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Abstract

We consider the motion of two inviscid, compressible, and electrically con-
ducting fluids separated by an interface across which there is no fluid flow in the
presence of surface tension. The magnetic field is supposed to be nowhere tan-
gential to the interface. This leads to the characteristic free boundary problem for
contact discontinuities with surface tension in three-dimensional ideal compress-
ible magnetohydrodynamics (MHD). We prove the nonlinear structural stability of
MHD contact discontinuities with surface tension in Sobolev spaces by a modified
Nash–Moser iteration scheme. The main ingredient of our proof is deriving the
resolution and tame estimate of the linearized problem in usual Sobolev spaces of
sufficiently large regularity. In particular, for solving the linearized problem, we
introduce a suitable regularization that preserves the transport-type structure for
the linearized entropy and divergence of the magnetic field.
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1. Introduction

We are concerned with the evolution of a smooth interface �(t) between two
inviscid, compressible, and electrically conducting fluids that occupy the domains
�+(t) and�−(t) inR3 at time t ≥ 0. The fluidmotion is described by the equations
of ideal compressiblemagnetohydrodynamics (MHD) (seeLandau–Lifshitz [18,
§65])

∂tρ + ∇ · (ρv) = 0 in �±(t), (1.1a)

∂t (ρv) + ∇ · (ρv ⊗ v − H ⊗ H) + ∇q = 0 in �±(t), (1.1b)

∂t H − ∇ × (v × H) = 0 in �±(t), (1.1c)

∂t (ρE + 1
2 |H |2) + ∇ · (v(ρE + p) + H × (v × H)) = 0 in �±(t), (1.1d)

together with the divergence constraint

∇ · H = 0 in �±(t). (1.2)

Here the density ρ, fluid velocity v ∈ R
3, magnetic field H ∈ R

3, and pressure
p are unknown functions of the time t and spatial variable x = (x1, x2, x3). We
denote by q = p + 1

2 |H |2 the total pressure and by E = e + 1
2 |v|2 the specific total

energy, where e is the specific internal energy. The thermodynamic variables ρ, p,
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and e are related to the specific entropy S and the absolute temperature ϑ > 0 by
the Gibbs relation

ϑ dS = de + p d

(
1

ρ

)
.

The constitutive relations ρ = ρ(p, S) and e = e(p, S) render the system of
conservation laws (1.1) closed. Here and below, we denote by ∂t the time derivative
∂
∂t , by ∇ the spatial gradient (∂1, ∂2, ∂3)� with ∂i := ∂

∂xi
, and by u ⊗ w the tensor

product of vectors u, w ∈ R
3 with (i, j)-entry uiw j .

In the absence of surface tension, the assumption that there is nofluidflowacross
the moving interface allows one to consider two distinct types of characteristic
discontinuities in compressibleMHD[18, §71]: tangential discontinuities (or called
current-vortex sheets) for which the magnetic field is parallel to the interface, and
contact discontinuities for which the magnetic field intersects the interface.

Without magnetic fields, compressible current-vortex sheets are reduced to
compressible vortex sheets for the Euler equations in gas dynamics. Syrovatski
[32] and Fejer–Miles [14] showed by normal modes analysis that every com-
pressible vortex sheet in three dimensions is linearly unstable. This linear instabil-
ity is the analogue of the Kelvin–Helmholtz instability for incompressible fluids;
see, e.g., Chandrasekhar [4, Chapter 11]. The linear and nonlinear stability of
compressible current-vortex sheets in three-dimensional MHD was established in-
dependently by Trakhinin [33,34] and Chen–Wang [8,9] under some stability
condition. The results of [8,9,33,34] indicate that non-paralleled magnetic fields
can stabilize the motion of three-dimensional compressible vortex sheets.

RegardingMHD contact discontinuities,Morando et al. [22,23] recently ob-
tained the local-in-time existence of solutions for two-dimensional polytropic fluids
provided the Rayleigh–Taylor sign condition on the jump of the normal derivative
of the pressure holds at each point of the discontinuity front. We would expect
that the Rayleigh–Taylor sign condition implies the existence of MHD contact dis-
continuities also for the general three-dimensional case. However, it remains open
to confirm this expectation rigorously. Remark here that the approach in [22] for
deriving the basic energy estimate for the linearized problem cannot be directly
applied to the three-dimensional case due to the appearance of additional boundary
terms in energy integrals (see [22, §6] for more details).

Surface tension has been proved to suppress the instability of vortex sheets
in three dimensions by Ambrose–Masmoudi [3] for incompressible irrotational
flows, by Cheng et al. [11] and Shatah–Zeng [29,30] for incompressible rota-
tional flows, and by Stevens [31] for compressible flows. Numerical and experi-
mental studies of free-interfaceMHDflowswith surface tension have been provided
in Samulyak et al. [25] and the references therein. However, to the best of our
knowledge, there is no result currently available for the nonlinear fluid–fluid inter-
face problem with surface tension in ideal compressible MHD. The purpose of this
paper is to examine the stabilizing effect of surface tension on the dynamics of free
interfaces for ideal compressible conducting fluids, or more precisely, to establish
the nonlinear structural stability of MHD contact discontinuities with surface ten-
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sion in three dimensions without assuming the fulfillment of the Rayleigh–Taylor
sign condition.

For MHD contact discontinuities with surface tension, there is no flow across
the interface �(t) and the magnetic field is nowhere tangent to �(t). Let n and V
denote the unit normal vector pointing into �+(t) and the normal speed of �(t),
respectively. Taking into account the surface tension force on �(t) gives rise to the
boundary conditions

H± · n �= 0, [p] = sH, [H ] = 0, [v] = 0, V = v+ · n on �(t), (1.3)

where s > 0 is the constant coefficient of surface tension, H is twice the mean
curvature of �(t), given any function g we denote

g±(t, x) := lim
ε→0+ g(t, x ± εn(t, x)) for x ∈ �(t),

and the bracket [ · ] stands for the jump of the enclosed quantity across the interface,
that is, [g](t, x) := g+(t, x) − g−(t, x) at any point x ∈ �(t). A derivation of
the boundary conditions (1.3) can be found in Appendix A. We remark that the
second condition in (1.3) is the same as the Young–Laplace law for the pressure
discontinuity across static interfaces due to the presence of surface tension (see
Lautrup [17, §5.3]).

The problem (1.1)–(1.3) is a nonlinear hyperbolic problemwith the free bound-
ary�(t) being characteristic thanks to the last two conditions in (1.3). We consider
here nonisentropic fluids under the physical assumption that the sound speed is
positive, so that the equations (1.1) can become symmetric hyperbolic for smooth
solutions. It is worth mentioning that our constitutive relations are very general and
include the polytropic case studied in [22,23] as a special example. Moreover, we
assume that the interface �(t) has the form of a graph, allowing us to reformulate
the nonlinear problem (1.1)–(1.3) to that in a fixed domain by a simple lift of the
graph.

For the linearized problem around a certain basic state, we construct the unique
solution in the usual Sobolev space H1 via the duality argument. To this end, we
show the H1 a priori estimate for the linearized problem and introduce a suitable
ε–regularization that admits a unique solution satisfying a uniform-in-ε energy es-
timate in H1. More precisely, we first deduce the L2 estimates of solutions and their
tangential derivatives by making full use of the improved spatial regularity for the
interface due to surface tension. For general hyperbolic problems with characteris-
tic boundary, energy estimates exhibit a loss of control of normal derivatives and it
is natural to work in the anisotropic weighted Sobolev spaces (see Chen [10] and
Secchi [26]). Nevertheless, as in [22,23], we manage to compensate the missing
normal derivatives through the transport equations for the linearized entropy and
divergence of the magnetic field. But since our basic a priori estimate is closed in
H1 rather than in L2, the duality argument cannot be employed directly for solving
the linearized problem. To overcome this difficulty, we introduce a carefully cho-
sen ε–regularization that preserves the transport-type structure for the linearized
entropy and divergence of the magnetic field. Given any fixed and sufficiently small
parameter ε > 0, we can close the ε–dependent L2 a priori estimate for both the
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ε–regularization and its dual problem. This enables us to construct solutions of
the regularized problem in L2 by the duality argument. Then we build an energy
estimate in H1 uniformly in ε for the regularization in order to solve the linearized
problem by passing to the limit ε → 0.

For the linearized problem, we also prove the existence and uniqueness of
solutions in the Sobolev spaces Hm with m ≥ 3 based on the resolution in H1

and a high-order a priori energy estimate. The high-order energy estimate, which
follows by using the Moser-type calculus inequalities, is a so-called tame estimate,
since the loss of derivatives from the basic state to the solution is fixed. Finally we
establish the local-in-time existence of solutions to the nonlinear problem through
an appropriate iteration scheme of Nash–Moser type developed by Hörmander
[15] and Coulombel–Secchi [12]. We refer toAlinhac–Gérard [2] and Secchi
[27] for a general description of the Nash–Moser method.

The rest of this paper is organized as follows: in §2, we first introduce the free
boundary problem and an equivalent reformulation in a fixed domain for MHD
contact discontinuities with surface tension. Then we state the main result of this
paper, namely Theorem 2.1, and present the notation and Moser-type calculus
inequalities. In §3, after linearizing the problem around a certain basic state, we
prove the existence and uniqueness of the effective linear problem in the usual
Sobolev space H1. Section 4 deals with the tame estimate for the effective linear
problem in the usual Sobolev spaces Hm with m ≥ 3. In §5, we combine the
linear results in §§3–4 with a suitable modified Nash–Moser iteration scheme to
conclude the proof of the nonlinear stability of MHD contact discontinuities with
surface tension. Appendix A provides the jump conditions for free-interface ideal
compressible MHD with or without surface tension.

2. Nonlinear Problems and Main Result

In this section we first introduce the free boundary problem for MHD contact
discontinuities with surface tension and an equivalent reformulation in a fixed do-
main. Then we state the main result of this paper, namely Theorem 2.1. We also
present the notation and Moser-type calculus inequalities for later use.

2.1. Free boundary problem

We assume that the interface �(t) has the form of a graph:

�(t) := {x ∈ R
3 : x1 = ϕ(t, x ′)} with x ′ = (x2, x3).

Here the interface function ϕ is to be determined. Our main problem is to construct
MHD contact discontinuities with surface tension, that is, smooth solutions U± :=
(p±, v±, H±, S±)� of the equations (1.1)–(1.2) in �±(t) := {x ∈ R

3 : x1 ≷
ϕ(t, x ′)} satisfying the boundary conditions (1.3). Then

n = N

|N | for N :=
(

1
−Dx ′ϕ

)
with Dx ′ :=

(
∂2
∂3

)
, (2.1)
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which implies

V = ∂tϕ

|N | , H = H(ϕ) := Dx ′ ·
(

Dx ′ϕ√
1 + |Dx ′ϕ|2

)
. (2.2)

Hence the boundary conditions (1.3) become

H± · N �= 0 on �(t), (2.3)

[p] = sH(ϕ), [H ] = 0, [v] = 0, ∂tϕ = v+ · N on �(t). (2.4)

Clearly, there exist trivial contact-discontinuity solutions consisting of two constant
states separated by a flat surface as


U (x) :=
{ 
U+ := ( p̄, v̄, 
H ,
S+)� if x1 > 0,


U− := ( p̄, v̄, 
H ,
S−)� if x1 < 0,
(2.5)

where we require that v̄1 = 0, 
H1 �= 0, and 
S+ �= 
S− on account of the conditions
(2.3)–(2.4).

We consider very general, smooth constitutive relations ρ± = ρ±(p, S) and
e± = e±(p, S) for the two fluid phases in�±(t), respectively. We suppose that the
sound speeds a± := p±

ρ (ρ, S)1/2 are positive for all ρ ∈ (ρ∗, ρ∗), where ρ∗ and ρ∗
are some positive constants with ρ∗ < ρ∗. Then the equations (1.1) are equivalent
to the symmetric hyperbolic system

A±
0 (U±)∂tU

± +
3∑

i=1

A±
i (U±)∂iU

± = 0 in �±(t), (2.6)

for smooth solutions U± satisfying the hyperbolicity condition

ρ∗ < ρ±(p±, S±) < ρ∗, (2.7)

where

A±
0 (U ) := diag

( 1

ρ±a2±
, ρ±, ρ±, ρ±, 1, 1, 1, 1

)
, (2.8)

A±
i (U ) :=

⎛
⎜⎜⎜⎝

vi

ρ±a2±
e�

i 0 0

ei ρ±vi I3 ei ⊗ H − Hi I3 0
0 H ⊗ ei − Hi I3 vi I3 0
0 0 0 vi

⎞
⎟⎟⎟⎠ (2.9)

for U := (p, v, H, S)� and i = 1, 2, 3. Throughout this paper, we denote the
identity matrix of order m by Im and the standard basis of R3 by {e1 := (1, 0, 0)�,
e2 := (0, 1, 0)�, e3 := (0, 0, 1)�}.
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It follows from the last two conditions in (2.4) that

(
∂tϕ A±

0 (U±) −
3∑

i=1

Ni A±
i (U±)

)∣∣∣∣
�(t)

=

⎛
⎜⎜⎝

0 −N� 0 0
−N O3 H± · N I3 − N ⊗ H± 0
0 H± · N I3 − H± ⊗ N O3 0
0 0 0 0

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
�(t)

,

where Ni is the i-th component of the normal vector N (cf. (2.1)) and Om denotes
the zero matrix of order m. Taking into account the constraint (2.3), we calculate
that the boundary matrix for our problem,

(
∂tϕ A+

0 (U+) − ∑3
i=1 Ni A+

i (U+) 0
0 −∂tϕ A−

0 (U−) + ∑3
i=1 Ni A−

i (U−)

)
,

has six positive, six negative, and four zero eigenvalues on �(t). As a result, the
free boundary �(t) is characteristic, i.e., the boundary matrix is singular. Noting
that one boundary condition is necessary for determining the interface function ϕ,
we know from the well-posedness theory for hyperbolic problems that the correct
number of the boundary conditions is seven. Therefore, we have to take one of the
boundary conditions (2.4) as an initial constraint rather than as a real boundary
condition. It will turn out that the identity

[H ]∣∣
�(t) · N = 0 (2.10)

can be regarded as a constraint on the initial data. Then the boundary conditions
for our problem should consist of (2.3) and

[p] = sH(ϕ), [v] = 0, [H ] · τi = 0, ∂tϕ = v+ · N on �(t), (2.11)

for i = 1, 2, where the vectors τ1, τ2 are defined by

τ1 := (∂2ϕ, 1, 0)�, τ2 := (∂3ϕ, 0, 1)�. (2.12)

2.2. Reformulated problem in a fixed domain

Let us reformulate the free boundary problem for MHD contact discontinuities
with surface tension into an equivalent problem in a fixed domain. For this purpose,
we replace the unknowns U± by

U±
� (t, x) := U±(t, Φ±(t, x), x ′), (2.13)

respectively, where

Φ±(t, x) := ±x1 + χ(±x1)ϕ(t, x ′), (2.14)

with χ ∈ C∞
0 (R) satisfying χ ≡ 1 on [−1, 1] and ‖χ ′‖L∞(R) < 1.Wewill assume

without loss of generality that ‖ϕ0‖L∞(R2) ≤ 1
4 , so that the change of variables is



1098 Y. Trakhinin & T. Wang

admissible on sufficiently short time interval [0, T ]. Here we introduce the cut-off
function χ as in [20,34–37] to avoid the assumption that the initial perturbations
have compact support.

The nonlinear stability of MHD contact discontinuities with surface tension
amounts to constructing smooth solutions U±

� in the half-space � := {x ∈ R
3 :

x1 > 0} of the initial-boundary value problem

L±(U±, Φ±) := L±(U±, Φ±)U± = 0 in �, (2.15a)

B(U+, U−, ϕ) :=

⎛
⎜⎜⎜⎜⎝

[p] − sH(ϕ)

[v]
[H ] · τ1
[H ] · τ2

∂tϕ − v+ · N

⎞
⎟⎟⎟⎟⎠ = 0 on �, (2.15b)

(U+, U−, ϕ) = (U+
0 , U−

0 , ϕ0) if t = 0, (2.15c)

where we drop the subscript “�" for notational simplicity, � := {x ∈ R
3 : x1 = 0}

denotes the boundary, and

L±(U, Φ) := A±
0 (U )∂t + Ã±

1 (U, Φ)∂1 + A±
2 (U )∂2 + A±

3 (U )∂3 (2.16)

with

Ã±
1 (U, Φ) := 1

∂1Φ

(
A±
1 (U ) − ∂tΦ A±

0 (U ) − ∂2Φ A±
2 (U ) − ∂3Φ A±

3 (U )
)
.

(2.17)

Recall that the vectors τ1, τ2 and the matrices A±
0 , . . . , A±

3 are given in (2.12) and
(2.8)–(2.9), respectively. According to (2.3), we assume that

|H± · N | ≥ κ > 0 on � (2.18)

for some positive constant κ . In the new variables, the equation (1.2) and the jump
condition (2.10) are reduced to

∇Φ± · H± = 0 in �, (2.19)

[H ] · N = 0 on �, (2.20)

where

∇Φ := (∂Φ
1 , ∂Φ

2 , ∂Φ
3 )� (2.21)

with

∂Φ
t := ∂t − ∂tΦ

∂1Φ
∂1, ∂Φ

1 := 1

∂1Φ
∂1, ∂Φ

i := ∂i − ∂iΦ

∂1Φ
∂1 for i = 2, 3. (2.22)

As in [34, Appendix A], we can show that the identities (2.19)–(2.20) hold for any
t > 0 provided they are satisfied at the initial time.
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2.3. Main result

We are now ready to state the main result of this paper.

Theorem 2.1. Let m ≥ 12 be an integer. Suppose that the initial data (2.15c) satisfy
the requirements (2.18)–(2.20) and the hyperbolicity condition

ρ∗ < inf
�

ρ±(U±
0 ) ≤ sup

�

ρ±(U±
0 ) < ρ∗. (2.23)

Suppose further that (U±
0 − 
U±, ϕ0) belong to Hm+3/2(�) × Hm+2(R2) for the

constant states 
U± defined in (2.5) and the initial data are compatible up to order m
(see Definition 5.1). Then there is a sufficiently small T > 0, such that the problem
(2.15) has a unique solution (U+, U−, ϕ) on the time interval [0, T ] satisfying

U± − 
U± ∈ Hm−6([0, T ] × �), (ϕ,Dx ′ϕ) ∈ Hm−6([0, T ] × R
2).

Remark 2.1. Since the relations ∂1Φ
+ ≥ 1

4 and ∂1Φ
− ≤ − 1

4 hold in [0, T ]×� for
T > 0 sufficiently small, we can obtain from Theorem 2.1 a corresponding result
for MHD contact discontinuities with surface tension in the original variables.

Remark 2.2. The proof of Theorem 2.1 is based on the tame energy estimate (4.1)
that exhibits a loss of two derivatives from the basic state to the solution. It will
be interesting to see whether the loss of regularity in Theorem 2.1 can be reduced
through a direct nonlinear energy method, which has been employed by Stevens
[31] on compressible vortex sheets with surface tension.

2.4. Notation and Moser-type calculus inequalities

Throughout this paper we adopt the following notation:

(i) We write the letter C for some universal positive constant, and C(·) for some
generic positive constant depending on the quantities listed in the parenthesis.
The symbol A � B means that A ≤ C B. Given some parameters a1, . . . , am ,
we use A �a1,...,am B to denote the statement that A ≤ C(a1, . . . , am)B. The
notation A ∼ B means that A � B � A.

(ii) The symbol� stands for the half-space {x ∈ R
3 : x1 > 0}. The boundary� :=

{x ∈ R
3 : x1 = 0} can be identified to R

2. We introduce �t := (−∞, t) × �

and �t := (−∞, t) × �. Let us denote by ∂t (or ∂0) the time derivative ∂
∂t and

by ∂i the space derivative ∂
∂xi

. We define ∇ := (∂1, ∂2, ∂3)
� and x ′ := (x2, x3).

(iii) For any α = (α1, . . . , αn) ∈ N
n and u = (u1, . . . , un) ∈ R

n , we introduce

α! := α1! · · ·αn !, |α| := α1 + · · · + αn, uα := uα1
1 · · · uαn

n ,

Du :=
(

∂

∂u1
, . . . ,

∂

∂un

)�
, Dα

u :=
(

∂

∂u1

)α1

· · ·
(

∂

∂un

)αn

.

