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Abstract: After a short overview of the COLIBRI project, this paper considers the cycle-averaged
flight dynamics of a flapping-wing robot near hovering, taking advantage of the weak coupling
between the roll and pitch axes. The system is naturally unstable; it needs to be stabilized actively,
which requires an attitude reconstruction. Due to the flapping of the wings, the system is subject
to a strong periodic noise at the flapping frequency and its higher harmonics; the resulting axial
forces and pitch moments are characterized from experimental data. The flapping noise propagates
to the six-axis Inertial Measurement Unit (IMU) consisting of three accelerometers and three gyros.
The paper is devoted to attitude reconstruction in the presence of flapping noise representative of
flight conditions. Two methods are considered: (i) the complementary filter based on the hovering
assumption and (ii) a full-state dynamic observer (Kalman filter). Unlike the complementary filter,
the full-state dynamic observer allows the reconstruction of the axial velocity, allowing us to control
the hovering without any additional sensor. A numerical simulation is conducted to assess the merit
of the two methods using experimental noise data obtained with the COLIBRI robot. The paper
discusses the trade-off between noise rejection and stability.

Keywords: hummingbird; hovering; IMU; attitude reconstruction; complementary filter; dynamic
observer; Kalman filter; flapping noise

1. Introduction
1.1. The Project COLIBRI

The COLIBRI robot is a tailless, flapping, two-wing robot the size of a large humming-
bird that is capable of hovering. A general view of the robot is presented in Figure 1 (wing
span is 21 cm, weight 22–23 g, flapping frequency '20 Hz). The project is documented
in [1–4]. Other similar robots include the impressive Nanohummingbird [5], developed by
Aerovironment with DARPA funding, and the Konkuk university robot [6,7], with a weight
of 15.8 g and a flight autonomy of 9 min. A comprehensive review of ongoing studies in
the field of flapping-wing micro air vehicles is available in [8]. A discussion of the future
use of small drones can be found in [9].

Various changes have been brought to the electromechanical parts of the robot to
improve its autonomy [10]. Thanks to efficient aerodynamics and improved transmission,
its measured specific mechanical power is around 135 W/kg, which is not far from that
of a natural hummingbird [11], but the current limit to autonomy is that the mass of the
existing robotic hummingbird is still about twice the mass of their natural counterpart with
the same wing span [12].

The initial version of the COLIBRI robot used a Micro MWC Flight Control Board
from Hobbyking with a clock of 16 MHz and a six-axis IMU (three-axis gyro and three-axis
accelerometer), for a weight of 1.8 g. This board includes a proprietary algorithm for
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attitude reconstruction named DMP (Digital Motion Processor). A new control board has
been developed including an ARM processor with a clockspeed of 168 MHz and two IMU
sensors, one with six axes and one with nine axes, including a magnetometer. The board also
includes a Bluetooth link, for a total weight of 1.4 g. It is briefly described in Appendix C.
The IMUs are particularly critical components in view of the noisy environment due to the
flapping of the wings.

Figure 1. The robot COLIBRI in two different configurations. 1: Flight control board. 2: LiPo battery.
3: Main DC motor. 4: Flapping mechanism.

1.2. Attitude Reconstruction

Attitude determination is a generic problem in satellites, the autopilots of aircraft and
drones of various types, robotics, and biomechanics. The technology used depends on
the application; our interest lies in the low-cost, low-weight MEMS inertial sensors (IMU)
which are widely available. They are characterized by a low resolution, high noise, and
time drift, and the problem consists of combining the output of a three-axis accelerometer
unit with the output of a three-axis gyro to obtain a reasonably accurate, drift-free attitude
estimate. The problem is particularly complicated for the flapping-wing robot because of
the strong periodic disturbance generated by the flapping of the wings (see Appendix A;
the amplitude of the periodic sensor signals generated by the flapping wings is one order of
magnitude larger than the cycle-averaged signal that we intend to capture). The purpose of
this paper is not to report on the huge body of literature available on attitude reconstruction
(e.g., [13–21]), but rather to extract the part of it which is most appropriate for the specific
problem of a flapping-wing robot near hovering. Two aspects are particularly relevant:

(i) Most models proposed in the literature use quaternion kinematics for attitude
estimation. However, near hovering, the longitudinal and lateral dynamics of the flapping-
wing robot are nearly decoupled and can be treated as independent [22–24]. As a result,
the attitude determination can be handled independently as a one-dimensional problem in
the longitudinal (pitch) and the lateral (roll) directions.

