
Citation: Wang, K.; Yu, Y.; Preumont,

A. Wavefront Control Strategies for

Large Active Thin Shell Primaries

with Unimorph Actuators. Actuators

2023, 12, 100. https://doi.org/

10.3390/act12030100

Academic Editor: Katsushi Furutani

Received: 29 January 2023

Revised: 21 February 2023

Accepted: 24 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Wavefront Control Strategies for Large Active Thin Shell
Primaries with Unimorph Actuators
Kainan Wang 1,2,*,† , Yian Yu 1,† and André Preumont 3

1 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China
2 Hubei Luojia Laboratory, Wuhan 430072, China
3 Department of Control Engineering and System Analysis, Université Libre de Bruxelles (ULB), CP. 165-55,

50 Av. F.D. Roosevelt, B-1050 Brussels, Belgium
* Correspondence: kainan.wang@whu.edu.cn
† These authors contributed equally to this work.

Abstract: This paper presents various aspects of the wavefront control strategies for an ultra-
lightweight composite reflector made of polymers for the large primary of a space telescope, and the
shape control is made by a set of patterned unimorph strain actuators attached to the reflector. It
starts with an analytical investigation of the mechanical behaviors of a strain-actuated curved shell,
resulting in the accurate prediction of typical features, such as the damped wave deformation at the
transition between electrodes and the limited morphing amplitude of a “print-through” actuation,
which indicates that the curvature-induced rigidity deteriorates the performances of the forming
accuracy of the active reflector and the morphing stroke of the actuators. The morphing capabilities
are evaluated with both petal-like segmented and monolithic configured reflectors by numerical
tests on forming target shapes of Zernike modes with various patternings of electrodes, and the
structural dynamics are examined. Finally, a compound control strategy is proposed, which uses a
deformable relay mirror to compensate for the residual surface error corrected partially by the active
unimorph primary mirror, showing a great relaxation of the shape error budget of the thin-shell
primary, especially for on-axis observation.

Keywords: thin-shell reflector; unimorph actuators; petal-like segmentation; compound control
strategy; deformable relay mirror

1. Introduction

Future space observation requires large apertures to achieve higher resolution images
of celestials in the deep universe. Since the 1980s, an increasing number of ground-based
optical telescopes have been built for astronomical imaging, with a primary diameter larger
than 8 m; future concepts of extremely large telescopes (ELTs) with D > 25 m are also
proposed and some are planned to be constructed in the near future [1,2]. However, space
telescopes offer an alternative solution rather than ground-based telescopes, to overcome
the limitations set by the Earth’s atmosphere, enabling a sharp observation without the
turbulencing phase variation and allowing for the access of the monitoring to the bands
of the electromagnetic spectrum blocked by the atmosphere. However, installing large
reflectors in space means more difficulties in technology and budget, from a technical point
of view; the first big problem is the transport of massive optical structures to the orbit,
because current launchers have tight weight and volume constraints.

The Hubble Space Telescope (HST), launched in 1990 and operated by NASA, was the
world’s first space-based optical telescope; it has a Ritchey–Chrétien (R-C) configuration
with a hyperboloid monolithic 2.4 m primary made of ultra-low-expansion glass (ULE),
and a total mass of 826 kg leads to an overall areal density of approximately 180 kg/m2.
The Herschel space infrared telescope was operated by ESA during 2009–2013 and termi-
nated the mission due to a running-out of the coolant; it has a primary mirror of 3.5 m
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constructed by brazing 12 petals of Silicon Carbide (SiC) with an areal density of 22 kg/m2.
Unlike the HST, which operates in low Earth orbit (LEO) with a flying height of approxi-
mately 570 km and could be repaired by astronauts, the Herschel observatory operated at
the more distant Sun–Earth Lagrange point L2 (SE-L2), around 1.5 millions of kilometers
from the Earth. The recently launched James Webb Space Telescope (JWST) by NASA uses
a lighter design of the reflector of 6.5 m consisting of a honeycomb array with 17 segments:
each Beryllium mirror sub-mirror is around 20 kg in mass, and the assembly with actuators
weighs about 40 kg leading to an areal density of 20 kg/m2. The JWST’s improvements
should also be attributed to the lightweight design of housing structures; the total mass of
the JWST is approximately 6500 kg, which is a little more than half the mass of the HST,
and this will allow for space delivery to a distant location (e.g., SE-L2). The JWST’s primary
can be folded in a chord-fold architecture and packaged into the Ariane 5 launch vehicle.
Figure 1 illustrates the dimensions of the primaries and the orbital information of those
space telescopes [3].
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Figure 1. (a) Comparisons of the sizes of the primary mirrors of HST, Herschel, and JWST (with a
reference height of 1.8 m); (b) orbital information of space telescopes.