In particular, Dx ′ := (∂2, ∂3)
� and Dα

x ′ := ∂
α2
2 ∂

α3
3 for α := (α2, α3) ∈ N

2. If
m ≥ 2 is an integer, then we denote by

Dm
x ′ := (∂m

2 , ∂m−1
2 ∂3, . . . , ∂2∂

m−1
3 , ∂m

3 )�

the vector of all partial derivatives in x ′ of order m.
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(iv) To simplify the notation, we write

Dtan := D(t,x ′) = (∂t , ∂2, ∂3)
�, Dβ

tan := Dβ

(t,x ′) = ∂
β0
t ∂

β2
2 ∂

β3
3 ,

D := D(t,x) = (∂t , ∂1, ∂2, ∂3)
�, Dα := Dα

(t,x) = ∂
α0
t ∂

α1
1 ∂

α2
2 ∂

α3
3 ,

where β = (β0, β2, β3) ∈ N
3 and α = (α0, α1, α2, α3) ∈ N

4. Given any
integer m ≥ 0, we define

|||u|||2tan, m :=
∑

|β|≤m

‖Dβ
tanu‖2L2(�)

, |||u|||2m :=
∑

|α|≤m

‖Dαu‖2L2(�)
. (2.24)

(v) For any integer m ≥ 0, a generic and smooth matrix-valued function of {(Dα V̊ ,

DαΨ̊ ,DαDx ′Ψ̊ ) : |α| ≤ m}, is denoted by c̊m , and by c̊m if it vanishes at the
origin. The exact forms of c̊m and c̊m may change at each occurrence.

The following Moser-type calculus inequalities will be frequently employed in
our calculations. We refer the reader to [7, Lemma 4.3] and the references therein
for the detailed proof.

Lemma 2.1. Let n, d, m ∈ N+. Suppose that u = u(y) ∈ R
n and w = w(y) ∈ R

are defined on O, where O ⊂ R
d is any open set with Lipschitz boundary. Let

h ∈ C∞(Rn) and α, β, γ ∈ N
d with |α + β + γ | ≤ m.

• If h(0) = 0 and u ∈ L∞(O) ∩ Hm(O), then

‖h(u)‖Hm (O) �C0 ‖u‖Hm (O). (2.25)

• If u, w ∈ L∞(O) ∩ Hm(O), then

‖Dα
y uDβ

y w‖L2(O) + ‖uw‖Hm (O)

� ‖u‖Hm (O)‖w‖L∞(O) + ‖u‖L∞(O)‖w‖Hm (O), (2.26)

‖Dα
y h(u)Dβ

y w‖L2(O) + ‖h(u)w‖Hm (O) + ‖Dα
y [Dβ

y , h(u)]Dγ
y w‖L2(O)

�C0 ‖u‖Hm (O)‖w‖L∞(O) + ‖w‖Hm (O). (2.27)

• If w ∈ L∞(O) ∩ Hm−1(O) and u ∈ W 1,∞(O) ∩ Hm(O), then

‖Dα
y [Dβ

y , h(u)]Dγ
y w‖L2(O) �C1 ‖u‖Hm (O)‖w‖L∞(O) + ‖w‖Hm−1(O).

(2.28)

Here C0 ≥ ‖u‖L∞(O) and C1 ≥ ‖u‖W 1,∞(O) are some constants, and [a, b]c :=
a(bc) − b(ac) denotes the commutator.

3. Unique Solvability of the Linearized Problem

In this section, we perform the linearization of (2.15) and prove the well-
posedness in the Sobolev space H1 for the linearized problem.
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3.1. Linearization

Let the basic state (Ů (t, x), ϕ̊(t, x ′)) be a given and sufficiently smooth vector-
valued function with Ů := (Ů+, Ů−)� and Ů± := ( p̊±, v̊±, H̊±, S̊±)�. Suppose
that the basic state satisfies the hyperbolicity condition

ρ∗ < inf
�T

ρ±(Ů±) ≤ sup
�T

ρ±(Ů±) < ρ∗ for �T := (−∞, T ) × �, (3.1)

the “relaxed” requirement of (2.18),

|H̊± · N̊ | ≥ κ

2
> 0 on �T := (−∞, T ) × �, (3.2)

and the last six conditions in (2.15b) together with the constraint (2.20),

[v̊] = 0, [H̊ ] = 0, ∂t ϕ̊ = v̊+ · N̊ on �T , (3.3)

where N̊ := (1,−∂2ϕ̊,−∂3ϕ̊)�. Moreover, we suppose that

‖V̊ ‖H5(�T ) + ‖(ϕ̊,Dx ′ ϕ̊)‖H5(�T ) ≤ K for V̊ := (V̊ +, V̊ −)�, (3.4)

where K > 0 is some constant and V̊ ± := Ů± − 
U± denote the perturbations from
the constant states 
U± (cf. (2.5)). It follows from the embedding theorem and the
assumption (3.4) that ‖V̊ ‖W 2,∞(�T ) + ‖(ϕ̊,Dx ′ ϕ̊)‖W 3,∞(�T ) � K . Let us define

Φ̊±(t, x) := ±x1 + Ψ̊ ±(t, x), Ψ̊ ±(t, x) := χ(±x1)ϕ̊(t, x ′).

Without loss of generality we assume that ‖ϕ̊‖L∞(�T ) ≤ 1
2 , leading to ∂1Φ̊

+ ≥ 1
2

and ∂1Φ̊
− ≤ − 1

2 in �T . Use the properties of the cut-off function χ to find that

‖(Ψ̊ ,Dx ′Ψ̊ )‖Hm (�T ) ∼ ‖(ϕ̊,Dx ′ ϕ̊)‖Hm (�T ),

‖(Ψ̊ ,Dx ′Ψ̊ )‖W m,∞(�T ) ∼ ‖(ϕ̊,Dx ′ ϕ̊)‖W m,∞(�T ),

for m ∈ N and Ψ̊ := (Ψ̊ +, Ψ̊ −)�. As a result, we obtain

‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖H5(�T ) + ‖V̊ ‖W 2,∞(�T ) + ‖(Ψ̊ ,Dx ′Ψ̊ )‖W 3,∞(�T ) � K . (3.5)

The linearized operators for (2.15a)–(2.15b) around the basic state (Ů , ϕ̊) are
defined by

⎧⎪⎪⎨
⎪⎪⎩
L

′±
(
Ů±, Φ̊±)

(V ±, Ψ ±) := d

dθ
L±

(
Ů± + θV ±, Φ̊± + θΨ ±)∣∣∣∣

θ=0
,

B
′(Ů , ϕ̊

)
(V, ψ) := d

dθ
B(Ů+ + θV +, Ů− + θV −, ϕ̊ + θψ)

∣∣∣∣
θ=0

,

(3.6)

where V := (V +, V −)�. Applying the “good unknown” of Alinhac [1],

V̇ :=
(

V̇ +
V̇ −

)
with V̇ ± := V ± − Ψ ±

∂1Φ̊± ∂1Ů±, (3.7)
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we can simplify the linearized interior operators as

L
′±
(
Ů±, Φ̊±)

(V ±, Ψ ±) = L
′
e±

(
Ů±, Φ̊±)

V ± − L±(Ů±, Φ̊±)Ψ ± ∂1Ů±

∂1Φ̊± (3.8)

= L
′
e±

(
Ů±, Φ̊±)

V̇ ± + Ψ ±

∂1Φ̊± ∂1L±(Ů±, Φ̊±) (3.9)

with

L
′
e±

(
U, Φ

)
V := L±

(
U, Φ

)
V + C±(U, Φ)V, (3.10)

where L±(U, Φ) are the differential operators given in (2.16) and C±(U, Φ)

are the zero-th order operators defined by

C±(U, Φ)V :=
8∑

k=1

Vk

(
∂ A±

0

∂Uk
(U )∂tU + ∂ Ã±

1

∂Uk
(U, Φ)∂1U +

∑
i=2,3

∂ A±
i

∂Uk
(U )∂iU

)
.

It is worth pointing out that C±(U, Φ) are smooth matrix-valued functions of
(U,DU,DΦ)withD := (∂t , ∂1, ∂2, ∂3)

�. The good unknown (3.7) is introduced to
overcome the potential difficulty arising from the presence of the first-order terms
in Ψ ±; cf. (3.8)–(3.9).

Using the constraint [H̊1] = 0, we compute (cf. [37, Section 2.1])

B
′(Ů , ϕ̊

)
(V, ψ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

[p] − sDx ′ ·
(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)

[v]
[H ] · τ̊1
[H ] · τ̊2

(∂t + v̊+
2 ∂2 + v̊+

3 ∂3)ψ − v+ · N̊

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.11)

where τ̊1 := (∂2ϕ̊, 1, 0)� and τ̊2 := (∂3ϕ̊, 0, 1)�. Plug (3.7) into (3.11) to get

B
′(Ů , ϕ̊)(V, ψ) = B

′
e(Ů , ϕ̊)(V̇ , ψ), (3.12)

where

B
′
e(Ů , ϕ̊)(V̇ , ψ) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

[ ṗ] − å1ψ − sDx ′ ·
(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)

[v̇] + ψ(∂1v̊
+ + ∂1v̊

−)

[Ḣ ] · τ̊1 − å5ψ
[Ḣ ] · τ̊2 − å6ψ

(∂t + v̊+
2 ∂2 + v̊+

3 ∂3)ψ − v̇+ · N̊ + å7ψ

⎞
⎟⎟⎟⎟⎟⎟⎠
(3.13)

with {
å1 := −∂1 p̊+ − ∂1 p̊−, å5 := −τ̊1 · (∂1 H̊+ + ∂1 H̊−),

å7 := −∂1v̊
+ · N̊ , å6 := −τ̊2 · (∂1 H̊+ + ∂1 H̊−).

(3.14)
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In light of the nonlinear analysis in [6,12,34–37], we neglect the last terms in
(3.9) to consider the effective linear problem

L
′
e±

(
Ů±, Φ̊±)

V̇ ± = f ± in �, (3.15a)

B
′
e(Ů , ϕ̊)(V̇ , ψ) = g on �, (3.15b)

(V̇ , ψ) = 0 if t < 0, (3.15c)

where the operators L′
e± are defined by (3.10). The well-posedness result in H1 for

the effective linear problem (3.15) is stated in the following theorem.

Theorem 3.1. Let the basic state (Ů , ϕ̊) satisfy (3.1)–(3.4). Then for all f ± ∈
H1(�T ) and g ∈ H3/2(�T ) that vanish in the past, the problem (3.15) admits a
unique solution (V̇ , ψ) ∈ H1(�T ) × H1(�T ), such that

‖V̇ ‖H1(�T ) + ‖(ψ,Dx ′ψ)‖H1(�T )

≤ C(K , κ, T )
(‖( f +, f −)‖H1(�T ) + ‖g‖H3/2(�T )

)
(3.16)

for some positive constant C(K , κ, T ) independent of f ± and g.

The rest of this section is dedicated to the proof of Theorem 3.1.

3.2. Reductions

It is more convenient to reduce the linearized problem (3.15) into the case
with homogeneous boundary conditions. More precisely, if the source term g =
(g1, . . . , g7)� vanishes in the past and belongs to Hm+1/2(�T ) for some m ∈ N,
then we can define V ±

� := (p±
� , v±

� , H±
� , 0)� ∈ Hm+1(�T ) by

{
p+
� := RT g1, v+

� := −RT (g7, 0, 0)
�, H+

� := RT (0, g5, g6)
�,

p−
� := 0, v−

� := −RT (g2 + g7, g3, g4)
�, H−

� := (0, 0, 0)�

where RT denotes the extension operator that is continuous from Hk+1/2(�T ) to
Hk+1(�T ) and satisfies

(RT w)|�T = w, ‖RT w‖Hk+1(�T ) � ‖w‖Hk+1/2(�T ), (3.17)

for all k = 0, . . . , m. Then the Hm+1(�T )-function V� := (V +
� , V −

� )� vanishes
in the past and satisfies{

B
′
e(Ů , ϕ̊)(V�, 0) = g on �T ,

‖V�‖Hk+1(�T ) � ‖g‖Hk+1/2(�T ) for k = 0, . . . , m.
(3.18)

Consequently, the new unknowns V ±
� := V̇ ± − V ±

� solve the following problem
with zero boundary source term:

L
′
e±(Ů±, Φ̊±)V ± = f ± − L

′
e±(Ů±, Φ̊±)V ±

� in �, (3.19a)

B
′
e(Ů , ϕ̊)(V, ψ) = 0 on �, (3.19b)

(V, ψ) = 0 if t < 0. (3.19c)
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Here the subscript “�” has been dropped to simplify the notation.
Moreover, to distinguish the noncharacteristic variables from others for the

problem (3.19), we shall introduce the vectors

W ± := (
p±, v± · N̊±, v±

2 , v±
3 , H± · τ̊±

1 , H± · τ̊±
2 , H± · N̊±, S±)�

,

where

N̊± := (1,−∂2Φ̊
±,−∂3Φ̊

±)�, τ̊±
1 := (∂2Φ̊

±, 1, 0)�, τ̊±
2 := (∂3Φ̊

±, 0, 1)�.

Equivalently, we set

W ± := J̊−1± V ± with J̊± := diag (1, J̊ v±, J̊ H± , 1), (3.20)

where

J̊ v± :=
⎛
⎝1 ∂2Φ̊

± ∂3Φ̊
±

0 1 0
0 0 1

⎞
⎠ ,

J̊ H± := 1

|N̊±|2

⎛
⎝ ∂2Φ̊

± ∂3Φ̊
± 1

1 + (∂3Φ̊
±)2 −∂2Φ̊

±∂3Φ̊
± −∂2Φ̊

±
−∂2Φ̊

±∂3Φ̊
± 1 + (∂2Φ̊

±)2 −∂3Φ̊
±

⎞
⎠ . (3.21)

We remark that thematrices J̊ v±, J̊ H± , and J̊± are all invertible and smooth inDx ′Ψ̊ ±.
Hence the problem (3.19) can be rewritten equivalently as

L±W ± :=
3∑

i=0

A±
i ∂i W ± + A±

4 W ± = f± in �T , (3.22a)

[W1] = sDx ′ ·
(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)
+ å1ψ on �T , (3.22b)

[Wi ] = åiψ for i = 2, . . . , 6, on �T , (3.22c)

W +
2 = B̊ψ := (∂t + v̊+

2 ∂2 + v̊+
3 ∂3)ψ + å7ψ on �T , (3.22d)

(W, ψ) = 0 if t < 0, (3.22e)

where ∂0 := ∂
∂t denotes the time derivative, W := (W +, W −)�, the terms å1, å5,

å6, å7 are defined by (3.14), and⎧⎪⎪⎨
⎪⎪⎩

A±
1 := J̊�± Ã±

1 (Ů±, Φ̊±) J̊±, A±
i := J̊�± A±

i (Ů±) J̊± for i = 0, 2, 3,

A±
4 := J̊�± L

′
e±(Ů±, Φ̊±) J̊±, f± := J̊�±

(
f ± − L

′
e±(Ů±, Φ̊±)V ±

�

)
,

å2 := −N̊ · (∂1v̊
+ + ∂1v̊

−), åk+1 := −∂1v̊
+
k − ∂1v̊

−
k for k = 2, 3.

(3.23)

It is worth pointing out that the scalars å1, . . . , å7 are smooth functions of the
traces (DV̊ ,Dx ′Ψ̊ )|�T and the matrices A±

0 , . . . , A±
4 are smooth functions of

(V̊ ,DV̊ ,DΨ̊ ,DDx ′Ψ̊ ). It should be emphasized that the system (3.22a) is still
symmetric hyperbolic.
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It follows from the identities (3.3) and ∂1Φ̊
±|�T = ±1 that

Ã±
1 (Ů±, Φ̊±) = ±

⎛
⎜⎜⎝
0 N̊� 0 0
N̊ O3 N̊ ⊗ H̊± − H̊±

N I3 0
0 H̊± ⊗ N̊ − H̊±

N I3 O3 0
0 0 0 0

⎞
⎟⎟⎠ on �T ,

where H̊±
N := H̊± · N̊±. Then we obtain the decomposition

A±
1 = A±

(0) + A±
(1), A±

(0)

∣∣
�T

= 0, (3.24)

where

A±
(1) := ±

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
1 0 0 0 H̊±

2 H̊±
3 0 0

0 0 0 0 −H̊±
N 0 0 0

0 0 0 0 0 −H̊±
N 0 0

0 H̊±
2 −H̊±

N 0 0 0 0 0
0 H̊±

3 0 −H̊±
N 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.25)

According to the kernels of the matrices A±
1 |�T , we use

W ±
nc := (W ±

1 , . . . , W ±
6 )� and W ±

c := (W ±
7 , W ±

8 )� (3.26)

to denote thenoncharacteristic and characteristic variables, respectively.Thebound-
ary matrix for the hyperbolic problem (3.22), diag (−A+

1 , −A−
1 ), has six negative

eigenvalues (“incoming characteristics”) on the boundary�T . As discussed before,
the correct number of boundary conditions is seven, just the case in (3.22b)–(3.22d).
Moreover, for our hyperbolic problem (3.22), the boundary is characteristic of con-
stant multiplicity and the maximality condition is satisfied in the sense of Rauch
[24, Definition 2 and condition (11)].

3.3. H1 a priori estimate

In this subsection, we shall deduce the a priori estimate in H1 for solutions W
of the reduced problem (3.22).

3.3.1. L2 estimate of W Let us first make the L2 estimate of W . Since the
matrices A±

0 , . . . , A±
3 are all symmetric, we take the scalar product of (3.22a) with

W ± respectively and use (3.5) to get
∑
±

∫
�

A±
0 W ± · W ± dx +

∫
�t

Tb(W )

= 2
∑
±

∫
�t

W ± · ( f± − A±
4 W ±) +

∑
±

3∑
i=0

∫
�t

W ± · ∂i A
±
i W ±

�K ‖( f , W )‖2L2(�t )
, (3.27)
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where K > 0 denotes the upper bound in (3.4), f := ( f+, f−)�, and

Tb(U ) := −
∑
±

A±
1 U± · U± for any U = (U+, U−)� ∈ R

16. (3.28)

Utilize the decomposition (3.24)–(3.25), the identity [H̊ ]|�T = 0 (cf. (3.3)),
and the boundary conditions (3.22c)–(3.22d) to obtain

Tb(W ) = −2
[
W2

(
W1 + H̊2W5 + H̊3W6

) − H̊N
(
W3W5 + W4W6

)]
= −2[W1]W +

2 + [(W2, . . . , W6)]c̊0U
= −2[W1]B̊ψ + c̊1ψU on �T , (3.29)

where B̊ is the operator defined in (3.22d) and

U := (
W −

1 , W −
2 , W −

3 , W −
4 , W +

2 , W +
5 , W +

6

)� ∈ R
7. (3.30)

In all that follows, for any m ∈ N, we employ c̊m to denote a generic and smooth
matrix-valued function of {(Dα V̊ ,DαΨ̊ ,DαDx ′Ψ̊ ) : |α| ≤ m}. It follows from
(3.22b) that

−2[W1]B̊ψ = ∂t

{
s

( |Dx ′ψ |2
|N̊ | − |Dx ′ ϕ̊ · Dx ′ψ |2

|N̊ |3
)

− å1ψ
2
}

+ sc̊2Dx ′ψ ·
(

ψ

Dx ′ψ

)

+ c̊2ψ
2 +

∑
k=2,3

∂k

{
sv̊+

k

( |Dx ′ψ |2
|N̊ | − |Dx ′ ϕ̊ · Dx ′ψ |2

|N̊ |3
)

− å1v̊
+
k ψ2

}

− 2sDx ′ ·
{
B̊ψ

(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)}
on �T . (3.31)

Plugging (3.29) into (3.27), we use (3.31) and |N̊ |2 = 1 + |Dx ′ ϕ̊|2 to infer
∑
±

∫
�

A±
0 W ± · W ± dx +

∫
�

(
s
|Dx ′ψ |2

|N̊ |3 − å1ψ
2
)
dx ′

�K ‖( f , W )‖2L2(�t )
+ ‖ψU‖L1(�t )

+ ‖(ψ,Dx ′ψ)‖2L2(�t )
. (3.32)

Note from integration by parts and the condition (3.22e) that

‖Dα
x ′ψ(t)‖2L2(�)

= 2
∫

�t

Dα
x ′ψDα

x ′∂tψ � ‖(Dα
x ′ψ,Dα

x ′∂tψ)‖2L2(�t )
(3.33)

for any α ∈ N
2, where Dα

x ′ := ∂
α2
2 ∂

α3
3 for α = (α2, α3). Then we discover

‖W (t)‖2L2(�)
+ ‖(ψ,Dx ′ψ)(t)‖2L2(�)

�K ‖( f , W )‖2L2(�t )
+ ‖(ψ,Dx ′ψ, ∂tψ,U)‖2L2(�t )

.