(ii) Since the lift generation process produces a strong disturbance in the robot dy-
namics, it is expected that including the robot dynamics in the attitude determination, as
advocated by [21], may improve the estimator.

The two approaches below will be considered:
(i) The complementary filter takes advantage of the hovering assumption (absolute

acceleration = 0), according to which the accelerometer provides the direction of the gravity
vector in the robot frame.

(ii) A full-state dynamic observer (implemented as a Kalman filter) includes robot
dynamics in the attitude estimation. In addition to the robot attitude, this approach also
reconstructs the linear velocity of the robot, allowing it to enforce hovering without external
additional information.

The results of this study are expected to be confirmed by upcoming flight tests, where
special attention will be paid to the trade-off between noise rejection and the stability mar-
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gins. Measured flapping noise data are presented in the Appendices A–C,together with a
description of a new, proprietary flight control board.

2. Flight Dynamics
2.1. Cycle-Averaged Longitudinal Dynamics

Previous studies have shown that the hummingbird robot can be modeled as a rigid
body. Additionally, due to the weak coupling between the longitudinal (pitch) and the
lateral (roll) dynamics, they may be assumed to be uncoupled and modeled separately.
The present discussion will, therefore, be limited to the longitudinal axis; a similar model
applies to the lateral axis. Additionally, since the flapping frequency is high compared to
the robot dynamics near hovering, the latter may be based on cycle-averaged aerodynamic
forces and moments; a similar approach was followed by [22–24]. The rapid change in the
aerodynamic moment as well as the lift and drag forces during a flapping cycle appear as
noise. These are particularly important in the longitudinal axis because the aerodynamic
forces are not self-equilibrated. On the contrary, the aerodynamic forces along the lateral
axis are self-balanced within a flapping cycle (due to left-right symmetry). Delft university
has developed a flapper drone with four wings which is also self-equilibrated on the longitu-
dinal axis [25]; this architecture increases the lift with the so-called clap and fling mechanism
and it considerably reduces the flapping disturbance. However, such a morphology does
not exist in nature.

The pitch and roll axes of COLIBRI are naturally unstable; they must be controlled
actively; the yaw axis is naturally stable and can be treated separately.

The main damping mechanism is the flapping of the wings. It can be modeled by a
point force fd proportional to the velocity of the center of drag (CD) located zd above the
center of mass (Figure 2). The position of the center of drag is estimated at a quarter chord
from the leading edge at mid-wing. The position of the center of mass (CG) is obtained
either from CAD or from static equilibrium tests.

fd = −K(u + qzd) (1)

where the constant K is a linear function of the flapping frequency. u is the axial velocity
and q is the pitch angular velocity. This model was validated with a set of pendulum
experiments (Figure 3) [1,26].

Figure 2. Longitudinal (pitch) model of the robot near hovering. Coordinate system, force, and
moment diagram.
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Figure 3. Left: Pendulum test for determining the damping constant K. Right: Typical free response
with and without flapping. K increases linearly with the flapping frequency.

Referring to Figure 2, the longitudinal dynamics near hovering is governed by the
Newton–Euler equations. Newton’s equation reads

mu̇ = Xuu + Xqq + mgθ (2)

where m is the mass of the robot, u is the velocity of the center of mass, θ is the pitch angle
(assumed small, so that sin θ ' θ and cos θ ' 1), and q = θ̇ is the pitch velocity. L is the lift
(follower) force; at hovering, its vertical component balances the gravity force L = mg, and
the component along the body axis XB is mgθ. Xuu + Xqq is the drag force along XB; from
Equation (1), Xu = −K and Xq = −Kzd.