Different from those mainstream space telescopes using conventional materials for
optical application, the novel catalog of reflectors made of polymers has recently attracted
the attention of the astronomical community, for their great potential in stowability and
areal densities, which offer technical feasibilities for the extremely large platforms of the
observatory in space for various wavelengths. Figure 2 gives a view of three broad classes
of concepts for polymer reflectors in development: (1) pressure stiffened membranes with
inflatable gas maintaining the shape of the reflective surface [4]; (2) membrane antenna
reflectors supported by a deployable truss mesh [5]; (3) form stiffened elastic shells with a
doubly curved surface [6].

The first two categories of reflectors are usually used as large space antennas with a
sufficient surface accuracy for receiving and transmitting microwave signals. The inflatable
antenna uses one membrane covered by a reflective coating on the inside as the reflector
and another transparent membrane as the canopy. One example was NASA’s Inflatable
Antenna Experiment (IAE) launched in 1996: the unfolded membrane made of Mylar has
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a diameter of D = 14 m and is inflated with a tunable internal pressure for adjusting
the focal length; the weight of the structure is about 60 kg [7], implying an areal density
of 0.39 kg/m2, and can be stowed in a compact dimension of 2.04 m × 1.08 m × 0.5 m.
The other concept, the form stiffened thin-shell reflector, uses a layer of polymer to form
a delicated shape (to be molded), and the reflector is rolled for stowage and recovered in
space by releasing its strain energy; this was firstly proposed and tested on the passive
thin-shell reflectors in [8], and other folding and deployment strategies of thin reflectors
can be found in [9].

Common polymer materials for space might be PolyEthylene Terephthalate (abbre-
viated for PET, e.g., Mylarr [4]) or PolyImide (abbreviated for PI, e.g., Kaptonr [10]),
which are used for film structures such as shields or reflectors. Other potential polymers
for space reflectors are still in development, and they call for good surface roughness,
a low coefficient of thermal expansion (CTE), and excellent durability. In situ tests for
space survivability have been attempted, e.g., a series of spaceflight experiments have been
conducted under the framework of the Materials International Space Station Experiment
(MISSE) program to test the performance and durability of polymers exposed to the LEO
space environment [11].

(a) (b) c)(
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Figure 2. Three broad classes of concepts for polymer reflectors in development: (a) pressure stiffened
membranes; (b) membrane antenna reflectors supported by a deployable truss mesh; (c) form stiffened
elastic shells of a doubly curved surface. (image credits: L’Garde Inc., Northrop Grumman Corp.,
Mevicon Inc., and NASA).