Applying Grönwall’s inequality to the last estimate implies

‖W (t)‖2L2(�)
+ ‖(ψ,Dx ′ψ)(t)‖2L2(�)

�K ‖ f ‖2L2(�t )
+ ‖(∂tψ,U)‖2L2(�t )

.

(3.34)

We emphasize that neither the estimate (3.32) nor (3.34) for W is closed.
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3.3.2. L2 estimate of Dx ′ W We shall close the a priori estimate in H1. Let
� = 0, 2, 3. Apply the differential operator ∂� to (3.22a) and take the scalar product
of the resulting equations with ∂�W ± respectively to deduce

∑
±

∫
�

A±
0 ∂�W ± · ∂�W ± dx +

∫
�t

Tb(∂�W ) �K ‖( f , W )‖2H1(�t )
, (3.35)

where the operator Tb is defined by (3.28). Similar to (3.29), taking advantage of
the boundary conditions (3.22b)–(3.22d), we obtain∫

�t

Tb(∂�W ) = −2
∫

�t

∂�[W1]∂�W +
2 +

∫
�t

∂�(c̊1ψ)c̊0∂�U

= J� − 2
∫

�t

∂�(å1ψ)∂�W +
2 +

∫
�t

∂�(c̊1ψ)c̊0∂�U

= J� +
∫

�t

∂�(c̊1ψ)c̊0∂�U on �T , (3.36)

where U is the vector given by (3.30) and

J� := 2s
∫

�t

∂�

(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)
· Dx ′∂�B̊ψ. (3.37)

For � = 0, 2, 3, a lengthy but straightforward computation leads to

J� = J a
� + J b

� +
∑
|α|≤2

∫
�t

c̊2

(
Dα

x ′ψ
Dx ′∂tψ

)
·
(

Dx ′ψ
Dx ′∂�ψ

)
, (3.38)

with

J a
� := s

∫
�

( |Dx ′∂�ψ |2
|N̊ | − |Dx ′ ϕ̊ · Dx ′∂�ψ |2

|N̊ |3 + c̊1Dx ′ψ · Dx ′∂�ψ

)
dx ′

J b
� := 2s

∫
�t

∂�

(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)
· Dx ′∂�(å7ψ).

Utilizing Cauchy’s inequality and (3.33) with |α| = 1 yields

J a
� ≥ s

∫
�

|Dx ′∂�ψ |2
|N̊ |3 dx ′ − C(K )

∫
�

|Dx ′∂�ψ ||Dx ′ψ | dx ′

≥ s

2

∫
�

|Dx ′∂�ψ |2
|N̊ |3 dx ′ − C(K )‖(Dx ′ψ,Dx ′∂tψ)‖2L2(�t )

. (3.39)

To control the term J b
� , we shall use the following classical product estimate:

Lemma 3.1. Let the nonnegative real numbers s, s1, and s2 satisfy s1, s2 ≥ s and
s1 + s2 > s + 1. Then the product mapping (u, v) �→ uv is continuous from
Hs1(R2) × Hs2(R2) to Hs(R2) and satisfies

‖uv‖Hs (R2) � ‖u‖Hs1 (R2)‖v‖Hs2 (R2). (3.40)
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By virtue of (3.40) with s = s1 = 1 and s2 = 3
2 , we deduce

|J b
� | � ‖∂�(c̊0Dx ′ψ)‖2L2(�t )

+
∫ t

0
‖∂�(å7ψ)‖2H1(�)

dτ

�K ‖(Dx ′ψ,Dx ′∂�ψ)‖2L2(�t )

+
∫ t

0
‖(ψ, ∂�ψ)‖2H1(�)

‖(å7, ∂�å7)‖2H3/2(�)
dτ

�K ‖(ψ, ∂�ψ,Dx ′ψ,Dx ′∂�ψ)‖2L2(�t )
, (3.41)

where we have used

‖(å7, ∂�å7)(t)‖H3/2(�) � ‖c̊2(t)‖H3/2(�)

� ‖c̊2(t)‖H2(�) � ‖c̊2‖H3(�T ) ≤ C(K ) for 0 ≤ t ≤ T, (3.42)

following from the trace theorem, the Moser-type calculus inequality (2.25), and
the relation (3.5). Here and below, for any m ∈ N, we denote by c̊m a generic and
smooth matrix-valued function of {(Dα V̊ ,DαΨ̊ ,DαDx ′Ψ̊ ) : |α| ≤ m} vanishing
at the origin. Substitute (3.39) and (3.41) into (3.38) to obtain

J� ≥ s

2

∫
�

|Dx ′∂�ψ |2
|N̊ |3 dx ′ − C(K )

∑
|α|≤2

‖(Dα
x ′ψ, ∂�ψ,Dx ′∂tψ)‖2L2(�t )

(3.43)

for � = 0, 2, 3.
Regarding the last term in (3.36) for � = 2, 3, we make use of the estimates

(3.40) and (3.42) to derive

∣∣∣∣
∫

�t

∂�(c̊1ψ)c̊0∂�U
∣∣∣∣ �

∫ t

0
‖∂�(c̊1ψ)c̊0‖H1(�)‖∂�U‖H−1(�) dτ

�
∫ t

0
‖c̊2(ψ, ∂�ψ)‖H1(�)‖U‖L2(�) dτ

�
∫ t

0

(
1 + ‖c̊2‖H3/2(�)

) ‖(ψ, ∂�ψ)‖H1(�)‖U‖H1(�) dτ

�K

∑
|α|≤2

‖Dα
x ′ψ‖2L2(�t )

+ ‖W‖2H1(�t )
for � = 2, 3. (3.44)

Plugging (3.36) into (3.35) for � = 2, 3 and utilizing (3.43)–(3.44) imply

‖Dx ′ W (t)‖2L2(�)
+ ‖D2

x ′ψ(t)‖2L2(�)

�K ‖( f , W )‖2H1(�t )
+

∑
|α|≤2

‖(Dα
x ′ψ,Dx ′∂tψ)‖2L2(�t )

, (3.45)

where Dm
x ′ := (∂m

2 , ∂m−1
2 ∂3, . . . , ∂2∂

m−1
3 , ∂m

3 )� for any integer m ≥ 2.
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3.3.3. L2 estimate of ∂t W It follows from (3.36) that∫
�t

Tb(∂t W ) = J0 +
∫

�t

c̊1∂tψ∂tU
︸ ︷︷ ︸

I1

+
∫

�t

c̊2ψ∂tU
︸ ︷︷ ︸

I2

, (3.46)

where J0 and U are defined by (3.37) and (3.30), respectively.
For the integral term I1, we use (3.22d) to deduce

I1 =
∫

�t

c̊1∂tUW +
2︸ ︷︷ ︸

Ia
1

−
∫

�t

c̊1∂tU(v̊+
2 ∂2ψ + v̊+

3 ∂3ψ + å7ψ)

︸ ︷︷ ︸
Ib
1

. (3.47)

Passing to the volume integral and applying integration by parts imply

Ia
1 = −

∫
�t

∂1(c̊1∂tUW +
2 )

= −
∫

�

c̊1∂1UW +
2 dx +

∫
�t

c̊2

(
U

∂1U

)
·
(

U
∂tU

)

≥ −ε‖∂1U(t)‖2L2(�)
− C(ε)C(K )‖U‖2H1(�t )

for all ε > 0, (3.48)

and

Ib
1 + I2 =

∫
�t

(ψ,Dx ′ψ)c̊2∂tU

=
∫

�

(ψ,Dx ′ψ)c̊2U dx ′ −
∫

�t

∂t
(
(ψ,Dx ′ψ)c̊2

)
U

≥ −‖U(t)‖2L2(�)
− ‖U‖2L2(�t )

− C
∑

i=0,1

∥∥∂ i
t

(
(ψ,Dx ′ψ)c̊2

)∥∥2
L2(�t )

.

(3.49)

In view of the product estimate (3.40) with s = 0, s1 = 1, and s2 = 1
2 , for the last

term in (3.49) we obtain
∥∥∂t

(
(ψ,Dx ′ψ)c̊2

)∥∥2
L2(�t )

�
∥∥(∂tψ,Dx ′∂tψ)c̊2

∥∥2
L2(�t )

+
∫ t

0

∥∥(ψ,Dx ′ψ)∂t c̊2
∥∥2

L2(�)
dτ

�K
∥∥(∂tψ,Dx ′∂tψ)

∥∥2
L2(�t )

+
∫ t

0

∥∥(ψ,Dx ′ψ)
∥∥2

H1(�)

∥∥∂t c̊2
∥∥2

H1/2(�)
dτ

�K
∥∥(∂tψ,Dx ′∂tψ

)∥∥2
L2(�t )

+
∑
|α|≤2

∥∥Dα
x ′ψ

∥∥2
L2(�t )

.

Substitute the last estimate into (3.49) to infer∣∣∣Ib
1 + I2

∣∣∣ �K

∑
|α|≤2

‖(U ,Dα
x ′ψ, ∂tψ,Dx ′∂tψ)‖2L2(�t )

+ ‖W (t)‖2L2(�)
. (3.50)
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Let us pass the last term in (3.50) to the volume integral to get

‖W (t)‖2L2(�)
� ε‖∂1W (t)‖2L2(�)

+ ε−1‖W (t)‖2L2(�)

� ε‖∂1W (t)‖2L2(�)
+ C(ε)‖W‖2H1(�t )

for all ε > 0. (3.51)

Plugging (3.46) into (3.35) with � = 0, we utilize (3.43), (3.47)–(3.48), and
(3.50)–(3.51) to derive

‖∂t W (t)‖2L2(�)
+ ‖(Dx ′∂tψ, W )(t)‖2L2(�)

�K C(ε)‖( f , W )‖2H1(�t )

+ε‖∂1W (t)‖2L2(�)
+

∑
|α|≤2

‖(Dα
x ′ψ, ∂tψ,Dx ′∂tψ, W )‖2L2(�t )

(3.52)

for all ε > 0.

3.3.4. L2 estimate of ∂1Wnc Let us estimate the normal derivatives of the non-
characteristic variables Wnc := (W +

nc, W −
nc)

� with W ±
nc given in (3.26). In light of

the assumption (3.2) and the continuity of the basic state (Ů , ϕ̊), we can find a
small constant 0 < δ < 1, which depends on κ and K , such that

|H̊±
N | ≥ κ

4
> 0 in �δ

T := (−∞, T ) × �δ, (3.53)

where �δ := {x ∈ R
3 : 0 < x1 < δ} denotes the δ-neighbourhood of the boundary

�. Then we can define the matrices

B± := ± 1

H̊±
N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 H̊±
N H̊±

2 H̊±
3 0 0 0 0

H̊±
N 0 0 0 0 0 0 0

H̊±
2 0 0 0 −1 0 0 0

H̊±
3 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in �δ
T . (3.54)

Thanks to the Eq. (3.22a) and the decomposition (3.24)–(3.25), we get
(
∂1W ±

nc, 0, 0
)�

= B±
(
f± − A±

4 W ± −
∑

�=0,2,3

A±
� ∂�W ± − A±

(0)∂1W ±
)

in �δ
T .(3.55)

It follows from (3.5) and the second identity in (3.24) that

sup
(t,x ′)∈(−∞,T )×R2

∣∣A±
(0)(t, x1, x ′)

∣∣ �K σ(x1) for all x1 ≥ 0, (3.56)

where σ = σ(x1) is an increasing C∞(R)-function satisfying

σ(x1) =
{

x1 if 0 ≤ x1 ≤ 1

2 if x1 ≥ 4.
(3.57)
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By virtue of (3.55)–(3.56), we obtain

‖∂1Wnc(t)‖L2(�δ) �K ‖(W,DtanW, σ∂1W, f )(t)‖L2(�), (3.58)

where Dtan := (∂t , ∂2, ∂3)
�. Since the weight σ vanishes on the boundary �T , we

apply the operator σ∂1 to (3.22a) and multiply the resulting equations with σ∂1W ±
to derive

‖σ∂1W (t)‖L2(�) �K ‖( f , W )‖H1(�t )
. (3.59)

Moreover, the weight σ is away from zero outside the boundary; more precisely,
σ(x1) ≥ δ > 0 for all x1 ≥ δ. Hence from the estimate (3.59) we infer

‖∂1W (t)‖L2(�\�δ) �K ‖( f , W )‖H1(�t )
, (3.60)

which, combined with (3.58)–(3.59), gives

‖∂1Wnc(t)‖2L2(�)
�K ‖(W,DtanW )(t)‖2L2(�)

+ ‖( f , W )‖2H1(�t )
. (3.61)

3.3.5. L2 estimate of ∂1Wc It remains to control the normal derivatives of the
characteristic variables Wc := (W +

c , W −
c )� with W ±

c given in (3.26).
Since the matrices C±(Ů±, Φ̊±) are smooth functions of (V̊ ,DV̊ ,DΨ̊ ), the

equations for W ±
8 = S± in (3.19a) read as (cf. (3.20) and (3.23))(

∂t + ẘ±
1 ∂1 + v̊±

2 ∂2 + v̊±
3 ∂3

)
W ±

8 = f±
8 + c̊1W in �T , (3.62)

where ẘ±
1 := (v̊± · N̊± − ∂t Φ̊

±)/∂1Φ̊
± satisfy

ẘ±
1 = 0 on �T , (3.63)

resulting from the assumption (3.3). Differentiate (3.62) with respect to x1 and use
the identity (3.63) to deduce that

‖∂1W ±
8 (t)‖2L2(�)

�K ‖( f , W )‖2H1(�t )
. (3.64)

In order to estimate the normal derivative of W ±
7 = H± · N̊±, we introduce the

linearized divergences of the magnetic fields, that is,

ξ± := ∇Φ̊± · H±, (3.65)

where the operators ∇Φ̊+
and ∇Φ̊−

are defined by (2.21)–(2.22). A direct compu-
tation shows

ξ± = 1

∂1Φ̊± ∂1W ±
7 +

∑
k=2,3

(
∂1∂kΦ̊

±

∂1Φ̊± H±
k + ∂k H±

k

)
. (3.66)

Hence it is sufficient to obtain the L2 estimate of ξ±. For this purpose, we write
down the equations for H±

j in (3.19a) as follows:

∂Φ̊±
t H±

j + v̊± · ∇Φ̊±
H±

j − H̊± · ∇Φ̊±
v±

j + H̊±
j ∇Φ̊± · v± = c̊1 f + c̊1W.
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Applying the operators ∂Φ̊±
j to the last equations respectively, we find

(
∂t + ẘ±

1 ∂1 + v̊±
2 ∂2 + v̊±

3 ∂3
)
ξ± = c̊1D f + c̊2 f + c̊1DW + c̊2W, (3.67)

which together with (3.63) leads to

‖ξ±(t)‖L2(�) �K ‖( f , W )‖H1(�t )
.

Combine the last estimate with (3.66) to deduce that

‖∂1W ±
7 (t)‖2L2(�)

�K ‖(W,DtanW )(t)‖2L2(�)
+ ‖( f , W )‖2H1(�t )

. (3.68)

3.3.6. Conclusion Taking a suitable linear combination of (3.34), (3.45), (3.52),
(3.61), (3.64), and (3.68), we choose ε > 0 sufficiently small to derive

‖(W,DW )(t)‖2L2(�)
+

∑
|α|≤2

‖(Dα
x ′ψ,Dx ′∂tψ, W )(t)‖2L2(�)

�K ‖( f , W )‖2H1(�t )
+

∑
|α|≤2

‖(Dα
x ′ψ, ∂tψ,Dx ′∂tψ, W )‖2L2(�t )

. (3.69)

Note from the boundary condition (3.22d) that

‖∂tψ‖L2(�t )
�K ‖(W +

2 , ψ,Dx ′ψ)‖L2(�t )
. (3.70)

Substitute (3.70) into (3.69) and utilize Grönwall’s inequality to obtain

‖(W,DW )(t)‖2L2(�)
+

∑
|α|≤2

‖(Dα
x ′ψ,Dx ′∂tψ, W )(t)‖2L2(�)

�K ‖ f ‖2H1(�t )
,

which combined with (3.70) implies the desired H1 estimate

‖W‖H1(�t )
+ ‖W‖L2(�t )

+ ‖(ψ,Dx ′ψ)‖H1(�t )
�K ‖ f ‖H1(�t )

(3.71)

for all 0 ≤ t ≤ T .

3.4. Well-posedness of the ε-regularization

For the linearized problem (3.22), we introduce the ε-regularization

L±
ε W ± := L±W ± − ε J±∂1W ± = f± in �T , (3.72a)

[W1] = sDx ′ ·
(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)
+ å1ψ on �T , (3.72b)

[Wi ] = åiψ for i = 2, . . . , 6, on �T , (3.72c)

W +
2 = (∂t + v̊+

2 ∂2 + v̊+
3 ∂3)ψ + å7ψ + ε(∂42 + ∂43 )ψ on �T , (3.72d)

(W, ψ) = 0 if t < 0, (3.72e)
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where ε > 0 denotes the small parameter,W := (W +, W −)�, the operatorsL± and
the scalars å1, . . . , å7 are given in (3.22a), (3.14), and (3.23). To derive a uniform-
in-ε estimate in H1 for solutions W of the problem (3.72), we design the following
symmetric matrices:

J+ := diag
(
0, 1, 0, 0, JH+ , 0

)
, J− := diag

(
1, 1, 1, 1, 0, 0, 0, 0

)
, (3.73)

where the matrix JH+ is related with J̊ H+ (cf. (3.21)) through

JH+ := ( J̊ H+ )� J̊ H+ = 1

|N̊+|2

⎛
⎝1 + (∂3Φ̊

+)2 −∂2Φ̊
+∂3Φ̊

+ 0
−∂2Φ̊

+∂3Φ̊
+ 1 + (∂2Φ̊

+)2 0
0 0 1

⎞
⎠ . (3.74)

It is important to point out that there is some ε0 > 0 depending on K , such that
if 0 < ε ≤ ε0, then the boundary matrix for the problem (3.72), i.e.,

diag
(
ε J+ − A+

1 , ε J− − A−
1

)
,

has six negative eigenvalues on the boundary �T . As analyzed for (3.22), the
hyperbolic problem (3.72) has a correct number of boundary conditions provided
0 < ε ≤ ε0.

In this subsection, we are going to deduce the ε-dependent L2 a priori estimates
for the regularized problem (3.72) and its dual problem (see §3.4.2) for any fixed
parameter ε ∈ (0, ε1) with ε1 ≤ ε0 small enough, which allows us to solve the
problem (3.72) in L2 by the duality argument.