Similarly, the Euler equation reads

Iyy q̇ = Muu + Mqq + τa (3)

where Iyy is the moment of inertia about the center of mass; Muu + Mqq is the drag torque
with Mu = −Kzd and Mq = −Kq−Kz2

d. Mq can be estimated with a pendulum experiment
similar to that of Figure 3 with the pendulum axis aligned on the center of mass. Note that
direct and fairly accurate measurements of Xu and Mq are available while the cross-coupling
terms Xq and Mu result from a model and are less accurate; the distance zd between the
center of mass and the center of drag is not known accurately. τa is the aerodynamic control
torque that, in our robot, is obtained by the rotation of the control bars as explained below.
The latter are operated by servos which can be modeled as first-order systems, so that the
actual control torque τa is related to the requested torque τ (output of the controller) by

Tτ̇a + τa = τ (4)

where T is the time constant of the servo. In state space form, the cycle-averaged longitudi-
nal dynamics read

u̇
q̇
θ̇
τ̇a

 =


X̂u X̂q g 0
M̂u M̂q 0 1/Iyy
0 1 0 0
0 0 0 −1/T




u
q
θ
τa

+


0
0
0

1/T

τ (5)

where X̂u = Xu/m and M̂q = Mq/Iyy are always negative and X̂q = Xq/m and M̂u =
Mu/Iyy are negative if zd > 0, that is, if the center of drag is above the center of mass, and
they are positive if zd < 0. Similar considerations apply to the lateral dynamics and will
not be repeated. All the simulations reported below have been performed with the data
listed in Appendix B.
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2.2. Cycle-Averaged Control Torques

The wings consist of reinforced membranes attached to two orthogonal bars [1];
the leading edge bars drive the wings while the control bars (orthogonal to the lead-
ing edge bars in neutral position) create the control torques via a mechanism called
wing twist modulation introduced by [5]; moving the control bars sideways from the neutral
position induces a reorganization of the airflow, changing the location of the center of
pressure along the wing, creating a roll torque while keeping the lift nearly unchanged.
Similarly, moving the control bars forward or backward produces a pitch torque without
altering the lift. It has been shown that the cycle-averaged roll and pitch moments are
nearly independent (i.e., the pitch moment is independent of the position of the roll actuator
and vice versa) and that they do not significantly affect the lift force for a given flapping
frequency [1]. This confirms that the cycle-averaged axial and lateral dynamics can be
treated independently. The cycle-averaged control torques (τa in the foregoing model) are
nearly proportional to the control bars angles which are the output of the control servos.

The aerodynamics of the flapping-wing robot at hovering is extremely complex and
is out of the scope of this paper. The time histories of the lift, drag, and aerodynamic
torque (measured by attaching the robot to a load cell) exhibit strong harmonic components
at frequencies multiple times the flapping frequency, with peak amplitudes significantly
larger than their cycle-averaged values (Appendix A). For the present discussion, these
periodic disturbances appear as input noise, the drag noise d is added to the right-hand
side of Equation (2), and the torque noise tp is added to the right-hand side of Equation (3).
These periodic disturbances enter at the input of the system and induce strong vibrations
which propagate to the inertial unit (IMU). This process, which belongs to the physics of the
flapping flight, was judged important enough to justify to include two IMUs with different
saturation thresholds in the design of the control board.

3. Stabilization

The open-loop longitudinal dynamics is unstable and the poles configuration depends
strongly of on the value of zd. For zd > 0 (center of drag above the center of mass), the
system has two unstable oscillatory poles and two poles on the negative real axis (Figure 4).
If one considers the system a SISO system with the control torque τ as input and the pitch
angle θ as output, the system can be stabilized with a PD compensator, −kθ(1 + Tqs). This
adds a zero in the open-loop system; Figure 4 shows the root locus as a function of the
proportional gain kθ . The position of the closed-loop poles corresponding to Tq = 0.27,
zd = 15 mm, and kθ = 192× 105 is indicated in red [1].