The core issue for the applicability of an ultra-light polymer reflector is how to form
and maintain a shape with sufficient accuracy, especially with various disturbances in space.
The surface accuracy can be measured by the root mean square (RMS) of the deviated
shape (error), for which the requirement depends on the observing wavelength; for a space
radio antenna, a magnitude of millimeters for the shape RMS error is generally required.
However, the error budget for a reflector surface in the optical/infrared range is extremely
limited and usually smaller than λ/28, where λ is the wavelength. Figure 3 presents a
literature survey of the shape accuracy with respect to the reflector diameter of existing
projects [12,13], showing a trade-off between the size and the precision of a reflective surface
under the technological constraint for space and the current development of the polymer
for large reflectors is based on inflatable structures only for radio astronomy, where the
design focus is on enlarging the collecting area of microwave signals.
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Figure 3. Literature survey of the shape accuracy with respect to the reflector size for various projects
(data collected from [12,13], image credits: L’Garde Inc. and NASA).

Unlike most passive reflectors, which maintain their shape by rigidity with a high
resistance to space disturbance, the active control of a polymer reflector might be a feasible
way for future observation in shorter wavelengths due to a reduction in the structural stiff-
ness. The actuation on the reflector surface can be realized in various methods depending
on the configuration and the shape error budget, e.g., by tuning the pressure of filling gas
inside inflatable membrane apertures to acquire a proper focal length [4], with electrostatic
actuators (acting out of plane) on a mesh antenna [5] or with a set of strain actuators
(acting in plane) attached on the back of the reflector in a unimorph manner [14]. Recent
studies at Université Libre de Bruxelles (ULB) exhibit possibilities of using a film layer
of PolyVinyliDene Fluoride-co-TriFluoroEthylene (PVDF-TrFE) (both piezoelectric and
electrostricitive) to actuate the thin-shell mirror, which is curvely molded in a unimorph
configuration to correct surface modal errors, and small-scale technology demonstrators
have been successfully developed, achieving a shape accuracy that might be used in the
infrared range [15,16].

This paper discusses the wavefront control strategies for the formed stiffened thin-shell
reflectors with unimorph strain actuators. This paper is organized as follows: Section 2
analyzes the mechanics of strain-actuated curved thin shells, and it starts with the governing
equation of an analogical flat plate, and the additional stiffness induced by the curvature is
considered, which leads to a fourth-order differential equation controlling the deformation
of the surface, with an eigensolution related to the structural parameter,

√
RCt, where RC

is the radius of curvature and t is the thickness of the reflector. The results can be used to
predict the typical features of the morphing behavior such as the damped wave deformation
at the electrode transition and the morphing amplitude of a “print-through” actuation,
where both deteriorate the performances of the forming accuracy of the active reflector
and the morphing stroke of the actuators. Section 3 considers the thin-shell structure for a
large-size primary mirror of a telescope, and the softening effect of a petal-like division on
the reflector is numerically investigated, with a trade-off pointed out between the larger
morphing stroke and increased responses (shape errors) excited by the environmental
disturbances. The performances of the forming accuracy are also compared, between the
petal-like segmented and monolithic configurations of the reflectors, showing a modal
dependency on the capacities of the optical error reduction. Section 4 proposes a compound
control strategy for the enhancement of the wavefront correction by supplementing a
deformable relay mirror, and an augmentation can be achieved on the error budget of the
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shape error for the addition of the complementary correction by the relay mirror, especially
for an on-axis observation in space.

2. Mechanics of Strain-Actuated Curved Thin Shells

In this section, the mechanical behavior of a unimorph strain-actuated curved thin
shell will be discussed. We begin with a static equilibrium equation of a flat plate governing
the vertical motion W of the surface

DB∇4W = pz (1)

where the flexural rigidity DB = Et3/12(1− ν2) describes plate bending stiffness: E is the
Young’s modulus, t is the plate thickness, ν is the Poisson’s ratio, and ∇4 is the double
Laplacian operator; pz represents the distributed load. According to [17], a simple analytical
approximation for curved shells suggests that surface curvatures will introduce mid-surface
strains (the membrane extension or contraction) and a geometrical strain, which ensures
the mid-surface deformation is kinematically compatible, and these can be made by adding
two terms to Equation (1)