3.4.1. L2 a priori estimate Take the scalar product of (3.72a) with W ± to obtain

∑
±

∫
�

A±
0 W ± · W ± dx +

∫
�t

T ε
b (W ) �K ‖( f , W )‖2L2(�t )

, (3.75)

where we denote

T ε
b (U ) :=

∑
±

(ε J± − A±
1 )U± · U± for any U := (U+, U−)� ∈ R

16. (3.76)

As for (3.29), we get from (3.73)–(3.74) and (3.72c)–(3.72d) that

T ε
b (W ) = ε

∑
±

J±W ± · W ± − 2[W1]W +
2 + [(W2, . . . , W6)]c̊0U

= ε|Ureg|2 − 2[W1]B̊ψ − 2ε
∑

k=2,3

[W1]∂4k ψ + c̊1ψU on �T , (3.77)

with B̊ and U given in (3.22d) and (3.30), where

Ureg := diag
(
1, 1, 1, 1, 1, J̊ H+

) ( U
W +

7

)
∈ R

8. (3.78)
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Since the matrix J̊ H+ is invertible and smooth in Dx ′Ψ̊ + (cf. (3.21)), we have

|U | + |W +
7 | �K |Ureg| �K |U | + |W +

7 |. (3.79)

For k = 2, 3, it follows from (3.72b) that

−
∫

�t

[W1]∂4k ψ = s

∫
�t

∂2k

(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)

· ∂2k Dx ′ψ −
∫

�t

å1ψ∂4k ψ

≥ s

∫
�t

|∂2k Dx ′ψ |2
|N̊ |3

−
∫

�t

∣∣∣[∂2k , c̊0]Dx ′ψ · ∂2k Dx ′ψ + ∂k(å1ψ)∂3k ψ

∣∣∣
≥ s

2

∫
�t

|∂2k Dx ′ψ |2
|N̊ |3 − C(K )

∑
|α|≤2

‖Dα
x ′ψ‖2L2(�t )

. (3.80)

Substituting (3.77) into (3.75), we utilize (3.31) and (3.79)–(3.80) to infer

‖W (t)‖2L2(�)
+ ‖Dx ′ψ(t)‖2L2(�)

+ ε
∑

k=2,3

‖(U , W +
7 , ∂2k Dx ′ψ)‖2L2(�t )

�K ‖( f , W )‖2L2(�t )
+ ‖ψ(t)‖2L2(�)

+ ∥∥ψU
∥∥

L1(�t )

+‖(ψ,Dx ′ψ)‖2L2(�t )
+ ε‖D2

x ′ψ‖2L2(�t )
, (3.81)

where U is the vector defined by (3.30).
From the boundary condition (3.72d), we employ the standard argument of the

energy method to deduce

‖ψ(t)‖2L2(�)
+ ε

∑
k=2,3

‖∂2k ψ‖2L2(�t )
�K ‖ψ‖2L2(�t )

+ ‖ψW +
2 ‖L1(�t )

�K εε‖W +
2 ‖2L2(�t )

+ C(εε)‖ψ‖2L2(�t )

(3.82)

for all ε > 0, where C(εε) → +∞ as εε → 0. Use integration by parts to get

‖D2
x ′Dα

x ′ψ‖2L2(�)
�

∑
k=2,3

‖∂2k Dα
x ′ψ‖2L2(�)

for any α ∈ N
2. (3.83)

Then it follows from (3.82) and (3.83) with α = 0 that

‖ψ(t)‖2L2(�)
+ ε‖D2

x ′ψ‖2L2(�t )
�K εε‖W +

2 ‖2L2(�t )
+ C(εε)‖ψ‖2L2(�t )

. (3.84)
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Plugging (3.84) into (3.81), taking ε > 0 small enough, and making use of (3.83)
with |α| = 1 imply

‖W (t)‖2L2(�)
+ ‖(ψ,Dx ′ψ)(t)‖2L2(�)

+ ε‖(U , W +
7 ,D2

x ′ψ,D3
x ′ψ)‖2L2(�t )

�K ‖( f , W )‖2L2(�t )
+ C(ε)‖(ψ,Dx ′ψ)‖2L2(�t )

.

ApplyGrönwall’s inequality and take into account the boundary conditions (3.72b)–
(3.72c) to derive

‖W (t)‖2L2(�)
+ ‖(ψ,Dx ′ψ)(t)‖2L2(�)

+‖(Wnc, W +
7 ,D2

x ′ψ,D3
x ′ψ)‖2L2(�t )

≤ C(K , ε)‖ f ‖2L2(�t )
, (3.85)

where Wnc := (W +
1 , . . . , W +

6 , W −
1 , . . . , W −

6 )� and C(K , ε) → +∞ as ε → 0.
Furthermore, we apply the operator ∂2i , for i = 2, 3, to the boundary condition

(3.72d), multiply the resulting equation with ∂2i ψ , and employ Cauchy’s inequality
to infer

‖∂2i ψ(t)‖2L2(�)
+

∑
k=2,3

‖∂2k ∂2i ψ‖2L2(�t )
≤ C(K , ε)

∑
|α|≤2

‖(W +
2 ,Dα

x ′ψ)‖2L2(�t )
.

Taking a suitable combination of the last estimate with (3.83) and (3.85) yields

‖W (t)‖2L2(�)
+ ‖(ψ,Dx ′ψD2

x ′ψ)(t)‖2L2(�)

+‖(Wnc, W +
7 ,D2

x ′ψ,D3
x ′ψ,D4

x ′ψ)‖2L2(�t )
≤ C(K , ε)‖ f ‖2L2(�t )

. (3.86)

Thanks to the condition (3.72d) and the inequality (3.86), we obtain the following
ε-dependent L2 a priori estimate for the regularized problem (3.72):

‖W‖L2(�t )
+

∑
|α|≤4

‖(Wnc, W +
7 ,Dα

x ′ψ, ∂tψ)‖L2(�t )
≤ C(K , ε)‖ f ‖L2(�t )

(3.87)

for all 0 ≤ t ≤ T , where C(K , ε) → +∞ as ε → 0.

3.4.2. Existence of solutions We shall construct the solutions of the regularized
problem (3.72) by means of the duality argument. To this end, it suffices to show
a suitable L2 a priori estimate for solutions W̃ := (W̃ +, W̃ −)� of the following
dual problem of (3.72):

L̃±
ε W̃ ± = f̃

±
in �T , (3.88a)

ε JH+

⎛
⎝W̃ +

5
W̃ +

6
W̃ +

7

⎞
⎠ =

⎛
⎝H̊+

2

[
W̃2

] − H̊+
N

[
W̃3

]
H̊+
3

[
W̃2

] − H̊+
N

[
W̃4

]
0

⎞
⎠ on �T , (3.88b)

εW̃ −
1 = [

W̃2
]
, εW̃ −

3 = −H̊+
N

[
W̃5

]
, εW̃ −

4 = −H̊+
N

[
W̃6

]
on �T , (3.88c)

∂tw + ∂2(v̊
+
2 w) + ∂3(v̊

+
3 w) − ε(∂42 + ∂43 )w − å7w

− sDx ′ ·
(
Dx ′ W̃ +

2

|N̊ | − Dx ′ ϕ̊ · Dx ′ W̃ +
2

|N̊ |3 Dx ′ ϕ̊

)
+ Tdual = 0 on �T , (3.88d)

W̃ = 0 if t > T,

(3.88e)
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Here L̃±
ε are the formal adjoint operators of L±

ε (cf. (3.72a)), i.e.,

L̃±
ε := −

3∑
i=0

A±
i ∂i + ε J±∂1 −

3∑
i=0

∂i A
±
i + ε∂1 J± + (A±

4 )�,

the matrix JH+ is defined by (3.74), and

w := [
W̃1

] + H̊+
2

[
W̃5

] + H̊+
3

[
W̃6

] − εW̃ +
2 − εW̃ −

2 , (3.89)

Tdual := − (
H̊+
2 å5 + H̊+

3 å6
)
W̃ −

2 − å2
(
W̃ −

1 + εW̃ −
2 + H̊+

2 W̃ −
5 + H̊+

3 W̃ −
6

)
− å1W̃ +

2 + H̊+
N

(
å3W̃ +

5 + å4W̃ +
6 + å5W̃ −

3 + å6W̃ −
4

)
. (3.90)

The boundary conditions (3.88b)–(3.88d) are imposed to ensure that

∑
±

∫
�T

(
L±

ε W ± · W̃ ± − W · L̃±
ε W̃ ±) =

∑
±

∫
�T

(
ε J± − A±

1

)
W ± · W̃ ± = 0,

where we have used the conditions (3.72b)–(3.72e) and (3.88e).
Let us define W̃ ±

� (t, x) := W̃ ±(T − t, x) and f̃
±
� (t, x) := f̃

±
(T − t, x). Then

the dual problem (3.88) is reduced to

A±
0 ∂t W̃

± −
3∑

i=1

A±
i ∂i W̃ ± + ∂t A

±
0 W̃ ± −

3∑
i=1

∂i A
±
i W̃ ±

+ ε J±∂1W̃ ± + ε∂1 J±W̃ ± + (A±
4 )�W̃ ± = f̃

±
in �T , (3.91a)

ε JH+

⎛
⎝W̃ +

5
W̃ +

6
W̃ +

7

⎞
⎠ =

⎛
⎝H̊+

2

[
W̃2

] − H̊+
N

[
W̃3

]
H̊+
3

[
W̃2

] − H̊+
N

[
W̃4

]
0

⎞
⎠ on �T , (3.91b)

εW̃ −
1 = [

W̃2
]
, εW̃ −

3 = −H̊+
N

[
W̃5

]
, εW̃ −

4 = −H̊+
N

[
W̃6

]
on �T , (3.91c)

∂tw − ∂2(v̊
+
2 w) − ∂3(v̊

+
3 w) + ε(∂42 + ∂43 )w + å7w

+ sDx ′ ·
(
Dx ′ W̃ +

2

|N̊ | − Dx ′ ϕ̊ · Dx ′ W̃ +
2

|N̊ |3 Dx ′ ϕ̊

)
− Tdual = 0 on �T , (3.91d)

W̃ = 0 if t < 0,
(3.91e)

where the subscript “�” has been dropped for notational simplicity, and the terms
w, Tdual are defined by (3.89)–(3.90).

Take the scalar product of (3.91a) with W̃ ± to obtain

∑
±

∫
�

A±
0 W̃ ± · W̃ ± dx −

∫
�t

T ε
b (W̃ ) �K

∥∥( f̃ , W̃
)∥∥2

L2(�t )
, (3.92)

where T ε
b is defined by (3.76). Using (3.24)–(3.25) and (3.73)–(3.74) yields

T ε
b (W̃ ) = ε

∣∣Ũreg
∣∣2 − 2

[
W̃2

(
W̃1 + H̊2W̃5 + H̊3W̃6

)]
+ 2H̊+

N

[
W̃3W̃5 + W̃4W̃6

]
on �T ,
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where

Ũreg := (
W̃ +

2 ,
(
W̃ +

5 , W̃ +
6 , W̃ +

7

)
J̊ H+ , W̃ −

1 , W̃ −
2 , W̃ −

3 , W̃ −
4

)� ∈ R
8. (3.93)

Thanks to (3.89) and (3.91b)–(3.91c), we compute that

− T ε
b (W̃ ) = ε

∣∣Ũreg
∣∣2 + 2W̃ −

2 w − 2ε
[
W̃2

]
W̃ +

2 + 2
[
W̃2

][
W̃1

]

= ε
∣∣Ũreg

∣∣2 + 2W̃ +
2 w + 2ε2

W̃ −
1

H̊+
N

(
H̊+
2 W̃ −

3 + H̊+
3 W̃ −

4 + H̊+
N W̃ −

2

)
on �T .

Plug the last identity into (3.92) and choose ε > 0 sufficiently small to obtain
∥∥W̃ (t)

∥∥2
L2(�)

+ ε
∥∥Ũreg

∥∥2
L2(�t )

�K
∥∥( f̃ , W̃

)∥∥2
L2(�t )

+ ε−1‖w‖2L2(�t )
. (3.94)

Noting from (3.90) and (3.91c) that Tdual = c̊1Ũr on�T , we multiply the boundary
condition (3.91d) with w to get

‖w(t)‖2L2(�)
+ ε

∑
k=2,3

‖∂2k w‖2L2(�t )

�K
∥∥(w, Ũreg

)∥∥2
L2(�t )

+
∣∣∣∣
∫

�t

W̃ +
2 Dx ′ ·

(
Dx ′w

|N̊ | − Dx ′ ϕ̊ · Dx ′w

|N̊ |3 Dx ′ ϕ̊

)∣∣∣∣
�K εε

∑
|α|≤2

∥∥Dα
x ′w

∥∥2
L2(�t )

+ C(εε)
∥∥(w, Ũreg

)∥∥2
L2(�t )

for all ε > 0. (3.95)

Substitute the estimates

‖D2
x ′w‖2L2(�t )

� ‖(∂22w, ∂23w)‖2L2(�t )
, ‖Dx ′w‖2L2(�t )

� ‖(w,D2
x ′w)‖2L2(�t )

into (3.95) and choose ε > 0 sufficiently small to derive

‖w(t)‖2L2(�)
+

∑
|α|≤2

‖Dα
x ′w‖2L2(�t )

≤ C(K , ε)
∥∥(w, Ũreg

)∥∥2
L2(�t )

.

Then it follows by combining the last estimate with (3.94) and applying Grönwall’s
inequality that

‖W̃ (t)‖2L2(�)
+ ‖w(t)‖2L2(�)

+
∑
|α|≤2

‖(Ũr ,Dα
x ′w)‖2L2(�t )

≤ C(K , ε)
∥∥ f̃

∥∥2
L2(�t )

for some positive constant C(K , ε) → +∞ as ε → 0, where Ũr is the vector
given by (3.93). In view of (3.88b)–(3.88c) and (3.89), we deduce the following L2

estimate for the dual problem (3.88):

‖W̃‖L2(�t )
+

∑
|α|≤2

‖(W̃nc, W̃ +
7 ,Dα

x ′w)‖L2(�t )
≤ C(K , ε)

∥∥ f̃
∥∥

L2(�t )
, (3.96)

for all 0 ≤ t ≤ T , where W̃nc := (W̃ +
1 , . . . , W̃ +

6 , W̃ −
1 , . . . , W̃ −

6 )�.
Having the L2 estimates (3.87) and (3.96) in hand, we can prove the existence

and uniqueness of a weak solution W ε ∈ L2(�T ) to the problem (3.72) with
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W ε
nc|x1=0 ∈ L2(�T ) for any fixed and sufficiently small parameter ε > 0 by the

classical duality argument in Chazarain–Piriou [5].
Then we shall consider (3.72d) as a fourth-order parabolic equation for ψ

with given source term W +ε
2 |x1=0 ∈ L2(�T ) and zero initial data. Referring to [5,

Theorem 5.2], we can conclude that the Cauchy problem for this parabolic equation
has a unique solution ψε ∈ C([0, T ], H4(R2))

⋂
C1([0, T ], L2(R2)), implying

ψε ∈ L2((−∞, T ], H4(R2)) and ∂tψ
ε ∈ L2(�T ). As a matter of fact, we have

already derived the a priori estimate for solutions ψε of this Cauchy problem in
(3.87).

Therefore, we have constructed the unique solution (W ε, ψε) ∈ L2(�T ) ×
L2((−∞, T ], H4(R2)) to the regularized problem (3.72) for any fixed and suffi-
ciently small parameter ε > 0 with W ε

nc|x1=0 ∈ L2(�T ) and ∂tψ
ε ∈ L2(�T ).

Moreover, applying tangential differentiation leads to the existence and uniqueness
of solutions (W ε, ψε) ∈ H1(�T ) × H1((−∞, T ], H4(R2)), again for any fixed
and sufficiently small parameter ε > 0.

3.5. Uniform-in-ε estimate and passing to the limit

This subsection is devoted to showing the uniform-in-ε estimate in H1 for
solutions W ε of the regularized problem (3.72), from which we can show the
existence of solutions to the linearized problem (3.22) by passing to the limit ε → 0.
In the following calculations, to simplify the notation, we drop the superscript “ε”
in W ε, ψε, etc..

3.5.1. L2 estimate of W We plug (3.33) with α = 0 into (3.81) and use (3.83)
with |α| = 1 to deduce that

‖W (t)‖2L2(�)
+ ‖(ψ,Dx ′ψ)(t)‖2L2(�)

+ ε‖(U , W +
7 ,D3

x ′ψ)‖2L2(�t )

�K ‖( f , W )‖2L2(�t )
+ ‖(ψ,Dtanψ,U)‖2L2(�t )

+ ε‖D2
x ′ψ‖2L2(�t )

, (3.97)

where U is given in (3.30).

3.5.2. L2 estimate of Dx ′ W For � = 0, 2, 3, applying the differential operator
∂� to the interior equations (3.72a), we have

∑
±

∫
�

A±
0 ∂�W ± · ∂�W ± dx +

∫
�t

T ε
b (∂�W ) �K ‖( f , W )‖2H1(�t )

, (3.98)

where T ε
b is defined by (3.76).

Similar to (3.77), we use the boundary conditions (3.72b)–(3.72d) to get

T ε
b (∂�W ) = − 2∂�[W1]∂�W +

2 + ∂�[(W2, . . . , W6)]c̊0∂�U + ε|∂�Ureg|2

= − 2s∂�Dx ′ ·
(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)
∂�

(
B̊ψ + ε

∑
k=2,3

∂4k ψ

)

− 2∂�(å1ψ)∂�W +
2 + ∂�(c̊1ψ)c̊0∂�U + ε|∂�Ureg|2 on �T .
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Then we obtain∫
�t

T ε
b (∂�W ) = ε

∫
�t

∣∣∂�Ureg
∣∣2 + J� + εI(�)

3 +
∫

�t

∂�(c̊1ψ)c̊0∂�U , (3.99)

where J� is defined by (3.37), and

I(�)
3 := 2s

∑
k=2,3

∫
�t

∂�∂
2
k

(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)
· ∂�∂

2
k Dx ′ψ. (3.100)

Employ Cauchy’s inequality to infer that

I(�)
3 ≥ s

∑
k=2,3

∫
�t

|∂�∂
2
k Dx ′ψ |2
|N̊ |3 − C(K )

∑
k=2,3

∥∥∥[∂�∂
2
k , c̊0

]
Dx ′ψ

∥∥∥2
L2(�t )

.

In view of the decomposition[
∂�∂

2
k , c̊0

]
Dx ′ψ = ∂2k (c̊1Dx ′ψ) + [∂2k , c̊0]Dx ′∂�ψ,

we utilize the Moser-type calculus inequalities (2.27)–(2.28), the embedding theo-
rem, and the estimate (3.5) to derive∥∥[∂�∂

2
k , c̊0

]
Dx ′ψ

∥∥2
L2(�)

�
∥∥c̊1Dx ′ψ

∥∥2
H2(�)

+ ∥∥[∂2k , c̊0
]
Dx ′(∂�ψ)

∥∥2
L2(�)

�K ‖(Dx ′ψ, ∂�ψ)‖2H2(�)
.

Hence we discover

I(�)
3 ≥ s

∑
k=2,3

∫
�t

|∂�∂
2
k Dx ′ψ |2
|N̊ |3 − C(K )

∑
|α|≤2

‖(Dα
x ′Dx ′ψ,Dα

x ′∂�ψ)‖2L2(�t )
.

(3.101)

Substituting (3.99) into (3.98) with � = 2, 3, we make use of (3.43)–(3.44),
(3.101), and (3.83) with |α| = 2 to deduce

‖Dx ′ W (t)‖2L2(�)
+ ‖D2

x ′ψ(t)‖2L2(�)
+ ε

‖(Dx ′Ureg,D
4
x ′ψ)‖2L2(�t )

�K ‖( f , W )‖2H1(�t )
+

∑
|α|≤2

‖(Dα
x ′ψ,Dx ′∂tψ,

√
εDα

x ′Dx ′ψ)‖2L2(�t )
. (3.102)

3.5.3. L2 estimate of ∂t W In view of (3.99), we find∫
�t

T ε
b (∂t W ) = ε

∫
�t

|∂tUreg|2 + J0 + εI(0)
3 + I1 + I2, (3.103)

where the terms J0, I(0)
3 , I1, and I2 are defined in (3.37), (3.100), and (3.46).

Thanks to the boundary condition (3.72d), we get
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I1 =
∫

�t

c̊1∂tψ∂tU = Ia
1 + Ib

1 − ε
∑

k=2,3

∫
�t

c̊1∂
4
k ψ∂tU

︸ ︷︷ ︸
I1c

(3.104)

with Ia
1 and Ib

1 given in (3.47). It follows from the definition (3.78) that

|I1c| ≤ ε

2

∫
�t

|∂tUreg|2 + εC(K )‖(D4
x ′ψ,Ureg)‖2L2(�t )

. (3.105)

Plugging (3.103)–(3.104) into (3.98) for � = 0, and utilizing (3.43), (3.101), (3.48),
(3.50)–(3.51), and (3.105) imply

‖∂t W (t)‖2L2(�)
+ ‖(Dx ′∂tψ, W )(t)‖2L2(�)

+ ε‖(∂tUreg,D
3
x ′∂tψ)‖2L2(�t )

�K

∑
|α|≤2

∥∥(Dα
x ′ψ, ∂tψ,Dx ′∂tψ, W,

√
εDα

x ′Dtanψ,
√

εD4
x ′ψ

)∥∥2
L2(�t )

+C(ε)‖( f , W )‖2H1(�t )
+ ε‖∂1W (t)‖2L2(�)

for all ε > 0. (3.106)

3.5.4. L2 estimate of ∂1Wnc Multiply the equations (3.72a) with B± respectively
and use the decomposition (3.24)–(3.25) to deduce(

∂1W ±
nc − εc̊0∂1W ±

nc, 0, 0
)�

= B±
(
f± − A±

4 W ± −
∑

�=0,2,3

A±
� ∂�W ± − A±

(0)∂1W ±
)

in �δ
T , (3.107)

where B± are defined by (3.54). Hence for suitably small ε > 0, we get

‖∂1Wnc(t)‖L2(�δ) �K ‖(W,DtanW, σ∂1W, f )(t)‖L2(�), (3.108)

Similar to the derivationof (3.59)–(3.60), for solutionsW of the regularizedproblem
(3.72), we find

‖σ∂1W (t)‖L2(�) + ‖∂1W (t)‖L2(�\�δ) �K ‖( f , W )‖H1(�t )
,

which together with (3.108) leads to

‖∂1Wnc(t)‖2L2(�)
�K ‖(W,DtanW )(t)‖2L2(�)

+ ‖( f , W )‖2H1(�t )
, (3.109)

provided ε > 0 is sufficiently small.