The PD compensator discussed above looks satisfactory; however, the pitch angle is
not directly available because the IMU MEMS unit consists of three rate gyros measuring
the roll–pitch–yaw angular velocity in the robot frame and the three components of the
specific acceleration s = a−g, i.e., the absolute vector acceleration a of the IMU unit minus the
gravity vector g. In hovering, a = 0, and the specific acceleration s = (sx, sy, sz)T indicates the
position of the gravity vector in the robot frame, from which the robot attitude (roll–pitch)
can be calculated:

φ = Atan2(−sy,−sz) (6)

θ = Atan2(−sx,
√

s2
y + s2

z) (7)

For the 1-D model considered here, if the IMU is located at a distance za of the center
of mass (za > 0 if the IMU is above the center of mass and za < 0 if it is below),

sx = u̇ + q̇.za − g sin θ sx ' u̇ + q̇.za − gθ (8)

sz = +g cos θ ' g (9)
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Figure 4. Root–locus plot trajectories as a function of the proportional feedback gain kθ for PD control
of the robot τ(s)

θ(s) = −kθ(1 + Tqs) with Tq = 0.27 and zd = 15 mm. The open-loop poles and zero are

in blue. The red squares indicate the closed-loop poles location obtained with kθ = 192× 10−5.

At hovering, in absence of noise, θ = arctan (−sx/sz) ' −sx/sz. Note that the
component sz is subject to the flapping noise due to the periodic variation in the lift force
within a cycle. As a result, near hovering, θ ' −sx/g may be a more accurate estimator.

Considering the system equation, Equation (5), the output equation relating the sensor
output y = (sx, q)T to the state vector x = (u, q, θ, τa)T reads

[
sx
q

]
=

[
(X̂u + M̂uza) (X̂q + M̂qza) 0 za/Iyy

0 1 0 0

]
u
q
θ
τa

 (10)

The gyros are subjected to drift and one cannot rely on them in low frequency. On the
contrary, MEMS accelerometers are sensitive to noise in high frequency, and it is only at
hovering, when the absolute acceleration is close to zero, that the specific acceleration can
be translated into the gravity vector from which the robot attitude can be deduced. In the
following sections, we consider two ways of combining the gyros and the accelerometers’
information to improve the attitude estimation: the complementary filter and the dynamic
state observer.

4. Complementary Filter

Prior to the complementary filter, the IMU outputs are passed into a second-order
Butterworth low-pass filter with a corner frequency fg for the gyros and fs for the ac-
celerometers (Figure 5); the choice in fg and fs is discussed below.

The complementary filter consists of blending the high-frequency information con-
tained in the gyro signals with the low-frequency information contained in the accelerome-
ters’ output. In the 1-D model considered here, this means that the gyro output q is first
integrated to provide the pitch angle θg, which is high-pass filtered (HP) to eliminate the
low-frequency components responsible for the drift. The accelerometer output is used to
estimate the pitch angle θa ' −sx/g which, in turn, is low-pass filtered (LP) to eliminate
the high-frequency noise. The two filters are such that together they constitute an all-pass
filter (HP + LP = 1). Assuming second-order Butterworth filters,

θ̂ =
s2

s2 +
√

2ωcs + ω2
c

.(
1
s
).q +

√
2ωcs + ω2

c

s2 +
√

2ωcs + ω2
c

.θa (11)



Actuators 2023, 12, 262 7 of 18

where ωc = 2π fc is the corner frequency of the complementary filter. The block diagram
of the stability control loop with a complementary filter is shown in Figure 5. One sees
that in the output of the gyro, after passing into the low-pass filter fg, q̂g is used directly
for the D part of the PD compensator and it is also integrated to result in θg at the input of
the complementary filter. The choice in the order of the filter and its cut-off frequency fg is
critical because it introduces a delay in the feedback loop, which can have a detrimental
effect on the system stability. In our study, we found that a second-order Butterworth filter
with fg = 8 Hz is a good compromise. The sx component of the accelerometer unit is also
low-pass filtered with a cut-off frequency fs before feeding the complementary filter. The
choice of fs is less critical than that of fg, provided that fs is larger than the corner frequency
fc of the complementary filter; fs = 2 Hz and fc = 0.1 Hz were found satisfactory.