DB∇4W + DMW = pz + dz (2)

which implies that a curved thin shell behaves similarly to a plate on an elastic foundation
in the quasi-static domain. In Equation (2), DM stands for the foundation modulus and is
expressed as

DM =
Et(c2

1 + 2νc1c2 + c2
2)

1− ν2 (3)

where c1 and c2 represent curvatures in orthogonal directions; this term can be regarded
as the suspension stiffness of connecting an analogical flat plate to the virtual ground.
Another additional term, dz, usually called the “deformation load”, is a parasitic load
acting when in-plane stretching occurs and can be negligible if the membrane extension
is small (we assume dz = 0 in this study). Note that, in this paper, it is not intended to
substitute a curved shell by a ground-mounted flat plate with the analogical hypothesis
proposed by [17], because they are not fully equivalent with each other; however, it still
makes sense to use Equation (2) to predict the main features of a strain-actuated curved shell
analytically, since considerable accuracy can be found compared to numerical simulations
as shown in the rest of this section.

2.1. Damped Wave Deformation at the Transition between Electrodes

It is a typical feature of strain-actuated curved shells that a wavy deformation occurs
at the transition between electrodes excited with different strains; the incremental curvature
is concentrated near the edge of the actuator, and gradually vanishes within a distance
related to

√
RCt. This may deteriorate the surface quality after control, with the residual

error of high spatial frequencies. The wavy deformation can be predicted analytically:
consider a one-dimensional wave solved by Equation (2), with an eigenproblem of

d4W
dx4 + 4ϑ4W = 0 (4)

where the eigenvalue is ϑ = 4
√

DM/4DB; thus, a general solution for Equation (4) is

W(x) = e−ϑx · cos(ϑx + ψ) (5)
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which indicates the wave deformation near the edge of an actuated electrode can be decom-
posed of a set of harmonic shapes with an exponential decay. We define the characteristic
length as the reciprocal of the eigenvalue

Lc =
1
ϑ
= 4

√
4DB
DM

(6)

which determines the decay rate e−x/Lc of the damped wave and the wavelength 2πLc of
the harmonic shape cos(x/Lc + ψ). This will be illustrated by a numerical example below.

Figure 4a shows a finite element (FE) simulation of a single-curvature (cylinder) shell
made of PET (E = 5.6 GPa, ν = 0.38, ρ = 1380 kg/m3), deformed by a moment load
at one end and fixed at the other. Consider the deformation along the direction of the
revolution axis; an illustrated diagram of a one-dimensional estimate of the deformed shape
is given on the right side of Figure 4a. For a single-curvature shell (c1 = 1/RC, c2 = 0),
the characteristic length LC = 0.76

√
RCt according to Equations (3) and (6). Figure 4b

compares the deformed shape of the analytical solution for Equation (5) and numerical
results (with various radii of curvature RC and thicknesses t); they are plotted with absolute
and normalized values in a logarithmic scale. The length of half a wavelength is verified
by the spacing ∆x between P1 and P2 in Figure 4b, where ∆x ≈ πLC. The envelope line
W(x) = e−x/Lc is also presented, which defines the influence area of the damped wave on
the curved shell.
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Figure 4. Numerical verification of damped wavy deformation on the edge of a cylinder thin shell
with a single curvature (c1 = 1/RC, c2 = 0), where the characteristic length LC = 0.76

√
RCt and

various radii of curvature RC and thickness t are tested, showing a good agreement with the analytical
solution of Equation (5): (a) an illustration of the numerical model of a cylinder shell deformed by a
moment load; (b) the comparison between the numerical results of the deformation in axial direction
and the analytical solution of Equation (5).
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Note that, if the shell is doubly curved (c1 = c2 = 1/RC), the characteristic length
will be LC = 0.64

√
RCt/ 4

√
1 + ν; actually, the effect of ν can always be negligible since

4
√

1 + ν ≈ 1 for most materials with ν = 0.0− 0.5, unless an auxetic material (−1 < ν < 0)
is used for the shell substrate. Therefore, we consider the characteristic length for a spherical
shell LC = 0.64

√
RCt.