3.5.5. L2 estimate of ∂1Wc It follows from (3.72a) and (3.73) that the charac-
teristic variables W ±

8 = S± also satisfy the equations (3.62), which allows us to
deduce that

‖∂1W ±
8 (t)‖2L2(�)

�K ‖( f , W )‖2H1(�t )
. (3.110)

Let us estimate the normal derivative of the remaining characteristic variables
W ±

7 = H± · N̊± (cf. the transformation (3.20)). For this purpose, we introduce
the linearized divergences ξ± that are defined by (3.65) and satisfy the identities
(3.66). Remark that the equations of H±

j for the regularized problem (3.72) are
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different from those for the linearized problem (3.22), due to the presence of the
regularized terms−ε J±∂1W ± in (3.72a).Nevertheless, for thematrices J± defined
by (3.73)–(3.74), we can still show the energy estimate of ξ± for the regularized
problem (3.72). More precisely, taking advantage of the explicit form (3.73)–(3.74)
and the identity

(H±
1 , H±

2 , H±
3 )� = J̊ H± (W ±

5 , W ±
6 , W ±

7 )�,

we calculate from (3.72a) that

∂Φ̊+
t H+

j + v̊+ · ∇Φ̊+
H+

j − ε∂1H+
j − H̊+ · ∇Φ̊+

v+
j + H̊+

j ∇Φ̊+ · v+ = c̊1 f + c̊1W,

∂Φ̊−
t H−

j + v̊− · ∇Φ̊−
H−

j − H̊− · ∇Φ̊−
v−

j + H̊−
j ∇Φ̊− · v− = c̊1 f + c̊1W.

Applying the operators ∂Φ̊±
j respectively to the last equations yields

(
∂t + ẘ+

1 ∂1 + v̊+
2 ∂2 + v̊+

3 ∂3 − ε∂1
)
ξ+ = c̊1D f + c̊2 f + c̊1DW + c̊2W,

(3.111)(
∂t + ẘ−

1 ∂1 + v̊−
2 ∂2 + v̊−

3 ∂3
)
ξ− = c̊1D f + c̊2 f + c̊1DW + c̊2W. (3.112)

Use the Eqs. (3.112)–(3.112) and the identity (3.63) to infer

‖ξ±(t)‖L2(�) + ε‖ξ+‖L2(�t )
�K ‖( f , W )‖H1(�t )

,

which together with (3.66) implies

‖∂1W ±
7 (t)‖2L2(�)

�K ‖(W,DtanW )(t)‖2L2(�)
+ ‖( f , W )‖2H1(�t )

. (3.113)

3.5.6. Proof of Theorem 3.1 It follows from (3.72d) that

‖∂tψ‖2L2(�t )
�K ‖(W +

2 , ψ,Dx ′ψ, εD4
x ′ψ)‖2L2(�t )

. (3.114)

Using the basic estimate

‖D2
x ′Dtanψ‖2L2(�t )

≤ ε‖D3
x ′Dtanψ‖2L2(�t )

+ C(ε)‖Dx ′Dtanψ‖2L2(�t )
,

and taking a suitable linear combination of (3.97), (3.102), (3.106), (3.109)–(3.110),
and (3.113), we choose ε > 0 suitably small to discover

‖(W,DW )(t)‖2L2(�)
+

∑
|α|≤2

‖(Dα
x ′ψ,Dx ′∂tψ, W )(t)‖2L2(�)

+‖∂tψ‖2L2(�t )
+ ε

∑
2≤|α|≤3

‖(DtanUreg,D
α
x ′Dtanψ)‖2L2(�t )

�K ‖( f , W )‖2H1(�t )
+

∑
|α|≤2

‖(Dα
x ′ψ,Dx ′∂tψ, W )‖2L2(�t )

.
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We apply Grönwall’s inequality to the last estimate and compute

‖(W,DW )(t)‖2L2(�)
+

∑
|α|≤2

‖(Dα
x ′ψ,Dx ′∂tψ, W )(t)‖2L2(�)

+‖∂tψ‖2L2(�t )
+ ε

∑
2≤|α|≤3

‖(DtanUreg,D
α
x ′Dtanψ)‖2L2(�t )

�K ‖ f ‖2H1(�t )
.

Consequently, we derive

‖W‖H1(�t )
+ ‖W‖L2(�t )

+ ‖(ψ,Dx ′ψ)‖H1(�t )

+√
ε

∑
2≤|α|≤3

‖(DtanUreg,D
α
x ′Dtanψ)‖L2(�t )

�K ‖ f ‖H1(�t )
(3.115)

for all 0 ≤ t ≤ T , where Ureg is defined by (3.78).
The uniform-in-ε estimate (3.115) allows us to construct the unique solution of

the linearized problem (3.22) by passing to the limit ε → 0. As a matter of fact,
in view of (3.115), we can extract a subsequence weakly convergent to (W, ψ) ∈
H1(�T ) × H1((−∞, T ], H2(R2)) with ∂1W ∈ L2(�T ) and W |x1=0 ∈ L2(�T ).
Since ∂1W and

√
ε(∂42 + ∂43 )ψ are uniformly bounded in L2(�T ) and L2(�T )

respectively (cf. (3.115)), the passage to the limit ε → 0 in (3.72) verifies that
(W, ψ) solves the linearized problem (3.22). Moreover, the uniqueness of solutions
follows from the a priori estimate (3.71).

Thanks to the existence and uniqueness of solutions (W, ψ) in H1(�T ) ×
H1(�T ) of the reduced problem (3.22), we can show that there exists a unique
solution (V̇ , ψ) ∈ H1(�T ) × H1(�T ) to the effective linear problem (3.15).
Moreover, the H1 estimate (3.16) follows by combining the estimate (3.71) with
(3.18) and (3.20).

4. Tame Estimate

This section is dedicated to showing the following theorem, that is, the tame
a priori estimate in the usual Sobolev spaces Hm for the effective linear problem
(3.15) with m ∈ N large enough.

Theorem 4.1. Let K > 0 and m ∈ Nwith m ≥ 3be fixed. Then there exist constants
T0 > 0 and C(K ) > 0 such that if the basic state (Ů (t, x), ϕ̊(t, x ′)) satisfies (3.1)–
(3.4) and (V̊ ±, ϕ̊) ∈ Hm+2(�T )×Hm+2(�T ) for V̊ ± := Ů±−
U±, and the source
terms f ± ∈ Hm(�T ), g ∈ Hm+1/2(�T ) vanish in the past, for some 0 < T ≤ T0,
then the problem (3.15) admits a unique solution (V̇ ±, ψ) ∈ Hm(�T ) × Hm(�T )

satisfying the tame estimate

‖(V̇ , Ψ,Dx ′Ψ )‖Hm (�T ) + ‖(ψ,Dx ′ψ)‖Hm (�T )

≤ C(K )
{
‖ f ±‖Hm (�T ) + ‖g‖Hm+1/2(�T )

+ ‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖Hm+2(�T )

(‖ f ±‖H3(�T ) + ‖g‖H7/2(�T )

) }
. (4.1)
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Toderive the tame estimate (4.1), it is sufficient to obtain an analogous tame estimate
for solutions (W, ψ) of the reduced problem (3.22).We shall first make the estimate
of the normal derivatives of W through its tangential ones. Then we will control
the tangential derivatives by using the spatial regularity enhanced by the surface
tension.

4.1. Estimate of the normal derivatives

The normal derivatives of solutions W to the problem (3.22) can be estimated
through the tangential ones as follows.

Proposition 4.1. If the assumptions in Theorem 4.1 are satisfied, then

|||W (t)|||2m �K |||W (t)|||2tan, m + M1(t), (4.2)

where ||| · |||tan,m and ||| · |||m are defined by (2.24), and

M1(t) := ‖( f , W )‖2Hm (�t )
+ ‖( f , W )‖2L∞(�t )

+ ‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖2Hm+2(�T )
‖( f , W )‖2L∞(�t )

. (4.3)

Proof. We divide the proof into two steps.
1. Estimate of the noncharacteristic variables. Let the multi-index β = (β0, β2,

β3) ∈ N
3 and the integer k ≥ 1 satisfy |β| + k ≤ m. Applying the differential

operator ∂k−1
1 Dβ

tan := ∂k−1
1 ∂

β0
t ∂

β2
2 ∂

β3
3 to the identity (3.55) implies

‖∂k
1D

β
tanWnc(t)‖2L2(�δ)

� Ia
4 + Ib

4 + Ic
4, (4.4)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ia
4 := ∥∥∂k−1

1 Dβ
tan

(
B± f± − B±A±

4 W ±)
(t)

∥∥2
L2(�δ)

,

Ib
4 := ∥∥∂k−1

1 Dβ
tan

(
c̊1DtanW

)
(t)

∥∥2
L2(�)

,

Ic
4 := ∥∥∂k−1

1 Dβ
tan

(
B±A±

(0)∂1W ±)
(t)

∥∥2
L2(�δ)

.

Since A±
4 areC∞-functions of (V̊ ,DΨ̊ ,DV̊ ,DDx ′Ψ̊ ) and B± areC∞-functions

of (V̊ ,DΨ̊ ), we use the Moser-type calculus inequality (2.27) to obtain

Ia
4 �

∥∥∂k−1
1 Dβ

tan

(
c̊1 f + c̊1W

)∥∥2
H1(�t )

�
∥∥c̊1 f + c̊1W

∥∥2
Hm (�t )

�K M1(t),

(4.5)

where M1(t) is defined by (4.3).
By virtue of the Moser-type calculus inequality (2.28), we get

Ib
4 �

∥∥c̊1∂k−1
1 Dβ

tanDtanW (t)
∥∥2

L2(�)
+ ∥∥[∂k−1

1 Dβ
tan, c̊1

]
DtanW (t)

∥∥2
L2(�)

�K |||∂k−1
1 W (t)|||2tan, m−k+1 + ∥∥[∂k−1

1 Dβ
tan, c̊1

]
DtanW

∥∥2
H1(�t )

�K |||∂k−1
1 W (t)|||2tan, m−k+1 + M1(t). (4.6)
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It follows from (3.56) and (2.28) that

Ic
4 �

∥∥B±A±
(0)∂

k
1D

β
tanW ±(t)

∥∥2
L2(�)

+ ∥∥[∂k−1
1 Dβ

tan, c̊1
]
∂1W (t)

∥∥2
L2(�)

�K
∥∥σ∂k

1D
β
tanW (t)

∥∥2
L2(�)

+ ∥∥[∂k−1
1 Dβ

tan, c̊1
]
∂1W

∥∥2
H1(�t )

�K
∥∥σ∂k

1D
β
tanW (t)

∥∥2
L2(�)

+ M1(t), (4.7)

where the C∞-function σ = σ(x1) satisfies (3.57). In particular, σ(0) = 0.
Regarding the first term on the right-hand side of (4.7), we apply the operator

σ∂k
1D

β
tan to the equations (3.22a) and employ the standard argument of the energy

method to derive

‖σ∂k
1D

β
tanW (t)‖2L2(�)

�K M1(t). (4.8)

Since the weight σ is away from zero outside the boundary �T , we have

‖∂k
1D

β
tanW (t)‖2L2(�\�δ)

�K M1(t). (4.9)

Plug (4.5)–(4.8) into (4.4) and combine the resulting estimate with (4.9) to infer

‖∂k
1D

β
tanWnc(t)‖2L2(�)

�K |||∂k−1
1 W (t)|||2tan, m−k+1 + M1(t).

Since the last estimate holds for all β ∈ N
3 with |β| ≤ m − k, we derive

|||∂k
1Wnc(t)|||2tan, m−k �K |||∂k−1

1 W (t)|||2tan, m−k+1 + M1(t) (4.10)

for 1 ≤ k ≤ m.
2. Estimate of the characteristic variables. We first consider the characteristic
variables W ±

8 = S± (entropies). Letα := (α0, α1, α2, α3) ∈ N
4 be anymulti-index

with |α| ≤ m. Apply the operator Dα := ∂
α0
t ∂

α1
1 ∂

α2
2 ∂

α3
3 to the equations (3.62) and

multiply the resulting identities by DαW ±
8 respectively to find

∂t

(∣∣DαW ±
8

∣∣2) + ∂1

(
ẘ±
1

∣∣DαW ±
8

∣∣2)

+
∑

k=2,3

∂k

(
v̊±

k

∣∣DαW ±
8

∣∣2) −
(
∂1ẘ

±
1 + ∂2v̊

±
2 + ∂3v̊

±
3

)∣∣DαW ±
8

∣∣2

= 2DαW ±
8

(
Dα f±

8 + Dα(c̊1W ) − [
Dα, ẘ±

1

]
∂1W ±

8 −
∑

k=2,3

[Dα, v̊±
k ]∂k W ±

8

)
.

Integrating the last identities over �t and employing (2.27)–(2.28) yield

|||W ±
8 (t)|||2s �K M1(t). (4.11)

Next we recover the normal derivatives of the characteristic variables W ±
7 from

the estimate of the linearized divergences ξ± defined by (3.65). More precisely, we



MHD Contact Discontinuities with Surface Tension 1125

apply the differential operator Dα with |α| ≤ m − 1 to the equations (3.67) and
multiply the resulting identities by Dαξ± respectively to deduce

‖Dαξ±(t)‖2L2(�)
�K

∑
k=2,3

∥∥(Dαξ±,
[
Dα, ẘ±

1

]
∂1ξ

±,
[
Dα, v̊±

k

]
∂kξ

±)∥∥2
L2(�t )

+ ∥∥Dα
(
c̊1D f + c̊2 f + c̊1DW + c̊2W

)∥∥2
L2(�t )

. (4.12)

It follows from (3.66) that

ξ± = c̊1W + c̊1DW. (4.13)

Then we utilize the Moser-type calculus inequalities (2.27)–(2.28) to infer
∑

k=2,3

∥∥([Dα, ẘ±
1

]
∂1ξ

±,
[
Dα, v̊±

k

]
∂kξ

±)∥∥2
L2(�t )

+ ∥∥Dα
(
c̊1DW + c̊2W

)∥∥2
L2(�t )

�K

∑
|γ |=2

∥∥([Dα, c̊2
]
W,

[
Dα, c̊2

]
DW,

[
Dα, c̊1

]
Dγ W, c̊1D

αDW, c̊2D
αW

)∥∥2
L2(�t )

�K ‖W‖2Hm (�t )
+

(
1 + ‖(V̊ , Ψ̊ ,Dx ′ Ψ̊ )‖2Hm+2(�T )

)
‖W‖2L∞(�t )

. (4.14)

Similarly, we have
∥∥Dα

(
mathringc1D f + c̊2 f

)∥∥2
L2(�t )

�K
∥∥(c̊1DαD f , c̊2Dα f , [Dα, c̊1]D f , [Dα, c̊2] f

)∥∥2
L2(�t )

�K ‖ f ‖2Hm (�t )
+

(
1 + ‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖2Hm+2(�T )

)
‖ f ‖2L∞(�t )

. (4.15)

Plugging (4.14)–(4.15) into (4.12) and using Grönwall’s inequality imply

|||ξ±(t)|||2m−1 =
∑

|α|≤m−1

‖Dαξ±(t)‖2L2(�)
�K M1(t). (4.16)

Moreover, it follows from (3.66) that

∂1W ±
7 = c̊1ξ

± + c̊1DtanW + c̊1W.

Then for any multi-index β ∈ N
3 and integer k ≥ 1 with |β| + k ≤ m, we take

advantage of the identity (4.13), the estimate (4.16), and the inequalities (2.27)–
(2.28) to get

‖∂k
1D

β
tanW ±

7 (t)‖2L2(�)
�K |||ξ±(t)|||2m−1 + |||∂k−1

1 W (t)|||2tan, m−k+1

+ ∥∥([∂k−1
1 Dβ

tan, c̊1
]
W,

[
∂k−1
1 Dβ

tan, c̊1
]
DW

)∥∥2
H1(�t )

�K |||∂k−1
1 W (t)|||2tan, m−k+1 + M1(t). (4.17)

Combining (4.10)–(4.11) and (4.17) gives

|||∂k
1W (t)|||2tan, m−k �K |||∂k−1

1 W (t)|||2tan, m−k+1 + M1(t) for 1 ≤ k ≤ m.

Since |||u|||2m = ∑m
k=0 |||∂k

1u|||2tan, m−k, we can derive (4.2) by induction. This com-
pletes the proof. ��
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4.2. Estimate of the tangential derivatives

The following proposition concerns the estimate of the tangential derivatives:

Proposition 4.2. If the assumptions in Theorem 4.1 are satisfied, then

|||W (t)|||2tan, m +
∑

|β|≤m

‖(Dβ
tanψ,Dβ

tanDx ′ψ)(t)‖2L2(�)

�K ε|||W (t)|||2m + C(ε)M1(t) + C(ε)M2(t) (4.18)

for all ε > 0, where ||| · |||tan,m, ||| · |||m, and M1(t) are defined in (2.24) and (4.3),
and

M2(t) := ‖(ψ,Dx ′ψ)‖2Hm (�t )
+ ‖(ψ,Dx ′ψ)‖2L∞(�t )

+ ‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖2Hm+2(�T )
‖(ψ,Dx ′ψ)‖2L∞(�t )

. (4.19)

Proof. Let β = (β0, β2, β3) ∈ N
3 satisfy |β| ≤ m. Applying the differential

operator Dβ
tan to the equations (3.22a) implies that

∑
±

∫
�

A±
0 D

β
tanW ± · Dβ

tanW ± dx +
∫

�t

Tb(Dβ
tanW ) = I5, (4.20)

where the operator Tb is defined by (3.28), and

I5 := 2
∑
±

∫
�t

Dβ
tanW ± · Dβ

tan

(
f± − A±

4 W ±)

−
∑
±

3∑
i=0

∫
�t

Dβ
tanW ± ·

(
2[Dβ

tan, A
±
i ]∂i W

± − ∂i A
±
i D

β
tanW ±)

.

A standard calculation with an application of (2.27)–(2.28) leads to

I5 �K M1(t). (4.21)

Similar by to (3.29), we can derive from the boundary conditions (3.22b)–
(3.22d) that

∫
�t

Tb(Dβ
tanW ) = − 2

∫
�t

Dβ
tan[W1]Dβ

tanW +
2 +

∫
�t

Dβ
tan[(W2, . . . , W6)]c̊0Dβ

tanU

= Ia
6 + Ib

6 + Ic
6 + Id

6 +
∫

�t

Dβ
tan(c̊1ψ)c̊0D

β
tanU , (4.22)
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where

Ia
6 := 2s

∫
�t

Dβ
tan

(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)
· (∂t + v̊+

2 ∂2 + v̊+
3 ∂3)D

β
tanDx ′ψ,

Ib
6 := 2s

∫
�t

Dβ
tan

(
Dx ′ψ

|N̊ | − Dx ′ ϕ̊ · Dx ′ψ

|N̊ |3 Dx ′ ϕ̊

)

·
([
Dβ
tanDx ′ , v̊+

2 ∂2 + v̊+
3 ∂3

]
ψ + Dβ

tanDx ′
(
å7ψ

))
,

Ic
6 := −2

∫
�t

Dβ
tan

(
å1ψ

)
(∂t + v̊+

2 ∂2 + v̊+
3 ∂3)D

β
tanψ,

Id
6 := −2

∫
�t

Dβ
tan

(
å1ψ

)([
Dβ
tan, v̊

+
2 ∂2 + v̊+

3 ∂3
]
ψ + Dβ

tan

(
å7ψ

))
.

By a direct computation, we obtain

Ia
6 = s

∫
�

( |Dβ
tanDx ′ψ |2

|N̊ | − |Dx ′ ϕ̊ · Dβ
tanDx ′ψ |2

|N̊ |3
)
dx ′

+
∫

�

[Dβ
tan, c̊0]Dx ′ψ · Dβ

tanDx ′ψdx ′ +
∫

�t

c̊2D
β
tanDx ′ψ · Dβ

tanDx ′ψ

+
∫

�t

Dβ
tanDx ′ψ ·

(
∂t [Dβ

tan, c̊0]Dx ′ψ +
∑

k=2,3

∂k
(
v̊+

k [Dβ
tan, c̊0]Dx ′ψ

))
.