Figure 5. Block diagram of the longitudinal stability control loop with a complementary filter. τ

is the requested control torque, τa is the position of the servo actuator acting on the control bars,
and τan is the actual torque produced by the flapping wings, including the periodic components
discussed earlier.

The control system of Figure 5 can be looked at as a SISO system with unit feedback,
with input θe and output θ̂; Figure 6 shows the Nichols plot for the following values of
the filter frequencies: fs = 2 Hz, fc = 0.1 Hz, and fg = 8 Hz (the system is linearized
according to θa = −sx f /g). The stability margins are, respectively: phase margin PM = 66◦

( f = 0.83 Hz) and gain margin GM = 8 dB ( f = 1.7 Hz). The figure also shows the Nichols
plot when the Butterworth filter on the gyro signal is removed ( fg = ∞), showing the impact
of this filter on stability. The control loop may be improved by adding a compensator on the
pitch angle error θe (we will return to this in the following section). The complementary filter
does not produce a direct estimate of the axial velocity u, and an additional measurement
system is needed to enforce hovering. Because the axial velocity u is one of the state
variables in Equation (5), enforcing hovering with on-board measurements only is possible
if one uses a full-state dynamic observer, as discussed below.
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Figure 6. Complementary filter: Nichols plot for fg = 8 Hz, fs = 2 Hz, and fc = 0.1 Hz. In dashed
lines, without filter on the gyro output ( fg = ∞).

5. Full-State Dynamic Observer

If one takes into account the flapping of the wings, the axial dynamics of the robot can
be written in the classical state space form:

ẋ = Ax + Bτ + w (12)

where x = (u, q, θ, τa)T . The matrices A and B are provided in Equation (5).
w represents the system noise produced by the flapping of the wings, (d/m, tp/Iyy, 0, 0)T ,

where d is the drag force and tp is the aerodynamic pitch torque due to the flapping of the
wings. Both are periodic; they are documented in Appendix A.

The output equation, Equation (10), is rewritten:

y = Cx + v (13)

where y = (sx, q)T (output of the accelerometers and the gyros) and v is the sensor noise,
of which we know little.

An alternative to the complementary filter consists of reconstructing the state with a
full-state dynamic (Luenberger) observer (Figure 7). The reconstructed state x̂ is solution of

˙̂x = Ax̂ + Bτ + L(y− Cx̂) x̂(0) = 0 (14)

The error e = x− x̂ follows the equation

ė = (A− LC)e + w− Lv (15)

The observer gain matrix L is chosen to achieve adequate filtering properties of the
IMU signals from the gyro and the accelerometer. Since the PD regulator may be looked
at as full-state feedback, the separation principle applies and the closed-loop poles consist
of two decoupled sets, corresponding to the full-state feedback regulator (PD in this case)
and the full-state observer. The closed-loop stability is guaranteed provided the observer is
stable (i.e., the eigenvalues of A− LC have negative real parts).
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Figure 7. Block diagram of the longitudinal stability control loop with a full-state dynamic observer.
The symbols have the same meaning as in the previous figure.

5.1. Plant Noise and Sensor Noise

Although the flapping noise does not fulfill the assumption of white noise, the Kalman
filter theory is a very convenient tool to generate a reasonable gain matrix L; various forms
are assumed for the system and measurement noise until appropriate filtering properties
are achieved.