2.2. Equivalent Loads for Unimorph Strain Actuators

In this study, the shell substrate will be covered by a thin layer of linear electroactive
film (piezoelectric) and deformed via applying voltages to an array of electrodes. Usually,
the unimorph strain actuation on a flat plate can be modeled by a set of equivalent forces
consisting of a force normal to the contour of the electrode, which acts in the tangent plane,
and a moment acting on the contour of the electrode, e.g., for voltage-driven isotropic
piezoelectric film actuators, the force and moment per unit length are, respectively [18],

FE = e31V, ME = e31Vt/2 (7)

where e31 = d31Ep/(1− νp), d31 is the in-plane piezoelectric constant, and Ep and νp are
the Young modulus and the Poisson’s ratio of the piezoelectric material. For a spherical
shell, a uniform pressure PE is supplemented to balance the normal component of the force
FE acting on the contour of the electrode

PE =
2FE
RC

(8)

which ensures a self-equilibrated actuation since the strain actuation forces are always
internal forces [19]. An illustrative diagram of equivalent loads with a central unimorph
strain actuator is shown in Figure 5.

DE

Strain Actuator Size

RC

Substrate

Active Film

Equivalent
Moment

ME

FE

PE

Equivalent
Force

t

tp

ME FE PE

DE

D

Electrode
ContourEquivalent

Pressure

Figure 5. An illustrative diagram of equivalent loads for a unimorph strain actuator acting on a
spherical shell.

The shape of a spherical shell excited by the strain actuator is determined by the
combination of those different equivalent loads, and the surface morphing can be regarded
as linearly superimposed deformation made by different sources. According to Equation (5),
there will be an interference of two damped harmonic waves caused by the edge loads
from different locations, and thus the morphing behavior is significantly impacted by the
separation of the actuator edges (locations of excitations), which is usually defined by the
electrode size DE. Two scenarios need to be specified:

• If the separation of the exciting moments (or other loads acting on the edge) is smaller
than 1/4 of the wavelength 2πLC (within the monotone interval of a harmonic func-
tion) defined in Equation (5), i.e.,

DE ≤
πLC

2
'

√
RCt (9)
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in which LC = 0.64
√

RCt for a spherical shell, the fluctuated shape near the edge of
the actuator will vanish without any ringing profiles.

• If the electrode size is large enough, such that two damped harmonic waves originating
near the electrode edge attenuate and have no interaction with each other, the acting
area of edge loads (moment or force) will be considered limited. The electrode size
DE in this scenario can approximately be calculated, by assuming the magnitudes
of both damped waves are reduced to 1% of their original values when propagating
in a distance of DE/2, according to Equation (5), and one obtains e−DE/2LC ≤ 0.01,
i.e., DE ≥ 9.2LC ' 5.9

√
RCt.

Figure 6a shows an evolution of the morphing amplitude excited by a unit voltage,
with a change in the dimensionless geometric factor DE/

√
RCt. The results are verified by a

simulation on a thin (t = 175 µm) spherical (RC = 1.2 m) shell with a diameter of D = 0.4 m,
with a central unimorph actuator of various electrode sizes. In the test, the active layer uses
piezoelectric polymer material PVDF-TrFE, with properties of Ep = 2.5 GPa, νp = 0.34,
ρp = 1750 kg/m3, and d31 = 15 pC/N.