Then using Cauchy’s inequality, integration by parts, and the Moser-type calculus
inequalities (2.27)–(2.28), we discover

− Ia
6 + s

2

∫
�

|Dβ
tanDx ′ψ |2
|N̊ |3 dx ′

�K ‖Dβ
tanDx ′ψ‖2L2(�t )

+ ‖[Dβ
tan, c̊0]Dx ′ψ‖2H1(�t )

�K ‖Dx ′ψ‖2Hm (�t )
+

(
1 + ‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖2Hm+2(�T )

)
‖Dx ′ψ‖2L∞(�t )

.

(4.23)

In view of (2.27)–(2.28), we estimate the integral term Ib
6 as

|Ib
6 | �

∑
k=2,3

∥∥(Dβ
tan(c̊1Dx ′ψ),Dβ

tan(c̊2ψ),
[
Dβ
tanDx ′ , v̊+

k

]
∂kψ

)∥∥2
L2(�t )

�
∥∥(c̊1Dx ′ψ, c̊2ψ

)∥∥2
Hm (�t )

+ ∥∥[Dβ
tanDx ′ , c̊0

]
Dx ′ψ

∥∥2
L2(�t )

�K M2(t),

(4.24)

where M2(t) is defined by (4.19). Regarding the term Ic
6 , we have

|Ic
6 | �K

∫
�

∣∣å1∣∣∣∣Dβ
tanψ

∣∣2dx ′ + 2
∫

�

∣∣[Dβ
tan, å1]ψDβ

tanψ
∣∣dx ′

+
∑

k=2,3

∥∥(Dβ
tanψ, ∂t [Dβ

tan, å1]ψ, ∂k(v̊
+
k [Dβ

tan, å1]ψ)
)∥∥2

L2(�t )

�K
∥∥Dβ

tanψ(t)
∥∥2

L2(�)
+ M2(t). (4.25)
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Applying the Moser-type calculus inequalities (2.27)–(2.28) yields

|Id
6 | �K ‖ψ‖2Hm (�t )

+
(
1 + ‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖2Hm+2(�T )

)
‖ψ‖2L∞(�t )

. (4.26)

Now let us estimate the first term on the right-hand side of (4.25). If |β| ≤ m−1
or β2 + β3 ≥ 1, then

‖Dβ
tanψ(t)‖2L2(�)

�
∫

�t

|Dβ
tanψ ||∂tD

β
tanψ | � ‖(ψ,Dx ′ψ)‖2Hm (�t )

. (4.27)

Otherwise, β2 = β3 = 0 and β0 = m. For this case, it follows from the boundary
condition (3.22d) and integration by parts that

‖∂m
t ψ(t)‖2L2(�)

� ‖∂m−1
t W +

2 (t)‖2L2(�)
+ ‖v̊+

2 ∂2ψ + v̊+
3 ∂3ψ + å7ψ‖2Hm (�t )

� ε‖∂m−1
t ∂1W (t)‖2L2(�)

+ ε−1‖∂m−1
t W (t)‖2L2(�)

+ M2(t)

� ε|||W (t)|||2m + ε−1‖W‖2Hm (�t )
+ M2(t) (4.28)

for all ε > 0.
It remains to make the estimate of the last term in (4.22).
If |β| ≤ m − 1, then using the trace theorem implies

∣∣∣∣
∫

�t

Dβ
tan(c̊1ψ)c̊0D

β
tanU

∣∣∣∣ �K ‖c̊1ψ‖Hm−1(�t )
‖U‖Hm (�t )

�K M1(t) + M2(t). (4.29)

If β = (β0, β2, β3) with β2 ≥ 1 or β3 ≥ 1, then it follows from integration by
parts and Moser-type calculus inequalities that

∣∣∣∣
∫

�t

Dβ
tan(c̊1ψ)c̊0D

β
tanU

∣∣∣∣ �
∫

�t

∣∣∂k
(
Dβ
tan(c̊1ψ)c̊0

)∣∣∣∣Dβ−ek
tan U

∣∣
�K M2(t) + ‖W‖2Hm (�t )

, (4.30)

where e2 := (0, 1, 0)� and e3 := (0, 0, 1)�.
If β = (m, 0, 0), then

∫
�t

Dβ
tan(c̊1ψ)c̊0D

β
tanU =

∫
�t

∂m
t (c̊1ψ)c̊0∂

m
t U = I7 + I8 + I9, (4.31)

with

I7 :=
∫

�

∂m
t (c̊1ψ)c̊0∂

m−1
t Udx ′, I8 :=

∫
�t

c̊1∂
m+1
t ψ∂m−1

t U ,

I9 =
∫

�t

([
∂m+1

t , c̊1
]
ψ c̊0∂

m−1
t U + ∂m

t (c̊1ψ)c̊1∂
m−1
t U

)
.



MHD Contact Discontinuities with Surface Tension 1129

For the integral term I7, we utilize the estimate (4.28) and the calculus inequality
(2.28) to infer

|I7| � ‖∂m
t (c̊1ψ)(t)‖2L2(�)

+ ‖∂m−1
t U(t)‖2L2(�)

� ‖∂m
t ψ(t)‖2L2(�)

+ ‖[∂m
t , c̊1]ψ‖2H1(�t )

+ ‖∂m−1
t W (t)‖2L2(�)

�M2(t) + ε|||W (t)|||2m + ε−1‖W‖2Hm (�t )
for all ε > 0. (4.32)

Thanks to the boundary condition (3.22d), we get

I8 =
∫

�t

c̊1∂
m
t W +

2 ∂m−1
t U

︸ ︷︷ ︸
Ia
8

+
∫

�t

c̊1∂
m
t (c̊0Dx ′ψ + c̊1ψ)∂m−1

t U
︸ ︷︷ ︸

Ib
8

. (4.33)

Passing the boundary integral Ia
8 to the volume one yields

Ia
8 = −

∫
�t

∂1

(
c̊1∂

m
t W +

2 ∂m−1
t U

)

= −
∫

�

c̊1∂1∂
m−1
t W +

2 ∂m−1
t Udx +

∫
�t

c̊2

⎛
⎝ ∂m−1

t U
∂m

t U
∂1∂

m−1
t U

⎞
⎠ ·

(
∂m

t W +
2

∂1∂
m−1
t W +

2

)

≥ − ε|||W (t)|||2m − C(ε)C(K )‖W‖2Hm (�t )
. (4.34)

Apply the trace theorem and the Moser-type calculus inequalities (2.27)–(2.28) to
obtain ∣∣∣Ib

8 + I9
∣∣∣ � M2(t) + ‖W‖2Hm (�t )

. (4.35)

We conclude the estimate (4.18) by plugging (4.21)–(4.22) into (4.20) and using
(4.23)–(4.35). The proof is thus complete. ��

4.3. Proof of Theorem 4.1

Combining the estimate (4.2) with (4.18), we choose ε > 0 small enough to
derive

|||W (t)|||2m +
∑

|β|≤m

‖(Dβ
tanψ,Dβ

tanDx ′ψ)(t)‖2L2(�)
�K M1(t) + M2(t), (4.36)

whereM1(t) andM2(t) are defined by (4.3) and (4.19), respectively. By virtue of
the Grönwall’s inequality, from (4.36) we obtain

|||W (t)|||2m +
∑

|β|≤m

‖(Dβ
tanψ,Dβ

tanDx ′ψ)(t)‖2L2(�)
�K ‖ f ‖2Hm (�t )

+
(
1 + ‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖2Hm+2(�T )

) (
‖( f , W )‖2L∞(�t )

+ ‖(ψ,Dx ′ψ)‖2L∞(�t )

)
.

(4.37)
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Integrating the last estimate over [0, T ], we use the embedding H3(�T ) ↪→
L∞(�T ), H2(�T ) ↪→ L∞(�T ) and take T > 0 sufficiently small to infer

‖W‖2Hm (�T ) + ‖(ψ,Dx ′ψ)‖2Hm (�T )

�K T
{
‖ f ‖2Hm (�T ) + ‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖2Hm+2(�T )

×
(
‖ f ‖2H3(�T )

+ ‖W‖2H3(�T )
+ ‖(ψ,Dx ′ψ)‖2H2(�T )

) }
(4.38)

for m ≥ 3. In view of (4.38) with m = 3, we can find a sufficiently small constant
T0 > 0, depending on K (cf. (3.5)), such that if 0 < T ≤ T0, then

‖W‖2H3(�T )
+ ‖(ψ,Dx ′ψ)‖2H3(�T )

�K ‖ f ‖2H3(�T )
.

Plugging the above estimate into (4.38) implies

‖W‖2Hm (�T ) + ‖(ψ,Dx ′ψ)‖2Hm (�T )

�K ‖ f ‖2Hm (�T ) + ‖(V̊ , Ψ̊ ,Dx ′Ψ̊ )‖2Hm+2(�T )
‖ f ‖2H3(�T )

for m ≥ 3. (4.39)

In Section 3,we have proved that for ( f ±, g) ∈ H1(�T )×H3/2(�T ) vanishing
in the past, there exists a unique solution (W, ψ) ∈ H1(�T ) × H1(�T ) to the
reduced problem (3.22). Using the arguments in [5, Chapter 7] and the energy
estimate (4.39), one can establish the existence and uniqueness of solutions (W, ψ)

of the problem (3.22) in Hm(�T ) × Hm(�T ) for any m ≥ 3. As a consequence,
the problem (3.15) admits a unique solution (V̇ ±, ψ) in Hm(�T )× Hm(�T ). The
tame estimate (4.1) for the problem (3.15) follows by combining (4.39) with (3.18).
The proof of Theorem 4.1 is finished.

5. Nash–Moser Iteration

This section is devoted to showing the nonlinear stability of MHD contact
discontinuities with surface tension, or equivalently, solving the nonlinear problem
(2.15). Our analysis is based on a modified Nash–Moser iteration scheme.

5.1. Reducing to zero initial data

To apply Theorems 3.1 and 4.1, we will reduce the nonlinear problem (2.15) to
that with zero initial data via the approximate solutions. For this purpose, we need
to impose suitable compatibility conditions on the initial data.

Take m ∈ N with m ≥ 3. Assume that the initial data (U+
0 , U−

0 , ϕ0) satisfy
Ũ±
0 := U±

0 − 
U± ∈ Hm+3/2(�) and ϕ0 ∈ Hm+2(R2), where 
U± are the constant
states defined by (2.5). We assume without loss of generality that ‖ϕ0‖L∞(R2) ≤ 1

4 ,
and hence

±∂1Φ
±
0 (x) ≥ 3

4
> 0 in �, (5.1)
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where Φ±
0 (x) := ±x1 + Φ̃±

0 (x) with Φ̃±
0 (x) := χ(±x1)ϕ0(x ′). Let us define the

perturbations (Ũ±, Φ̃±) := (U± − 
U±, Φ±∓x1), and

Ũ±
(�) := ∂�

t Ũ±∣∣
t=0, ϕ(�) := ∂�

t ϕ
∣∣
t=0, Φ̃±

(�) := ∂�
t Φ̃±∣∣

t=0 for � ∈ N.

It follows from (2.14) that

Φ̃±
(�)(x) = χ(±x1)ϕ(�)(x ′),

(
Ũ±

(0), ϕ±
(0), Φ̃±

(0)

) = (
Ũ±
0 , ϕ±

0 , Φ̃±
0

)
.

Applying Leibniz’s rule to the last condition in (2.15b) yields

ϕ(�+1) = v+
1(�)|x1=0 −

�∑
i=0

∑
j=2,3

(
�

i

)
∂ jϕ(�−i)v

+
j (i)|x1=0, (5.2)

where
(

�
i

) := �!
i !(�−i)! is the binomial coefficient. Under the hyperbolicity condition

(2.7), we can rewrite the equations (2.15) as

∂t Ũ
± = G

(
W±)

forW± := (Ũ±,∇Ũ±,DΦ̃±)� ∈ R
36,

where G is a certain C∞-function vanishing at the origin. Employ the generalized
Faà di Bruno’s formula (see [21, Theorem 2.1]) to find

Ũ±
(�+1) =

∑
αi ∈N36

|α1|+···+�|α�|=�

Dα1+···+α�

W G
(
W±

(0)

)
�!

�∏
i=1

1

αi !

(
W±

(i)

i !

)αi

, (5.3)

where W±
(i) := (Ũ±

(i), ∇Ũ±
(i), DΦ̃±

(i))
�.

By virtue of the relations (5.2)–(5.3), we can determine the traces Ũ±
(�) and ϕ(�)

inductively in the following lemma (see [20, Lemma 4.2.1] for the proof).

Lemma 5.1. Let m ≥ 3 be an integer. Assume that the initial data (U+
0 , U−

0 , ϕ0)

satisfy the hyperbolicity condition (2.23), ‖ϕ0‖L∞(R2) ≤ 1
4 , and (Ũ±

0 , ϕ0) ∈
Hm+3/2(�) × Hm+2(R2) for Ũ±

0 := U±
0 − 
U±. Then Eqs. (5.2)–(5.3) determine

Ũ±
(�) ∈ Hm+3/2−�(�) and ϕ(�) ∈ Hm+2−�(R2) for � = 1, . . . , m. Moreover,

m∑
�=0

∑
±

(
‖Ũ±

(�)‖Hm+3/2−�(�) + ‖ϕ(�)‖Hm+2−�(R2)

)
≤ C M0

for

M0 := ‖(Ũ+
0 , Ũ−

0 )‖Hm+3/2(�) + ‖ϕ0‖Hm+2(R2), (5.4)

where C > 0 depends only on m, ‖Ũ±
0 ‖W 1,∞(�), and ‖ϕ0‖W 1,∞(R2).
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In light of the definition ofH(ϕ) in (2.2), we set

ζ := Dx ′ϕ ∈ R
2 and f(ζ ) := ζ√

1 + |ζ |2 .

Then it follows from the first condition in (2.15b) that for ζ(i) := Dx ′ϕ(i),

[
p(�)

] =
∑

αi ∈N2

|α1|+···+�|α�|=�

sDx ′ ·
(
Dα1+···+α�

ζ f
(
ζ(0)

)
�!

�∏
i=1

1

αi !
(

ζ(i)

i !
)αi

)
. (5.5)

Setting H±
τ1

:= H±
1 ∂2Φ

± + H±
2 and H±

τ2
:= H±

1 ∂3Φ
± + H±

3 , we have

H±
τ1(�)

:= ∂�
t H±

τ1

∣∣
t=0 =

�∑
i=0

(
�

i

)
H±
1(i)∂2Φ

±
(�−i) + H±

2(�),

H±
τ2(�)

:= ∂�
t H±

τ2

∣∣
t=0 =

�∑
i=0

(
�

i

)
H±
1(i)∂3Φ

±
(�−i) + H±

3(�).

According to the boundary conditions (2.15b), we introduce the following ter-
minology.

Definition 5.1. Assume that all the conditions of Lemma 5.1 are satisfied. Then
the initial data (U+

0 , U−
0 , ϕ0) are said to be compatible up to order m if for � =

0, . . . , m, the traces Ũ±
(�) and ϕ(�) determined by (5.2)–(5.3) satisfy the boundary

conditions (5.5) and[
v(�)

] = 0,
[
Hτ1(�)

] = 0,
[
Hτ2(�)

] = 0 on �. (5.6)

We are now ready to construct the approximate solutions.

Lemma 5.2. Suppose that all the conditions of Lemma 5.1 are satisfied. Suppose
further that the initial data (U+

0 , U−
0 , ϕ0) are compatible up to order m and satisfy

the constraints (2.18) and (2.20). Then there are positive constants T1(M0) and
C(M0) depending on M0 (cf. (5.4)), such that if 0 < T ≤ T1(M0), then there exist
functions U a± and ϕa satisfying

B(U a+, U a−, ϕa) = 0, [Ha] = 0 on �T , (5.7a)

U a±∣∣
t=0 = U±

0 in �, ϕa
∣∣
t=0 = ϕ0 on �. (5.7b)

Moreover,

∂�
t L±(U a±, Φa±)

∣∣
t=0 = 0 in � for � = 0, . . . , m − 1, (5.8a)

‖(Ũ a+, Ũ a−)‖Hm+1(�T ) + ‖ϕa‖Hm+5/2(�T ) ≤ C(M0), (5.8b)

ρ∗ < inf
�T

ρ±(U a±) ≤ sup
�T

ρ±(U a±) < ρ∗,
∣∣∂1Φa±∣∣ ≥ 5

8
in �T , (5.8c)

∣∣Ha±
1 − Ha±

2 ∂2ϕ
a − Ha±

3 ∂3ϕ
a
∣∣ ≥ 3

4
κ > 0 on �T , (5.8d)

where Ũ a± := U a± − 
U± and Φa± := ±x1 + Ψ a± with Ψ a± := χ(±x1)ϕa.
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Proof. Since ‖ϕ0‖L∞(R2) ≤ 1
4 , we can take ϕa ∈ Hm+5/2(R3) to satisfy

‖ϕa‖L∞(R3) ≤ 3

8
, ∂�

t ϕa
∣∣
t=0 = ϕ(�) ∈ Hm+2−�(R2) for � = 0, . . . , m.

Define Φa± := ±x1 + χ(±x1)ϕa(t, x ′), so that |∂1Φa±| ≥ 5
8 in R × �.

Using the compatibility conditions (5.6) and the initial constraint [H0] = 0, we
can prove as in [23, Lemma 3] that[

H(�)

] = 0 on � for � = 0, . . . , m.

Then we apply the lifting result in [19, Theorem 2.3] to find p̃a± ∈ Hm+1(R× �)

and (ṽa±
2 , ṽa±

3 , H̃a±, S̃a±) ∈ Hm+2(R × �) such that

[ p̃a] = sH(ϕa), [ṽa
2 ] = [ṽa

3 ] = 0,
[
H̃a] = 0 on �,

∂�
t ( p̃a±, ṽa±

2 , ṽa±
3 , H̃a±, S̃a±)

∣∣
t=0

= ( p̃±
(�), ṽ

±
2(�), ṽ

±
3(�), H̃±

(�), S̃±
(�)) in � for � = 0, . . . , m.

Set (pa±, va±
2 , va±

3 , Ha±, Sa±) := ( p̃a±, ṽa±
2 , ṽa±

3 , H̃a±, S̃a±)+( p̄, v̄2, v̄3, 
H ,
S±).

By virtue of the trace theorem, the first condition in (5.6), and the relation (5.2),
we can choose va±

1 = ṽa±
1 ∈ Hm+2(R × �) to satisfy

va±
1 |x1=0 = ∂tϕ

a + ∂2ϕ
ava+

2 |x1=0 + ∂3ϕ
ava+

3 |x1=0 ∈ Hm+3/2(R3),

∂�
t ṽa±

1(�)

∣∣
t=0 = ṽ±

1(�) in � for � = 0, . . . , m.

We have already obtained (5.7) and the second relation in (5.8c).
The equations (5.8a) follow directly from (5.3). Use Lemma 5.1 and the conti-

nuity of the lifting operators to derive the inequality (5.8b). The inequality (5.8d)
and the first relation in (5.8c) follow from (5.8b) by taking T > 0 sufficiently small.
The proof of the lemma is complete. ��

We call the vector-valued function (U a+, U a−, ϕa) constructed in Lemma 5.2
the approximate solution to the problem (2.15). Define

f a± :=
{

− L±(U a±, Φa±) if t > 0,

0 if t < 0.
(5.9)

Utilize the Moser-type calculus and embedding inequalities to deduce that

f a± ∈ Hm(�T ), ‖ f a±‖Hm (�T ) ≤ δ0 (T ) , (5.10)

where δ0(T ) tends to zero asT → 0. In viewof (5.7)–(5.9),we infer that (U+, U−, ϕ)

is a solution of the nonlinear problem (2.15) on [0, T ] × �, if (V +, V −, ψ) =
(U+, U−, ϕ) − (U a+, U a−, ϕa) solves⎧⎪⎨

⎪⎩
L(V, Ψ ) = f a := ( f a+, f a−)� in �T ,

B(V, ψ) := B(U a+ + V +, U a− + V −, ϕa + ψ) = 0 on �T ,

(V, ψ) = 0, if t < 0,

(5.11)
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where V := (V +, V −)�, Ψ := (Ψ +, Ψ −)� with Ψ ± := χ(±x1)ψ , and

L(V, Ψ ) :=
(
L+(U a+ + V +, Φa+ + Ψ +) − L+(U a+, Φa+)

L−(U a− + V −, Φa− + Ψ −) − L−(U a−, Φa−)

)
.