Equation (5) describes the cycle-averaged dynamics of the robot. If one considers the
drag force and pitch torque variations during the flapping cycle as noise, it becomes

u̇
q̇
θ̇
τ̇a

 =


X̂u X̂q g 0
M̂u M̂q 0 1/Iyy
0 1 0 0
0 0 0 −1/T




u
q
θ
τa

+


0
0
0

1/T

τ +


d/m

tp/Iyy
0
0

 (16)

where d is the drag force and tp is the pitch torque induced by the flapping of the
wings. Time histories of d and tp are shown in Appendix A, from which the variance
of σ2(d/m) ' 2000 (N/kg)2 and σ2(td/Iyy) ' 200, 000 (N/kg·m)2 can be estimated (the
components of the plant noise are expressed in different units; in SI units, their ratio is 100).

The sensor noise covariance matrix may be estimated from the zero-acceleration output
of the accelerometers and the zero-rate output of the gyros, available from the data sheet of
the IMU sensor, respectively, 0.30 m/s2 and 0.085 rad/s, leading to σ2(sx) ' 0.09 (m/s2)2

and σ2(q) ' 0.008 (rad/s)2. Thus, the ratio is σ2(sx)/σ2(q) ' 10.

5.2. Kalman Filter

According to the foregoing discussion, we assume the following form for the plant
noise W and the sensor noise V:

W = diag(2, 200, 0, 0) V = α× diag(10, 1) (17)

where α is a design parameter. A small value of α indicates that low noise measurements
may be trusted. Note that only the ratio between V and W matters (multiplying both
matrices by a scaler leads to the same gain matrix L). Since the measurement noise acts as
an excitation in the observer error equation, amplified by the observer gain matrix, noisy
measurements require moderate gains in the observer.

Figure 8 shows the observer poles for three values of α, respectively, 1, 10, and 100.
The figure includes the poles of the PD regulator shown earlier in Figure 4. The value of
α = 1 has been used in what follows.
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Figure 8. Observer poles for α =1, 10, and 100 (the pole on the left side of the real axis is common to
all values of α).The regulator poles of Figure 4 are also shown.

The robustness of the observer deserves some attention: The matrices A, B, and C
in the observer equation constitute a model of the real system. As discussed earlier, the
elements of the system matrix (X̂u, M̂q, etc.) can be experimentally determined fairly
accurately; a larger uncertainty exists in zg because the location of the center of drag is not
known accurately (even the concept of center of drag is oversimplified). A parametric study
with reasonable variation in the system parameters led to small changes in the observer
poles.

Figure 9 compares the Nichols plot of the transfer function between θe and θ̂ for the
Kalman filter (α = 1) and the complementary filter of Figure 6. The behavior can be further
improved by inserting a compensator in the direct loop. Figure 10 illustrates this for the
compensator consisting of a P + I plus a Lead compensator aiming to improve the control
bandwidth while keeping good stability margins:

C1(s) = g
s + z1

s + p1
.
s + z0

s
(18)

where g = 14, z1 = 2π f1, f1 = 1.1 Hz, p1 = 2π fp, fp = 11 Hz, z0 = 2π f0, and f0 = 0.2 Hz.
The crossover frequency raises to fco = 1.32 Hz and the stability margins to, respectively,
PM = 65◦ and GM =16.4 dB. Such a compensator can also be used (with appropriate
tuning of the parameters) for the complementary filter.

Figure 11 shows the time history of the pitch angle estimate θ̂ for a step response
of θd = 10◦. The smooth line (blue) corresponds to the case where the flapping noise
is ignored; the noisy curve (red) accounts for the drag and pitch torque noise shown
in Appendix A. The time–history integration includes a saturation of the control torque
|τa| < 200 g·mm (2 N·mm).
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Figure 9. Nichols plot θ̂ = G(s).θe for the Kalman filter (KF) (α = 1) and the complementary filter
(CF) of Figure 6.

Figure 10. Kalman Filter (α = 1): Effect of adding the compensator C1(s) consisting of a P + I and a
Lead compensator.
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Figure 11. Step response of θd = 10◦: θ̂ with (in red) and without (in blue) flapping drag d and pitch
torque noise tp.