The first scenario uses a sufficiently small electrode according to Equation (9),
i.e., DE/

√
RCt ≤ 1, leading to a bell-shaped formed surface, with a cross section as shown

in Figure 6b (the red curve). Note that, although the morphing amplitude is limited, this
shape profile avoids mutual interactions with neighboring actuators, which allows a good
fit of the target shape without introducing surface errors of high spatial frequencies. Thus,
as a principle, Equation (9) can be considered as the criteria for designing electrodes on a
spherical shell.
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Figure 6. (a) The evolution of the morphing amplitude excited by a unit voltage with respect to
the dimensionless geometric factor DE/

√
RCt, where the amplitude is measured by the relative

displacement of the center of the shell structure; (b) the cross section shows different morphing
behaviors of various DE/

√
RCt.
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The second scenario considers a larger electrode size with 1 ≤ DE/
√

RCt ≤ 5.9.
Due to an enhancement of interfering waves, higher actuator strokes can be achieved.
However, there will be parasitic errors of unwanted wavy deformation near the electrode
edges (see the green curve in Figure 6b). The third scenario uses an electrode size of
DE > 5.9

√
RCt, where a special phenomenon of “print-through” actuation with the shape

of the electrode can be observed. In this scenario, the amplitude of the deformation remains
almost constant, and the acting areas of the equivalent moments ME are well separated;
those loads generate exponentially decaying waves, which oscillate near the contour and
vanish in the center of the electrode area, as shown in Figure 6b (blue curve). Hence,
the amplitude will be controlled by the equivalent pressure PE in Equation (8), and it is
discussed below.

2.3. Amplitude of “Print-Through” Actuation

According to Figure 6b, the “print-through” actuation introduces surface errors of
high spatial frequencies with the deformation appearing as the footprint of the electrode,
leading to a deteriorating fitting quality of the target shape. This may occur if a large
electrode is present or a uniform voltage is used to be applied on a cluster of small neigh-
boring electrodes. The amplitude of the strain actuation when DE > 5.9

√
RCt can be

predicted analytically.
Returning to Equation (2), the ratio between the flexural rigidity and foundation

modulus DB/DM ∝ (RCt)2, in the case of using a very thin and curved shell (with a
small value of RCt), the vertical motion due to the mid-surface bending is relatively small,
and thus the equation may be rewritten by eliminating the term DB∇4W, i.e.,

DMW = pz (10)

which describes a single-degree-of-freedom (DoF) system of a pressure-actuated thin shell
morphed uniformly within the electrode region. By substituting the distributed load pz
with the equivalent pressure PE in Equation (8) and combining Equation (7), we obtain

W =
PE

DM
=

(1− ν)Epd31RC

(1− νp)Et
V (11)

which gives an approximate calculation of the amplitude of the “print-through” morphing,
and this is verified numerically.

Table 1 reports the simulation of the morphing behaviors of a spherical thin shell
(diameter: D = 0.2 m), with various values of RC and t tested, and a central unimorph
actuator is used with a sufficiently large electrode with a diameter of DE > 5.9

√
RCt, and

the peripheral of the designed actuator is also far away from the mechanical boundary
condition. A comparison of amplitudes computed numerically and analytically is made,
which shows a good agreement. It is interesting to observe that, once DE exceeds the
threshold value 5.9

√
RCt, the amplitude can neither be augmented by using a larger

electrode diameter DE, nor changed if a different shell diameter D is employed (compare
the case 6 in Table 1 with D = 0.2 m and numerical examples in Figure 6 with D = 0.4 m);
this constraint may pose difficulties for compensating the aberrated shape of a thin-shell
structure with a large diameter.
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Table 1. Comparisons between numerical and analytical calculations of Equation (11) with a large
electrode of DE > 5.9

√
RCt.