It follows from (5.7a) that (V, ψ) ≡ 0 satisfies (5.11) for t < 0. Therefore, the
original problem on [0, T ]×� is reformulated as a problem in�T whose solutions
vanish in the past.

5.2. Iteration scheme and inductive hypothesis

We first list the important properties of smooth operators [1,12,35].

Proposition 5.3. Let T > 0 and m ∈ N with m ≥ 4. Denote by F s(�T )

the class of Hs(�T )-functions vanishing in the past. Then there exists a family
{Sθ }θ≥1 of smoothing operators u = (u+, u−) �→ Sθ u = ((Sθ u)+, (Sθ u)−) from
F 3(�T ) × F 3(�T ) to

⋂
s≥3F

s(�T ) × F s(�T ), such that

‖Sθ u‖H�(�T ) �m θ(�− j)+‖u‖H j (�T ) for j, � ∈ [1, m], (5.12a)

‖Sθ u − u‖H�(�T ) �m θ�− j‖u‖H j (�T ) for 1 ≤ � ≤ j ≤ m, (5.12b)∥∥∥∥ d

dθ
Sθ u

∥∥∥∥
H�(�T )

�m θ�− j−1‖u‖H j (�T ) for j, � ∈ [1, m], (5.12c)

where j, � ∈ N and (� − j)+ := max{0, � − j}. Moreover,

‖[Sθ u]‖H�(�T ) �m θ(�+1− j)+‖[u]‖H j (�T ) for j, � = 1, . . . , m, (5.13)

where [Sθ u] := (Sθ u)+ − (Sθu)− and [u] := u+ − u− on �T .
There is another family of smoothing operators (still denoted by Sθ ) acting on

functions that are defined on the boundary �T and satisfy the properties (5.12)
with norms ‖ · ‖H j (�T ).

Let us follow [6,12,35] to describe the iteration scheme for the reformulated
problem (5.11).
Assumption (A-1): Take (V ±

0 , ψ0) = 0. Let (V ±
k , ψk) be given and vanish in the

past for k = 0, . . . , n. Set Ψ ±
k := χ(±x1)ψk for k = 0, . . . , n.

We consider

V ±
n+1 = V ±

n + δV ±
n , ψn+1 = ψn + δψn, δΨ ±

n := χ(±x1)δψn . (5.14)

The above differences δV ±
n and δψn will solve the effective linear problem

⎧⎪⎨
⎪⎩
L

′
e±(U a± + V ±

n+1/2, Φ
a± + Ψ ±

n+1/2)δV̇ ±
n = f ±

n in �T ,

B
′
e(U

a + Vn+1/2, ϕ
a + ψn+1/2)(δV̇n, δψn) = gn on �T ,

(δV̇n, δψn) = 0 for t < 0,

(5.15)
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where (Vn+1/2, ψn+1/2) is a smooth modified state such that (U a + Vn+1/2, ϕ
a +

ψn+1/2) satisfies the constraints (3.1)–(3.4),Ψ
±
n+1/2 := χ(±x1)ψn+1/2, and δV̇n :=

(δV̇ +
n , δV̇ −

n )� is the good unknown (cf. (3.7)) with

δV̇ ±
n := δV ±

n − δΨ ±
n

∂1(Φa± + Ψ ±
n+1/2)

∂1(U
a± + V ±

n+1/2). (5.16)

See Proposition 5.8 for the construction and estimate of (Vn+1/2, ψn+1/2). The
source terms fn := ( f +

n , f −
n )� and gn will be specified through the accumulated

error terms at Step n.
Assumption (A-2): Set (e0, ẽ0, g0) := 0 and f0 := Sθ0 f a for θ0 ≥ 1 sufficiently
large. Let ( fk, gk, ek, ẽk) be given and vanish in the past for k = 1, . . . , n − 1.

Under Assumptions (A-1)–(A-2), we calculate the accumulated error terms at
Step n by

En :=
n−1∑
k=0

ek, Ẽn :=
n−1∑
k=0

ẽk . (5.17)

Then we compute fn and gn from

n∑
k=0

fk + Sθn En = Sθn f a,

n∑
k=0

gk + Sθn Ẽn = 0, (5.18)

where Sθn are the smoothing operators defined in Proposition 5.3 with θn := (θ20 +
n)1/2. Once fn and gn are specified, we can employ Theorem 3.1 to take (δV̇n, δψn)

as the unique solutions of the problem (5.15). Then we get δV ±
n and (V ±

n+1, ψn+1)

from (5.16) and (5.14) respectively.
Let us determine the error terms en and ẽn via the decompositions

L(Vn+1, Ψn+1) − L(Vn, Ψn)

= L
′(U a + Vn, Φa + Ψn)(δVn, δΨn) + e′

n

= L
′(U a + Sθn Vn, Φa + Sθn Ψn)(δVn, δΨn) + e′

n + e′′
n

= L
′(U a + Vn+1/2, Φ

a + Ψn+1/2)(δVn, δΨn) + e′
n + e′′

n + e′′′
n

= L
′
e(U

a + Vn+1/2, Φ
a + Ψn+1/2)δV̇n + e′

n + e′′
n + e′′′

n + e(4)
n (5.19)

and

B(Vn+1, ψn+1) − B(Vn, ψn)

= B
′(U a + Vn, ϕa + ψn)(δVn, δψn) + ẽ′

n

= B
′(U a + Sθn Vn, ϕa + Sθn ψn)(δVn, δψn) + ẽ′

n + ẽ′′
n

= B
′
e(U

a + Vn+1/2, ϕ
a + ψn+1/2)(δV̇n, δψn) + ẽ′

n + ẽ′′
n + ẽ′′′

n , (5.20)

where we write

L
′(Ů , Φ̊

)
(V, Ψ ) :=

(
L

′+
(
Ů+, Φ̊+)

(V +, Ψ +)

L
′−
(
Ů−, Φ̊−)

(V −, Ψ −)

)
, L

′
e
(
Ů , Φ̊

)
V̇ :=

(
L

′
e+

(
Ů+, Φ̊+)

V̇ +
L

′
e−

(
Ů−, Φ̊−)

V̇ −
)

.
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Moreover, it follows from (3.9) that e(4)
n = (e(4)+

n , e(4)−
n )� for

e(4)±
n := δΨ ±

n

∂1(Φa± + Ψ ±
n+1/2)

∂1L±(U a± + V ±
n+1/2, Φ

a± + Ψ ±
n+1/2). (5.21)

Then the description of the iteration scheme is finished by setting

en := e′
n + e′′

n + e′′′
n + e(4)

n and ẽn := ẽ′
n + ẽ′′

n + ẽ′′′
n . (5.22)

Next we formulate the inductive hypothesis. Let m ∈ N with m ≥ 12 and
α̃ := m − 2. Suppose that the initial data (U+

0 , U−
0 , ϕ0) satisfy all the conditions

of Lemma 5.2, yielding the estimates (cf. (5.8b) and (5.10))
∥∥Ũ a

∥∥
Hm+1(�T )

+ ∥∥ϕa
∥∥

Hm+5/2(�T )
≤ C(M0),

∥∥ f a
∥∥

Hm (�T )
≤ δ0(T ), (5.23)

where M0 is defined by (5.4) and δ0(T ) tends to zero as T → 0. Suppose further
that Assumptions (A-1)–(A-2) are satisfied. Given an integer α ∈ (4, α̃) and a real
number ε > 0, our inductive hypothesis reads as

(Hn−1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) ‖(δVk, δΨk)‖Hs (�T ) + ‖(δψk,Dx ′δψk)‖Hs (�T ) ≤ εθ s−α−1
k Δk

for all integers k ∈ [0, n − 1] and s ∈ [3, α̃];
(b) ‖L(Vk, Ψk) − f a‖Hs (�T ) ≤ 2εθ s−α−1

k

for all integersk ∈ [0, n − 1] ands ∈ [3, α̃ − 2];
(c) ‖B(Vk, ψk)‖Hs (�T ) ≤ εθ s−α−1

k

for all integersk ∈ [0, n − 1] ands ∈ [4, α],
where Δk := θk+1 − θk . Since θ0 ≥ 1 and θn := (θ20 + n)1/2, we find Δk ∼ θ−1

k
for all k ∈ N.

We are going to show that hypothesis (Hn−1) implies (Hn) provided T, ε > 0
are small enough and θ0 ≥ 1 is suitably large. After that, we shall prove that (H0)
holds for T > 0 sufficiently small.

Let us first assume that hypothesis (Hn−1) is satisfied, which implies the fol-
lowing consequences as in [12, Lemmas 6–7] (see also [35, Lemma 4.6]):

Lemma 5.4. If θ0 is large enough, then

‖(Vk, Ψk)‖Hs (�T ) + ‖ψk‖Hs (�T ) ≤
{

εθ
(s−α)+
k if s �= α,

ε log θk if s = α,
(5.24)

‖((I − Sθk )Vk, (I − Sθk )Ψk)‖Hs (�T ) + ‖(I − Sθk )ψk‖Hs (�T ) � εθ s−α
k , (5.25)

for all integers k ∈ [0, n] and s ∈ [3, α̃], and

‖(Sθk Vk,Sθk Ψk)‖Hs (�T ) + ‖Sθk ψk‖Hs (�T ) �
{

εθ
(s−α)+
k if s �= α,

ε log θk if s = α,
(5.26)

for all integers k ∈ [0, n] and s ∈ [3, α̃ + 3].
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5.3. Estimate of the error terms

In this subsection we estimate the error terms ek and ẽk defined by (5.22). First
we rewrite the quadratic error terms e′

k and ẽ′
k given in (5.19)–(5.20) as

e′
k =

∫ 1

0
L

′′(U a + Vk + τδVk, Φ
a + Ψk

+ τδΨk
)(

(δVk, δΨk), (δVk, δΨk)
)
(1 − τ) dτ, (5.27)

ẽ′
k =

∫ 1

0
B

′′(U a + Vk + τδVk, ϕ
a + ψk

+ τδψk
)(

(δVk, δψk), (δVk, δψk)
)
(1 − τ) dτ, (5.28)

through the second derivatives of the operators L and B:

L
′′(Ů , Φ̊

)(
(V, Ψ ), (Ṽ , Ψ̃ )

) := d

dθ
L

′(Ů + θ Ṽ , Φ̊ + θΨ̃
)(

V, Ψ
)∣∣∣∣

θ=0
,

B
′′(Ů , ϕ̊

)(
(V, ψ), (Ṽ , ψ̃)

) := d

dθ
B

′(Ů + θ Ṽ , ϕ̊ + θψ̃
)(

V, ψ
)∣∣∣∣

θ=0
,

where L′ and B
′ are the first-derivative operators defined by (3.6). A lengthy but

straightforward computation yields the following explicit form of B′′:

B
′′(Ů , ϕ̊

)(
(V, ψ), (Ṽ , ψ̃)

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sDx ′ ·
(

ζ̊ · ζ̃

|N̊ |3 ζ − ζ̃ · ζ

|N̊ |3 ζ̊ − ζ̊ · ζ

|N̊ |3 ζ̃ + 3(ζ̊ · ζ )(ζ̊ · ζ̃ )

|N̊ |5 ζ̊

)

0
0
0

[H1]∂2ψ̃ + [H̃1]∂2ψ
[H1]∂3ψ̃ + [H̃1]∂3ψ

(ṽ+
2 ∂2 + ṽ+

3 ∂3)ψ + (v+
2 ∂2 + v+

3 ∂3)ψ̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.29)

where ζ := Dx ′ψ , ζ̊ := Dx ′ ϕ̊, and ζ̃ := Dx ′ψ̃ . Omitting the detailed calcula-
tions, we apply the Moser-type calculus and embedding inequalities to derive the
following result:

Proposition 5.5. Let T > 0 and s ∈ N with s ≥ 3. Suppose that (Ṽ , Ψ̃ ) ∈
Hs+1(�T ) and ϕ̃ ∈ Hs+2(�T ) satisfy ‖(Ṽ , Ψ̃ )‖H4(�T ) + ‖ϕ̃‖H3(�T ) ≤ K̃ for
some constant K̃ > 0. If (Vi , Ψi ) ∈ Hs+1(�T ) for i = 1, 2, then

∥∥L′′(
U + Ṽ , 
Φ + Ψ̃
)(

(V1, Ψ1), (V2, Ψ2)
)∥∥

Hs (�T )

�K̃

∑
i �= j

∥∥(Vi , Ψi )
∥∥

H4(�T )

∥∥(Vj , Ψ j )
∥∥

Hs+1(�T )

+∥∥(V1, Ψ1)
∥∥

H4(�T )

∥∥(V2, Ψ2)
∥∥

H4(�T )

∥∥(Ṽ , Ψ̃ )
∥∥

Hs+1(�T )
,
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where 
U := (
U+, 
U−)� and 
Φ := (x1,−x1)�. If Wi ∈ Hs(�T ) and ψi ∈
Hs+2(�T ) for i = 1, 2, then

∥∥B′′(
U + Ṽ , ϕ̃
)(

(W1, ψ1), (W2, ψ2)
)∥∥

Hs (�T )

�K̃

∑
i �= j

{∥∥Wi
∥∥

Hs (�T )

∥∥ψ j
∥∥

H3(�T )
+ ∥∥Wi

∥∥
H2(�T )

∥∥ψ j
∥∥

Hs+1(�T )

+∥∥ψi
∥∥

H3(�T )

∥∥ψ j
∥∥

Hs+2(�T )
+ ∥∥ψ1

∥∥
H3(�T )

∥∥ψ2
∥∥

H3(�T )

∥∥ϕ̃
∥∥

Hs+2(�T )

}
.

Apply Proposition 5.5 to obtain the estimate for e′
k and ẽ′

k as follows.

Lemma 5.6. Let α ≥ 5. If ε > 0 is small enough and θ0 ≥ 1 is sufficiently large,
then

‖e′
k‖Hs (�T ) + ‖ẽ′

k‖Hs (�T ) � ε2θ
ς1(s)−1
k Δk (5.30)

for all integers k ∈ [0, n − 1] and s ∈ [3, α̃ − 2], where

ς1(s) := max{s + 3 − 2α, (s + 1 − α)+ + 6 − 2α}.

Proof. In view of (5.23), hypothesis (Hn−1), and Lemma 5.4, we get

‖(Ũ a, Vk, δVk, Ψ
a, Ψk, δΨk)‖H4(�T ) + ‖(ϕa, ψk, δψk)‖H3(�T ) � 1,

which allows us to apply Proposition 5.5 for estimating e′
k and ẽ′

k through the
identities (5.27)–(5.28). More precisely, we use (5.23), hypothesis (Hn−1), and the
trace theorem to deduce

‖e′
k‖Hs (�T ) � ε2Δ2

k

(
θ s+3−2α

k + θ6−2α
k ‖(Vk, Ψk)‖Hs+1(�T )

)
,

‖ẽ′
k‖Hs (�T ) � ε2Δ2

k

(
θ s+3−2α

k + θ4−2α
k ‖ψk‖Hs+2(�T )

)
,

for all integers k ∈ [0, n −1] and s ∈ [3, α̃−2]. Then we obtain the estimate (5.30)
by utilizing the inequalities (5.24), α ≥ 5, and (s + 2−α)+ ≤ (s + 1−α)+ + 1. ��

The next lemma provides the estimate of the first substitution error terms e′′
k

and ẽ′′
k defined in (5.19)–(5.20).

Lemma 5.7. Let α ≥ 5. If ε > 0 is small enough and θ0 ≥ 1 is sufficiently large,
then

‖e′′
k ‖Hs (�T ) + ‖ẽ′′

k ‖Hs (�T ) � ε2θ
ς2(s)−1
k Δk, (5.31)

for all integers k ∈ [0, n − 1] and s ∈ [3, α̃ − 2], where

ς2(s) := max{s + 5 − 2α, (s + 1 − α)+ + 8 − 2α}. (5.32)
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Proof. We first rewrite the terms e′′
k and ẽ′′

k as

e′′
k =

∫ 1

0
L

′′(U a + Sθk Vk + τ(I − Sθk )Vk, Φa + Sθk Ψk

+ τ(I − Sθk )Ψk

)((
δVk, δΨk

)
,
(
(I − Sθk )Vk, (I − Sθk )Ψk

))
dτ,

ẽ′′
k =

∫ 1

0
B

′′(U a + Sθk Vk + τ(I − Sθk )Vk, ϕa + Sθk ψk

+ τ(I − Sθk )ψk

)((
δVk, δψk

)
,
(
(I − Sθk )Vk, (I − Sθk )ψk

))
dτ.

Then we utilize Proposition 5.5, (5.23), hypothesis (Hn−1), Lemma 5.4, and the
trace theorem to derive

‖e′′
k ‖Hs (�T ) � ε2Δk

(
θ s+4−2α

k + θ7−2α
k ‖(Sθk Vk,Sθk Ψk)‖Hs+1(�T )

)
,

‖ẽ′′
k ‖Hs (�T ) � ε2Δk

(
θ s+4−2α

k + θ5−2α
k ‖Sθk ψk‖Hs+2(�T )

)
,

for all integers k ∈ [0, n − 1] and s ∈ [3, α̃ − 2]. The estimate (5.31) follows by
means of the inequalities (5.26), α ≥ 5, and (s + 2 − α)+ ≤ (s + 1 − α)+ + 1. ��

For the solvability of the problem (5.15), we shall require that the smooth mod-
ified state (Vn+1/2, ψn+1/2) vanishes in the past and (U a + Vn+1/2, ϕ

a + ψn+1/2)

satisfies the constraints (3.1)–(3.4). Since (Vn+1/2, ψn+1/2) should vanish in the
past and (U a, ϕa) satisfies (5.8), the state (U a + Vn+1/2, ϕ

a +ψn+1/2) will satisfy
(3.1)–(3.2) and (3.4) provided T > 0 is sufficiently small. Therefore, we may focus
only on the constraints (3.3).

Proposition 5.8. Let α ≥ 6. Then there are some functions Vn+1/2 and ψn+1/2
vanishing in the past, such that if ε, T > 0 are small enough and θ0 ≥ 1 is suitably
large, then (U a + Vn+1/2, ϕ

a + ψn+1/2) satisfies (3.1)–(3.4), and

ψn+1/2 = Sθn ψn, Ψ ±
n+1/2 := χ(±x1)ψn+1/2, (5.33)

‖Sθn Ψn − Ψn+1/2‖Hs (�T ) � εθ s−α
n for s = 3, . . . , α̃ + 3, (5.34)

‖Sθn Vn − Vn+1/2‖Hs (�T ) � εθ s+1−α
n for s = 3, . . . , α̃ + 2, (5.35)

where Ψn+1/2 := (Ψ +
n+1/2, Ψ

−
n+1/2)

�.

Proof. We divide the proof into four steps.
Step 1. Let us define ψn+1/2 and Ψ ±

n+1/2 by (5.33). When 3 ≤ s ≤ α̃, we obtain
from the inequality (5.25) that

‖Sθn Ψn − Ψn+1/2‖Hs (�T )

� ‖(Sθn − I )Ψn‖Hs (�T ) + ‖χ(±x1)(I − Sθn )ψn‖Hs (�T )

� ‖(I − Sθn )Ψn‖Hs (�T ) + ‖(I − Sθn )ψn‖Hs (�T ) � εθ s−α
n .

Then the estimate (5.34) follows by using (5.26) for α̃ < s ≤ α̃ + 3.
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Step 2. For i = 2, 3, we define

v±
i,n+1/2 := (Sθn vi,n)± ∓ 1

2
[Sθn vn]∣∣x1=0χ(x1).

Using (5.13) gives

‖[Sθn vn]‖Hs (�T ) � θ s−3
n ‖[vn]‖H4(�T ) if 3 ≤ s ≤ α̃ + 3. (5.36)

It follows from hypothesis (Hn−1) that for all integers s ∈ [4, α],
‖[vn]‖Hs (�T ) � ‖[vn−1]‖Hs (�T ) + ‖δvn−1‖Hs (�T )

� ‖B(Vn−1, ψn−1)‖Hs (�T ) + ‖δVn−1‖Hs+1(�T ) � εθ s−α−1
n .

