𝜓) = c̊0𝐮 + c̊1𝜓 + 𝜀c̊0Δ𝑥′𝜉 on Σ𝑇, (3.56)

where 𝐮 ∶= (𝑊2,𝑊5, (�̊�∇𝜉)1)
𝖳. For 𝛼 > 0, we take 𝛼′ < 𝛼 with |𝛼′| = |𝛼| − 1 and use (3.56) to

deduce

1 = ∫Σ𝑡 c̊1D
𝛼′

∗ (c̊0𝐮)D𝑥′D
𝛼
∗𝜉

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
1𝑎

+∫Σ𝑡 c̊1D
𝛼′

∗ (c̊1𝜓)D𝑥′D
𝛼
∗𝜉

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
1𝑏

+1𝑐.

As ⟨𝛼′⟩ ⩽ 𝑚 − 1, the term 1𝑏 can be controlled as 3, and the term 1𝑐 is defined and estimated
as

1𝑐 ∶= 𝜀 ∫Σ𝑡 c̊1D
𝛼′

∗ (c̊0Δ𝑥′𝜉)D𝑥′D
𝛼
∗𝜉 ≲𝐾 𝜀‖D𝑥′𝜉‖2𝐻𝑚(Σ𝑡)

+2(𝑡). (3.57)

Passing to the volume integral for 1𝑎 yields

1𝑎 = ∫Ω−
𝑡

c̊2D
𝛼′

∗ (c̊0𝐮♯)D𝑥′D
𝛼
∗𝜉 + ∫Ω−

𝑡

c̊1𝜕1D
𝛼′

∗ (c̊0𝐮♯)D𝑥′D
𝛼
∗𝜉

+ ∫Ω−
𝑡

c̊2D
𝛼′

∗ (c̊0𝐮♯)𝜕1D
𝛼
∗𝜉 + ∫Ω−

𝑡

c̊1D𝑥′D
𝛼′

∗ (c̊0𝐮♯)𝜕1D
𝛼
∗𝜉,

where 𝐮♯(𝑡, 𝑥1, 𝑥
′) ∶= (𝑊2(𝑡, −𝑥1, 𝑥

′),𝑊5(𝑡, −𝑥1, 𝑥
′), (�̊�∇𝜉)1(𝑡, 𝑥1, 𝑥

′))𝖳. Using the identities
(3.29), (3.33b), and

⎛⎜⎜⎝
𝜕1𝑊2

𝜕1𝑊1 − 𝜀𝜕1𝑊2

0

⎞⎟⎟⎠ = 𝒇 − 𝑨4𝑊 −
∑

𝑖=0,2,3

𝑨𝑖𝜕𝑖𝑊 − 𝑨(0)
1
𝜕1𝑊, (3.58)

we infer

1𝑎 ≲𝐾 1(𝑡) +2(𝑡), (3.59)
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where1(𝑡) and2(𝑡) are given in (3.44) and (3.48), respectively. Combine the above estimates
to discover

‖D𝛼
∗𝑊(𝑡)‖2

𝐿2(Ω+)
+ ‖D𝛼

∗∇𝜉(𝑡)‖2𝐿2(Ω−)
+ 𝜀‖D𝛼

∗𝑊2‖2𝐿2(Σ𝑡) + 𝜀‖D𝛼
∗D𝑥′𝜉(𝑡)‖2𝐿2(Σ)

≲𝐾 𝐶(𝝐)(𝑡) + 𝜀‖D𝑥′𝜉‖2𝐻𝑚(Σ𝑡)
+ 𝝐

∑
⟨𝛽⟩⩽𝑚 ‖D𝛽

∗𝑊(𝑡)‖2
𝐿2(Ω+)

+ ‖D𝛼
∗𝜓(𝑡)‖2𝐿2(Σ) (3.60)

for 𝛼1 = 𝛼4 = 0, where (𝑡) ∶= 1(𝑡) +2(𝑡) +3(𝑡). If 𝛼1 = 𝛼4 = 0, then it follows from
(3.56), (3.33b), (3.29), and (3.58) that

‖D𝛼
∗𝜓(𝑡)‖2𝐿2(Σ) ≲𝐾 𝐶(𝝐)(𝑡) + 𝝐

∑
⟨𝛽⟩⩽𝑚 ‖D𝛽

∗𝑊(𝑡)‖2
𝐿2(Ω+)

+ 𝝐
∑

⟨𝛽⟩⩽𝑚 ‖D𝛽
∗∇𝜉(𝑡)‖2𝐿2(Ω−)

+ 𝜀2
∑
⟨𝛾⟩⩽𝑚 ‖D𝛾

∗D𝑥′𝜉(𝑡)‖2𝐿2(Σ) (3.61)

for all 𝝐 > 0, where 𝛾1 = 𝛾4 = 0. Thanks to (3.33b), by induction, we can infer∑
|𝛽|⩽𝑚 ‖D𝛽∇𝜉(𝑡)‖2

𝐿2(Ω−)
≲𝐾 2(𝑡) +

∑
⟨𝛼⟩⩽𝑚, 𝛼1=𝛼4=0

‖D𝛼
∗∇𝜉(𝑡)‖2𝐿2(Ω−)

. (3.62)