RC

Wavy Region
R tC

~
Numerical

Analytical

Deformation W

D

DE

Substrate

Act. Film

tp t<<

t

tp Voltage

Case DE [m] RC [m] t [µm] DE/
√

RCt [/]
W [µm/V]

Numerical Analytical

1 0.1 2.5 100 6.32 0.1512 0.1573
2 0.1 0.6 100 12.91 0.0373 0.0377
3 0.1 0.8 100 11.18 0.0495 0.0503
4 0.1 1.2 100 9.13 0.0715 0.0755
5 0.07 1.2 100 6.39 0.0719 0.0755
6 0.1 1.2 175 6.90 0.0402 0.0431

3. Unimorph Active Primary Mirror with a Large Diameter

The unimorph curved thin shell will be used for lightweight primary mirrors of
space telescopes, with an active morphing capability enabling it to keep a delicated shape,
upon the optical design within a certain accuracy. The qualification of an image processed
by the telescope optics can be defined by the Strehl ratio S, which is a function of wavefront
error w on the image plane

S = e−4 π2σ2
w

λ2 (12)

where σw is the root mean square (RMS) of the wavefront error; a qualified set of imaging
optics calls for a Strehl ratio S ≥ 0.8, corresponding to a wavefront RMS error of

σw ≤
λ

14
(13)

which defines an overall error budget of the optical system. Note that the wavefront
variation w introduced by an on-axis reflective surface at the aperture is twice that of the
deformed surface W, i.e., w = −2W.

Exposed to the harsh space environment, the thin-shell reflector will be excited by
various sources, e.g., the thermal and gravitational gradients, and the vibration from
supporting frames, resulting in an optical aberration on the image plane of the telescope
optics. The disturbance can be also generated internally, e.g., intrinsic thermal loads
by the pyroelectric coupling, especially when a large electric field is applied to the thin
piezoelectric film. This might be critical under special conditions of heat transfer in space,
which can be investigated in future studies, and the theoretical fundamentals can be found
in [20]. Other possible factors for producing a surface error on thin-shell reflectors might
be the inhomogeneity of stress relaxation or manufacturing errors, causing a quasi-static
deviation from their perfect form.

It is difficult to make an accurate prediction for the shape aberration disturbed by those
environmental excitations with temporal and spatial uncertainties. Therefore, a feedback
control strategy of the wavefront is employed to compensate for the shape error in real-time.
This control loop requires a wavefront sensor, which feeds a measurement of the residual
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wavefront to the controller, for computing a voltage pattern to the actuator array; in this
study, a perfect wavefront sensing is assumed.

The aberrations of the optical wavefront w on the pupil with a diameter of D can be
decomposed as a set of orthogonal and normalized functions Zi(ρ, θ) defined on a unit
circle in polar coordinates called the Zernike modes (or Zernike polynomials)

w(Dρ/2, θ) = ∑ ciZi(ρ, θ) (14)

where ci is the coefficient for the mode i, and σ2
w = ∑ |ci|2. The analytical expressions of

the low-order Zernike polynomials are given in Appendix A. Typical modes depicting the
on-axis abberations are Defocus (Z4) and Spherical Abberation (Z11), and the modes of
Astigmatism (Z5/6) and Coma (Z7/8) are common off-axis abberations. In the following
study, we will also use Zernike modes as modal basis functions to fit the shape deviation of
the surface in the telescope optics.

In this section, we will evaluate the morphing capabilities of forming certain Zernike
modes for an active primary mirror with a diameter of the order of meters, which is
unimorphly actuated by a large array of electrodes; this thin-shell reflector is used as a
prime wavefront corrector at the telescope aperture, and both actuator strokes and the
surface fitting error will be discussed for different configurations of the reflectors.

3.1. Evaluation on Morphing Capabilities

Two aspects needs to be concerned when assessing the morphing capabilities for a
unimorph curved thin shell: (1) the forming accuracy of the active surface, with a measure
of the wavefront RMS error σw for forming a target shape with a unit amplitude, i.e., peak
to valley (PV), denoted by δ = σw/PV; (2) the morphing stroke, the amplitude of deformed
surface (best fit of the forming target) with respect to the voltage range, denoted by PV/∆V.
Note that, according to previous studies and the analysis in Section 2, strain-actuated
curved shells show a great weakness in both aspects, in a comparison with analogical flat
plates. Some attempts have been made to offset those disadvantages; the first one is to
reduce the size of the electrodes following Equation (9), resulting in a significant increase
in the number of electrodes N, which can be estimated by

N ' (
D

DE
)2 ≥ D2

RCt
=

D
2( f /])t

(15)

where f /] = RC/2D is the f-number of the reflector. Controlling with such a large number
of actuators means a good fitting of the target shape; however, the morphing amplitude
is still limited according to Figure 6a with a small size of electrode. Moreover, a complex
control algorithm should be developed to make an accurate inverse of the Jacobian matrix
with large dimensions.