Here we recall the definition of the boundary operator B from (5.11) and (2.15b).
Plugging the last inequality to (5.36) implies that

‖[Sθn vn]‖Hs (�T ) � εθ s−α
n for s = 3, . . . , α̃ + 3. (5.37)

Hence, we infer

‖vi,n+1/2 − Sθn vi,n‖Hs (�T ) � εθ s−α
n for i = 2, 3 and s = 3, . . . , α̃ + 3. (5.38)

Step 3. Let us set

v±
1,n+1/2 := (Sθn v1,n)± + χ(x1)

(
ŵn − (Sθn v1,n)±|x1=0

)
,

where ŵn is defined by

ŵn := ∂tψn+1/2 +
∑

i=2,3

((
va+

i + v+
i,n+1/2

)
∂iψn+1/2 + v+

i,n+1/2∂iϕ
a
)∣∣∣

x1=0
.

It follows from (5.7a) that (va + vn+1/2, ϕ
a + ψn+1/2) satisfies the first and third

constraints in (3.3). By virtue of (5.7a) and (5.33), we have

ŵn − (Sθn v1,n)+|x1=0

= B(Sθn Vn,Sθn ψn)7|x1=0︸ ︷︷ ︸
T1

+
∑

i=2,3

∂i (ϕ
a + ψn+1/2)

(
v+

i,n+1/2 − (Sθn vi,n)+
)|x1=0︸ ︷︷ ︸

T2i

.

Utilizing the Moser-type calculus inequality (2.26), the trace theorem, (5.38), and
(5.26) yields

‖T2i‖Hs (�T ) � εθ s+1−α
n for i = 2, 3 and s = 3, . . . , α̃ + 2.

To estimate T1 in Hs(�T ), we decompose

T1 = T1a + Sθn

(
B (Vn, ψn)7 |x1=0 − B (Vn−1, ψn−1)7 |x1=0

)
︸ ︷︷ ︸

T1b

+ B
(
Sθn Vn,Sθn ψn

)
7|x1=0 − Sθn

(
B (Vn, ψn)7 |x1=0

)
︸ ︷︷ ︸

T1c

,
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where T1a := Sθn

(
B
(
Vn−1, ψn−1

)
7|x1=0

)
. It follows from (5.12a) and point (c) of

hypothesis (Hn−1) that

‖T1a‖Hs (�T ) � θ s−3
n ‖B(

Vn−1, ψn−1
)‖H4(�T ) � εθ s−α

n for s = 3, . . . , α̃ + 2.

In view of the identity

T1b = Sθn

(
∂tδψn−1

) − Sθn

(
δv+

1,n−1|x1=0
)

+
∑

i=2,3

Sθn

((
va+

i + v+
i,n

)|x1=0∂iδψn−1 + δv+
i,n−1|x1=0∂i (ϕ

a + ψn−1)
)
,

we use Proposition 5.3, hypothesis (Hn−1), the trace and embedding theorems, and
the Moser-type calculus inequality (2.26) to deduce that

‖T1b‖Hs (�T ) � εθ s−α
n for s = 3, . . . , α̃ + 2.

For estimating the term T1c, we shall utilize the further decomposition

T1c =
{
∂t (Sθn ψn) − Sθn ∂tψn

}
−

{
(Sθn v1,n)+|x1=0 − Sθn

(
v+
1,n|x1=0

)}

+
∑

i=2,3

{(
va+

i + (Sθn vi,n)+
)|x1=0∂iSθn ψn − Sθn

(
(va+

i + v+
i,n)|x1=0∂iψn

)}

+
∑

i=2,3

{
(Sθn vi,n)+|x1=0∂iϕ

a − Sθn

(
v+

i,n|x1=0∂iϕ
a)}. (5.39)

Let us make the estimate of the commutator

T3 := (
va+
3 + (Sθn v3,n)+

)|x1=0∂3Sθn ψn︸ ︷︷ ︸
T3a

−Sθn

(
(va+

3 + v+
3,n)|x1=0∂3ψn

)
︸ ︷︷ ︸

T3b

.

For α + 1 ≤ s ≤ α̃ + 2, recalling from (5.23) that Ũ a ∈ H α̃+3(�T ), we uti-
lize the Moser-type calculus inequality (2.26), the trace and embedding theorems,
Proposition 5.3, and Lemma 5.4 to derive

‖T3a‖Hs (�T ) � ε‖ṽa
3 + Sθn v3,n‖Hs+1(�T ) + ‖Sθn ψn‖Hs+1(�T ) � εθ s−α+1

n ,

‖T3b‖Hs (�T ) � θ s−α
n ‖(va+

3 + v+
3,n)|x1=0∂3ψn‖Hα(�T )

� θ s−α
n

(
ε‖ṽa + vn‖Hα+1(�T ) + ‖ψn‖Hα+1(�T )

)
� εθ s−α+1

n .

For 3 ≤ s ≤ α, thanks to the triangle inequality

‖T3‖Hs (�T ) ≤ ∥∥((Sθn v3,n)+ − v+
3,n

)|x1=0∂3Sθn ψn
∥∥

Hs (�T )

+ ∥∥(va+
3 + v+

3,n)|x1=0∂3(Sθn − I )ψn
∥∥

Hs (�T )

+ ∥∥(I − Sθn )
(
(va+

3 + v+
3,n)|x1=0∂3ψn

)∥∥
Hs (�T )

,

we can employ the Moser-type calculus inequality (2.26) to infer

‖T3‖Hs (�T ) � εθ s−α+1
n for s = 3, . . . , α.
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The other commutators in the decomposition (5.39) can be handled by following
the same approach, so we can omit the details and write down the estimate

‖T1c‖Hs (�T ) � εθ s−α+1
n for s = 3, . . . , α̃ + 2.

Combining the above estimates of T1a , T1b, and T1c with (5.37) gives

‖v1,n+1/2 − Sθn v1,n‖Hs (�T ) � ‖ŵn − (Sθn v1,n)+‖Hs (�T ) + ‖[Sθn vn]‖Hs (�T )

� εθ s−α+1
n for s = 3, . . . , α̃ + 2.

Step 4. We define

H±
n+1/2 := (Sθn Hn)

± ∓ 1

2
[Sθn Hn]∣∣x1=0χ(x1),

so that Ha + Hn+1/2 satisfies the second constraint in (3.3), i.e., [Ha + Hn+1/2] =
[Hn+1/2] = 0 on �T . In light of (5.13), we obtain

‖[Sθn Hn]‖Hs (�T ) � θ s−3
n ‖[Hn]‖H4(�T ) if 3 ≤ s ≤ α̃ + 2. (5.40)

As in the proof of (169) in [23, Lemma 6], when α ≥ 6, we can prove that if
ε, T > 0 are small enough and θ0 ≥ 1 is sufficiently large, then∥∥(1,−∂2(ϕ

a + ψn−1),−∂3(ϕ
a + ψn−1)

)[Hn−1]
∥∥

Hs (�T )
� εθ s−α

n

for s = 3, . . . , α − 1. From point (c) of hypothesis (Hn−1), we derive∥∥∥∥
(

∂2(ϕ
a + ψn−1) 1 0

∂3(ϕ
a + ψn−1) 0 1

)
[Hn−1]

∥∥∥∥
Hs (�T )

� εθ s−α−1
n for s = 4, . . . , α.

Combine the last two estimates with point (a) of hypothesis (Hn−1) to get∥∥[Hn]∥∥Hs (�T )
�

∥∥[Hn−1]
∥∥

Hs (�T )
+ ∥∥δHn−1

∥∥
Hs (�T )

� εθ s−α
n (5.41)

for s = 4, . . . , α − 1. Then it follows from (5.40)–(5.41) that

‖Hn+1/2 − Sθn Hn‖Hs (�T ) � ‖[Sθn Hn]‖Hs (�T ) � εθ s−α+1
n

for s = 3, . . . , α̃ + 2. Setting pn+1/2 := Sθn pn (pressure) and Sn+1/2 := Sθn Sn

(entropy) completes the proof of the proposition. ��
With Proposition 5.8 in hand,we can obtain the following estimate of the second

substitution error terms e′′′
k and ẽ′′′

k defined in (5.19)–(5.20).

Lemma 5.9. Let α ≥ 6. If ε, T > 0 are small enough and θ0 ≥ 1 is sufficiently
large, then

‖ẽ′′′
k ‖Hs (�T ) � ε2θ

ς2(s)−1
k Δk, ‖e′′′

k ‖Hs (�T ) � ε2θ
ς3(s)−1
k Δk, (5.42)

for all integers k ∈ [0, n − 1] and s ∈ [3, α̃ − 2], where ς2(s) is defined by (5.32)
and

ς3(s) := max{s + 6 − 2α, (s + 1 − α)+ + 9 − 2α}.



MHD Contact Discontinuities with Surface Tension 1143

Proof. In view of (5.29) and (5.33), we can rewrite the term ẽ′′′
k as

ẽ′′′
k =

⎛
⎜⎜⎝

0
[Sθk H1,k − H1,k+1/2]∂2δψk

[Sθk H1,k − H1,k+1/2]∂3δψk∑
i=2,3

(
(Sθk vi,k)

+ − v+
i,k+1/2

)
∂iδψk

⎞
⎟⎟⎠ .

Then we utilize theMoser-type calculus inequality (2.26), the embedding and trace
theorems, the estimate (5.35), and point (a) of hypothesis (Hn−1) to discover

‖ẽ′′′
k ‖Hs (�T ) � ‖Sθk Vk − Vk+1/2‖Hs+1(�T )‖δψk‖H3(�T )

+ ‖Sθk Vk − Vk+1/2‖H3(�T )‖δψk‖Hs+1(�T ) � ε2θ s+4−2α
k Δk

for s = 3, . . . , α̃ − 2. Applying Propositions 5.5 and 5.8 to the identity

e′′′
k =

∫ 1

0
L

′′(U a + τ(Sθk Vk − Vk+1/2) + Vk+1/2, Φa + τ(Sθk Ψk − Ψk+1/2)

+ Ψk+1/2

)(
(δVk, δΨk), (Sθk Vk − Vk+1/2,Sθk Ψk − Ψk+1/2)

)
dτ,

we have

‖e′′′
k ‖Hs (�T ) � ε2Δk

(
θ s+5−2α

k + θ8−2α
k ‖(Sθk Vk,Sθk Ψk)‖Hs+1(�T )

)
,

which combined with (5.26) implies the second estimate in (5.42) for e′′′
k . ��

The next lemma concerns the last error term e(4)
n = (e(4)+

n , e(4)−
n )� with e(4)±

n
defined by (5.21). Here we omit the detailed proof, which is similar to that for [35,
Lemma 4.12] (see also [36, Lemma 4.10]).

Lemma 5.10. Let α ≥ 6 and α̃ ≥ α + 2. If ε, T > 0 are small enough and θ0 ≥ 1
is sufficiently large, then

‖e(4)
n ‖Hs (�T ) � ε2θ

ς4(s)−1
k Δk,

for all integers k ∈ [0, n − 1] and s ∈ [3, α̃ − 2], where

ς4(s) := max{s + 6 − 2α, (s − α)+ + 10 − 2α}. (5.43)

As a direct corollary to Lemmas 5.6–5.10, we have the estimate for ek and ẽk

defined by (5.22) as follows.

Corollary 5.11. Let α ≥ 6 and α̃ ≥ α + 2. If ε, T > 0 are sufficiently small and
θ0 ≥ 1 is suitably large, then

‖ek‖Hs (�T ) � ε2θ
ς4(s)−1
k Δk, ‖ẽk‖Hs (�T ) � ε2θ

ς2(s)−1
k Δk, (5.44)

for all integers k ∈ [0, n −1] and s ∈ [3, α̃ −2], where ς2(s) and ς4(s) are defined
by (5.32) and (5.43), respectively.

Similar to [36, Lemma 4.12], we can use (5.44) to derive the following estimate
for the accumulated error terms En and Ẽn defined by (5.17).
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Lemma 5.12. Let α ≥ 7 and α̃ = α + 3. If ε, T > 0 are small enough and θ0 ≥ 1
is sufficiently large, then

‖En‖Hα+1(�T ) � ε2θn, ‖Ẽn‖Hα+1(�T ) � ε2.

Proof. If α ≥ 6, then ς4(α + 1) − 1 ≤ 0, which together with (5.44) leads to

‖En‖Hα+1(�T ) �
n−1∑
k=0

‖ek‖Hα+1(�T ) �
n−1∑
k=0

ε2Δk � ε2θn,

provided α + 1 ≤ α̃ − 2. Since ς2(α + 1) − 1 ≤ −2 for α ≥ 7, we get from (5.44)
and α + 1 ≤ α̃ − 2 that

‖Ẽn‖Hα+1(�T ) �
n−1∑
k=0

‖ẽk‖Hα+1(�T ) �
n−1∑
k=0

ε2θ−3
k � ε2.

The minimal possible α̃ is α + 3. The proof is thus complete. ��

5.4. Proof of Theorem 2.1

Similar to [36, Lemma 4.13], we can obtain the following result for the source
terms fn and gn computed from (5.18).

Lemma 5.13. Let α ≥ 7 and α̃ = α + 3. If ε, T > 0 are small enough and θ0 ≥ 1
is sufficiently large, then for all integers s ∈ [3, α̃],

‖ fn‖Hα(�T ) � Δn

(
θ s−α−1

n ‖ f a‖Hs (�T ) + ε2θ s−α−1
n + ε2θς4(s)−1

n

)
,

‖gn‖Hs+1(�T ) � ε2Δn

(
θ s−α−1

n + θς2(s+1)−1
n

)
,

where ς2(s) and ς4(s) are defined by (5.32) and (5.43), respectively.

The next lemma follows by applying the tame estimate (4.1) to the problem
(5.15) and using Proposition 5.8. We omit the proof for brevity, since it is similar
to the proof of [35, Lemma 4.17].

Lemma 5.14. Let α ≥ 7 and α̃ = α + 3. If ε, T > 0 and 1
ε
‖ f a‖Hα(�T ) are small

enough, and θ0 ≥ 1 is sufficiently large, then for all integers s ∈ [3, α̃],
‖(δVn, δΨn)‖Hs (�T ) + ‖(δψn,Dx ′δψn)‖Hs (�T ) ≤ εθ s−α−1

n Δn .

Lemma 5.14 provides point (a) in hypothesis (Hn). The other points in (Hn)

are given in the next lemma, whose proof can be found in [35, Lemma 4.19].

Lemma 5.15. Let α ≥ 7 and α̃ = α + 3. If ε, T > 0 and 1
ε
‖ f a‖Hα(�T ) are small

enough, and θ0 ≥ 1 is sufficiently large, then

‖L(Vn, Ψn) − f a‖Hs (�T ) ≤ 2εθ s−α−1
n for s = 3, . . . , α̃ − 2, (5.45)

‖B(Vn, ψn)‖Hs (�T ) ≤ εθ s−α−1
n for s = 4, . . . , α. (5.46)
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From Lemmas 5.14–5.15, we have obtained hypothesis (Hn) from (Hn−1),
provided that α ≥ 7 and α̃ = α + 3 hold, ε, T > 0 and 1

ε
‖ f a‖Hα(�T ) are small

enough, and θ0 ≥ 1 is sufficiently large. Fixing the constants α ≥ 7, α̃ = α + 3,
ε > 0, and θ0 ≥ 1, we can prove hypothesis (H0) as in [35, Lemma 4.20].

Lemma 5.16. If time T > 0 is small enough, then hypothesis (H0) holds.

We are ready to conclude the proof of Theorem 2.1.
Proof of Theorem 2.1. Let the initial data (U+

0 , U−
0 , ϕ0) satisfy all the assumptions

of Theorem 2.1. Let α̃ = m − 2 and α = α̃ − 3 ≥ 7. Then the initial data
(U+

0 , U−
0 , ϕ0) are compatible up to order m = α̃ + 2. In view of (5.8b) and (5.10),

we obtain (5.23) and all the requirements of Lemmas 5.14–5.16, provided ε, T > 0
are sufficiently small and θ0 ≥ 1 is large enough. Hence, for suitably short time T ,
hypothesis (Hn) holds for all n ∈ N. In particular,

∞∑
k=0

(‖(δVk, δΨk)‖Hs (�T ) + ‖(δψk,Dx ′δψk)‖Hs (�T )

)
�

∞∑
k=0

θ s−α−2
k < ∞

for all integers s ∈ [3, α − 1], Hence the sequence (Vk, ψk) converges to some
limit (V, ψ) in Hα−1(�T ) × Hα−1(�T ). Passing to the limit in (5.45)–(5.46)
for s = α − 1 = m − 6, we obtain (5.11). Therefore, (U+, U−, ϕ) = (U a+ +
V +, U a− + V −, ϕa + ψ) is a solution of the original problem (2.15) on the time
interval [0, T ]. The uniqueness of solutions to the problem (2.15) can be obtained
through a standard argument; see, for instance, [28, §13]. This completes the proof.
��
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A Jump Conditions with or without Surface Tension

We assume that the surface �(t) is smooth with a well-defined unit normal n(t, x)

and moves with the normal speed V(t, x) at point x ∈ �(t) and time t ≥ 0.
Let �+(t) and �−(t) denote the space domains occupied by the two conducting
fluids at time t , respectively. Without loss of generality we assume that the unit
normal n points into �+(t). Piecewise smooth weak solutions of the compressible
MHD equations (1.1)–(1.2) must satisfy the following MHD Rankine–Hugoniot
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conditions on the surface of discontinuity �(t) (see Landau–Lifshitz [18, §70]):

− V[ρ] + n · [ρv] = 0, (A.1a)

− V[ρv] + n · [ρv ⊗ v − H ⊗ H ] + n[q] = 0, (A.1b)

− V[H ] − n × [v × H ] = 0, (A.1c)

− V
[
ρE + 1

2 |H |2] + n · [v(ρE + p) + H × (v × H)] = 0, (A.1d)

n · [H ] = 0. (A.1e)

Here [g] := g+ − g− denotes the jump in the quantity g across �(t) with

g±(t, x) := lim
ε→0+ g(t, x ± εn(t, x)) for x ∈ �(t).

The condition (A.1a)means that themass transfer flux j := ρ(v·n−V) is continuous
through �(t). We can rewrite (A.1) in terms of j as⎧⎨

⎩
[j] = 0, j[vn] + [q] = 0, j[vτ ] = Hn[Hτ ], [Hn] = 0,

j
[
1
ρ

Hτ

]
= Hn[vτ ], j

[
E + 1

2ρ |H |2
]

+ [qvn − (H · v)Hn] = 0,
(A.2)

where vn := v ·n (resp. Hn := H ·n) is the normal component of v (resp. H ) and vτ

(resp. Hτ ) is the tangential part of v (resp. H ). If there is no flow across the discon-
tinuity, that is, j = 0 on �(t), then compressible MHD permits two distinct types
of characteristic discontinuities [18, §71]: tangential discontinuities (Hn|�(t) = 0)
and contact discontinuities (Hn|�(t) �= 0). For tangential discontinuities (or called
current-vortex sheets), the jump conditions (A.2) become

H± · n = 0, [q] = 0, V = v+ · n = v− · n on �(t). (A.3)

Moreover, from (A.2), we obtain the following boundary conditions for MHD
contact discontinuities:

H± · n �= 0, [p] = 0, [v] = [H ] = 0, V = v+ · n on �(t). (A.4)

With surface tension present on the interface �(t), we must take into account the
corresponding surface force produced, so that the conditions (A.1b) and (A.1d) have
to be modified respectively into (see Delhaye [13] or Ishii–Hibiki [16, Chapter
2])

− V[ρv] + n · [ρv ⊗ v − H ⊗ H ] + n[q] = sHn,

− V
[
ρE + 1

2 |H |2] + n · [v(ρE + p) + H × (v × H)] = sHV,

where s > 0 denotes the constant coefficient of surface tension and H twice the
mean curvature of�(t). Hence, for any interface with surface tension, the boundary
conditions (A.2) should be replaced by⎧⎨

⎩
[j] = 0, j[vn] + [q] = sH, j[vτ ] = Hn[Hτ ], [Hn] = 0,

j
[
1
ρ

Hτ

]
= Hn[vτ ], j

[
E + 1

2ρ |H |2
]

+ [qvn − (H · v)Hn] = sHV.

Considering j = 0 on �(t), we get two different possibilities of interfaces, viz.



MHD Contact Discontinuities with Surface Tension 1147

(a) current-vortex sheets with surface tension, forwhich the boundary conditions
read as

H± · n = 0, [q] = sH, V = v+ · n = v− · n on �(t). (A.5)

(b) MHD contact discontinuities with surface tension, for which the boundary
conditions read

H± · n �= 0, [p] = sH, [v] = [H ] = 0, V = v+ · n on �(t). (A.6)
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