Using (3.45) and (3.60)–(3.62), we take 𝝐 and 𝜀 small enough to get

(𝑡) ≲𝐾 ∫
𝑡

0
(𝜏)d𝜏 +  (𝑡), (3.63)

where

(𝑡) ∶= ∑
⟨𝛼⟩⩽𝑚 ‖D𝛼

∗𝑊(𝑡)‖2
𝐿2(Ω+)

+
∑
|𝛽|⩽𝑚 ‖D𝛽∇𝜉(𝑡)‖2

𝐿2(Ω−)

+
∑

⟨𝛼⟩⩽𝑚, 𝛼1=𝛼4=0

‖D𝛼
∗𝜓(𝑡)‖2𝐿2(Σ) + 𝜀

∑
⟨𝛼⟩⩽𝑚, 𝛼1=𝛼4=0

‖D𝛼
∗D𝑥′𝜉(𝑡)‖2𝐿2(Σ),

 (𝑡) ∶= ‖𝒇‖2
𝐻𝑚
∗ (Ω+

𝑡 )
+ C̊𝑚+4

(‖(𝒇,𝑊)‖2
𝑊2,∞

∗ (Ω+
𝑡 )
+ ‖∇𝜉‖2

𝐿∞(Ω−
𝑡 )
+ ‖𝜓‖2

𝑊2,∞(Σ𝑡)

)
.

Applying Grönwall’s inequality to (3.63) and using Poincaré’s inequality imply

‖𝑊‖2
𝐻𝑚
∗ (Ω+

𝑇
)
+ ‖(𝜉, ∇𝜉)‖2

𝐻𝑚(Ω−
𝑇
)
+ ‖𝜓‖2

𝐻𝑚(Σ𝑇)
+ 𝜀‖D𝑥′𝜉‖2𝐻𝑚(Σ𝑇)

≲𝐾 ‖𝒇‖2
𝐻𝑚
∗ (Ω+

𝑇
)
+ ‖𝒇‖2

𝐻6
∗(Ω

+
𝑇
)

(‖�̊�‖𝐻𝑚+4
∗ (Ω+

𝑇
) + ‖ℎ̊‖𝐻𝑚+4(Ω−

𝑇
) + ‖�̊�‖𝐻𝑚+4(Σ𝑇)

)
(3.64)

for 0 ⩽ 𝑇 ⩽ 𝑇0 and𝑚 ⩾ 6, provided 𝜀 > 0 is sufficiently small.
The uniform-in-𝜀 high-order estimate (3.64) allows us to obtain the solvability of the problem

(3.28) by passing to the limit 𝜀 → 0. Indeed, according to (3.64), we can extract a subsequence
weakly convergent to (𝑊, 𝜉, 𝜓) ∈ 𝐻𝑚

∗ (Ω
+
𝑇
) × 𝐻𝑚(Ω−

𝑇
) × 𝐻𝑚(Σ𝑇) satisfying the estimate (3.64)

with 𝜀 = 0. As 𝜕1𝑊2 and
√
𝜀Δ𝑥′𝜉 are uniformly bounded in 𝐻𝑚−2

∗ (Ω+
𝑇
) and 𝐻𝑚−2(Σ𝑇), respec-

tively, the passage to the limit 𝜀 → 0 in (3.33) verifies that (𝑊, 𝜉, 𝜓) solves the reduced problem
(3.28). The uniqueness of solutions results from the estimate (3.64) with 𝜀 = 0. Then we can
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obtain for the effective linear problem (3.13) the existence and uniqueness of solutions (�̇�, ℎ̇, 𝜓) ∈
𝐻𝑚

∗ (Ω
+
𝑇
) × 𝐻𝑚(Ω−

𝑇
) × 𝐻𝑚(Σ𝑇) satisfying the high-order estimate:

‖�̇�‖𝐻𝑚
∗ (Ω+

𝑇
) + ‖ℎ̇‖𝐻𝑚(Ω−

𝑇
) + ‖𝜓‖𝐻𝑚(Σ𝑇)

≲𝐾

(‖�̊�‖𝐻𝑚+4
∗ (Ω+

𝑇
) + ‖ℎ̊‖𝐻𝑚+4(Ω−

𝑇
) + ‖�̊�‖𝐻𝑚+4(Σ𝑇)

)(‖𝑓+‖𝐻6
∗(Ω

+
𝑇
) + ‖𝑓−‖𝐻7(Ω−

𝑇
)

+‖g‖𝐻7×𝐻8

)
+ ‖𝑓+‖𝐻𝑚

∗ (Ω+
𝑇
) + ‖𝑓−‖𝐻𝑚+1(Ω−

𝑇
) + ‖g‖𝐻𝑚+1×𝐻𝑚+2 , (3.65)

where

‖g‖𝐻𝑚×𝐻𝑚+1 ∶= ‖(g1, g2)‖𝐻𝑚(Σ𝑇)
+ ‖g4‖𝐻𝑚(Σ+

𝑇
) + ‖g3‖𝐻𝑚+1(Σ𝑇)

+ ‖g5‖𝐻𝑚+1(Σ−
𝑇
).

Note that the inequality (3.65) is a tame estimate due to the fixed loss of regularity from the basic
state to the solution, which allows us to apply a suitable Nash–Moser iteration scheme to solve
the nonlinear problem (2.1); see [52, 63–65] for the part of the nonlinear analysis.
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