5.3. Hovering

Unlike the complementary filter which estimates the pitch angle θ̂, the full-state
dynamic observer also reconstructs the linear velocity û which allows direct control of
the robot’s hovering and, more generally, of the trajectory. Figure 12 shows the cascade
structure of the control system; ud is the desired axial speed and û is the reconstructed one;
ue is the velocity error. The transfer function between ue and û is that of a SISO system. The
compensator C2(s) transforms the velocity error into a pitch angle demand θd. According
to Equation (2), in steady state (at equilibrium, u̇ = q = 0), the drag force is balanced by
the tilting of the lift force, Xuu + mgθ = 0 . It follows that θ = −(X̂u/g)u. Figure 13 shows
the Nichols plot of the transfer function û(s)/ue(s) when a P + I compensator is used:

C2(s) = gu
s + zu

s
(19)

where gu = −(X̂u/g).β with β = 1.5 and zu = 2 rad/s.

Figure 12. Cascaded control on the linear velocity u. The flapping noise includes the drag d and the
pitch torque tp.
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Figure 13. Nichols plot of the linear velocity loop û(s)/ue(s) with the P + I compensator C2(s).

Figure 14 shows the time history of the step response when a speed of ud = 1 m/s
is requested. The figure shows the reconstructed velocity û and the reconstructed pitch
angle θ̂ when the flapping noise is ignored (smooth curve in blue) and when the flapping
noise (drag and pitch torque) is included (in red). Here again, the time–history integration
includes a saturation of the control torque |τa| < 200 g·mm (2 N·mm). Figures 11 and 14
illustrate the trade-off between noise attenuation and stability margins: further low-pass
filtering is possible, but at the expense of reducing the stability margins. This aspect will be
investigated carefully in future flight tests.

Figure 14. Step response with a requested speed of ud = 1 m/s, with (red) and without (blue)
flapping noise. Right: reconstructed speed û. Left: corresponding reconstructed pitch angle θ̂.

6. Conclusions

The paper investigates numerically the control and attitude reconstruction of a flapping-
twin-wing robot near hovering in presence of the strong noise generated by the flapping
of the wings. The axial (drag) force and the pitch moment components of the periodic
flapping noise are characterized from experimental data (provided in Appendix A). Two
approaches are considered for attitude reconstruction from IMU data: complementary filter
and full-state dynamic observer (Kalman filter). The complementary filter takes advantage
of the hovering assumption to reconstruct the pitch angle (for closed-loop stability), but it
does not provide access to the longitudinal velocity (for hovering). On the contrary, the
full-state observer reconstructs the pitch angle and the longitudinal velocity, which can be
controlled without additional information from an external source. Numerical simulations
(based on data of the COLIBRI robot) show that the full-state observer provides a solution
for the control of the trajectory, but there is a trade-off between the residual oscillations due
to the flapping wings and the stability margins of the closed-loop attitude control, making
the complete cancellation of the oscillations difficult. On-board implementation and flight
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tests will be conducted as soon as the various subsystems of the robot, including the new
proprietary control board described in Appendix C, are assembled and ready for flight.
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HP High-Pass Filter
IMU Inertial Measurement Unit
KF Kalman Filter
LP Low-Pass Filter
MCU Micro Controller Unit
MEMS Micro Electromechanical System
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Appendix A. Flapping Disturbance

Appendix A.1. Lift

Figure A1 shows the time history of the lift force when the flapping frequency is
22.3 Hz and the lift is 23.3 g (0.229 N). The figure also shows the detail of one cycle and the
FFT decomposition showing the harmonic content of the time history (unfortunately, the
lack of synchronization of the experimental set-up between the flapping mechanism and
the force measurement does not allow us to identify the upstroke and the downstroke in the
force recording over one cycle). The figure shows that the lift distribution of a membrane
wing mounted on a flexible leading edge bar is extremely complicated, far more than that
of the flat-plate wing shown in [27]. The RMS value of the lift force is 126 g (1.24 N).

Appendix A.2. Pitch Torque

Figure A2 shows the time history of the actual aerodynamic torque. Here, again, the
signal is periodic and extremely complicated, with peak values up to 30 times the maximum
value of the pitch and roll control torques which are limited near ±200 g·mm (2 N·mm) [1].
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In the cycle-averaged model, this periodic disturbance torque tp enters at the input of the
system and induces strong vibrations that propagate to the inertial units [Equation (16)].
The RMS value of the aerodynamic torque is στ = 0.0273 Nm (2780 g·mm).
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Figure A1. From top to bottom: Time history of the lift force when the flapping frequency is 22.3 Hz
and the cycle-averaged lift is 23.3 g. Detail of one cycle. FFT transform showing the harmonics,
multiple times the flapping frequency.
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Figure A2. From top to bottom: Time history of the aerodynamic torque tp when the flapping
frequency is 20.8 Hz with the servo actuator near neutral position (the average torque is 17.8 g·mm).
Detail of one cycle. FFT transform showing the harmonics, multiple times the flapping frequency.



Actuators 2023, 12, 262 16 of 18

Appendix A.3. Drag

Similarly, Figure A3 examines the drag force d when the flapping frequency is 19.9 Hz.
The peak values are up to 20 times the average lift. In the cycle-averaged model, this
produces a periodic disturbance force d in the right-hand side of Equation (16) that excites
the robot and propagates to the IMU. Note that the average value of d̄ = 2.6 g indicates that
the wing behavior is not exactly symmetrical between the upstroke and the downstroke,
producing a net axial force. At hovering, such a bias force has to be balanced by tilting the
robot by θ = mg/d̄. The RMS value of the aerodynamic drag is σd =0.985 N (100 g).
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Figure A3. From top to bottom: Time history of the drag force d when the flapping frequency is
19.9 Hz; the average drag is 2.6 g. Detail of one cycle. FFT transform showing the harmonics, multiple
times the flapping frequency.

Appendix B. COLIBRI Parameters Used in the Dynamics Model

All simulations reported in this paper are based on data taken from [1]; they are listed
in Table A1.

Table A1. COLIBRI parameters for the body dynamics model.

Parameter Value Unit
m 23.5 g
K 22.3 mN·s/m
Kq 0.008 mN·s·m
Kr 0.065 mN·s·m
Ixx 56,000 g·mm2

Iyy 56,000 g·mm2

Izz 3800 g·mm2

Iyz 0 g·mm2

Iyx 0 g·mm2

Izx 0 g·mm2



Actuators 2023, 12, 262 17 of 18

Appendix C. Flight Control Board

Figure A4 shows the new flight control board. The manufacturing was contracted to
Dekimo Leuven n.v. The size is 25 × 26 mm and the weight is 1.6 g. The main components,
their reference number, and their communication protocol are shown in Figure A5. The
board allows us to directly control the three servos for attitude control and the main motor
for lift production; a Bluetooth module communicates with the ground station.

Figure A4. Both sides of the 25 × 26 mm control board. Weight: 1.6 g.

Figure A5. Main components of the control board.

Because of the critical role played by the attitude sensing, due to the flapping noise,
the board was provided with two IMU units:

(i) IMU-1: ICM-20948. 9-axis. Accelerometer Full Scale Range ±16 g. Gyro Full Scale
Range ±2000 deg/s. Magnetometer Full Scale Range ±6900 µT.

(ii) IMU-2: ICM-20649. 6-axis. Accelerometer Full Scale Range ±32 g. Gyro Full Scale
Range ±4000 deg/s.

The data acquisition rate is 500 Hz (three accelerometers and three gyros). The MCU
unit, STM32F405, has a clock frequency of 168 MHz. The nominal battery input is 7.4 V;
it is regulated to supply the main motor (6 V), the servo actuators (4.2 V–6 V), and the
IC components (3.3 V and 1.8 V). Additional I2C and SPI ports are reserved for future
optical sensors.
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