The second attempt is to use a petal-like segmented configuration of the reflector
instead of a monolithic one, aiming at reducing the hoop stiffness induced by the curvature;
this will generally increase the morphing stroke of the actuator array with a (compromised)
reasonable number of actuators. The present work is a follow-up to [19,21], and a compara-
tive analysis will be conducted as follows, on the morphing capabilities of forming Zernike
modes between the petal-like segmented and monolithic thin curved mirrors.

Figure 7 shows numerical tests for a thin-shell primary mirror used in an infrared
telescope: the shell has layers with the passive coated PET substrate and the piezoelectric
PVDF-TrFE membrane with in-between electrodes, the gold coating layer is used for
increasing the infrared reflectance, and the patterned electrodes are arranged in a keystone
layout with the radial order nR and the azimuth order nAZ. Figure 7a gives the geometric
information for the curved shell structure: the primary mirror has a clear aperture of
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D = 1 m and a central obstruction ratio of 10% (i.e., DH = 0.1 m); for non-paraxial optics
(usually for large apertures), the mirror shape with active control can be defined by

Sm =
r2

RC +
√

R2
C − (1 + K)r2

+ W (16)

It has two parts, and the first one, r2/(RC +
√

R2
C − (1 + K)r2) , is the nominal shape,

where r is the coordinate of the radial distance, K is the conic constant, and a departure from
the sphere (K = 0) is often adopted for the primary mirror at the entrance pupil. The value
of K for optical surfaces controls the performances of telescopes, e.g., the Cassegrain tele-
scope uses a concave paraboloid primary (K = −1) with a convex hyperboloid secondary
(K < −1) to eliminate the on-axis spherical aberration (Z11); other designs for a reflective
telescope can be found in [22]. In this test, a paraboloid reflector (K = −1) with RC = 2.5 m
is used. The second part, W, is the deviated shape with respect to the nominal one, and
might be expressed as W = e− Jv, where e is the shape error (compensated target) and Jv
is the active formed shape, J is the Jacobian matrix mapping actuator inputs (voltages) to
the morphing surface, and v is the vector of the applied voltages.
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Figure 7. Numerical models for the configuration study of morphing capabilities: (a) the struc-
tural parameters of the tested composite primary reflector; (b–d) electrode patterns of numerical
examples with radial orders of nR = 5, 10, and 15 and azimuthal orders of nAZ = 12, 24, and 36.
The performances of both monolithic (full) and petal-like (division order: m = 6) configurations
are examined.
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The voltages can be computed using a least-squares (LS) reconstruction to minimize
‖e− Jv‖2, and thus the applied voltages and the residual wavefront error are, respectively,

v = (JT J)−1 JTe, w = −2W = 2[J(JT J)−1 JT − I]e. (17)

Figure 7b–d show simulated cases with the layers of various patterned electrodes, and
several values of nR (5/10/15) and nAZ (12/24/36) are tested. In addition, both petal-like
segmented (with a division of m = 6) and monolithic configurations are examined.

Figure 8 plots the simulated performance of active shells on forming some low-order
Zernike modes; the wavefront RMS error σw and voltage range ∆V are computed via
Equation (17), where the compensated target is substituted by e = Zi for the i-th Zernike
mode. The results are presented in a form of plotmatrix, in which each subplot shows
the relationships of the morphing amplitudes in a given voltage (PV/∆V) versus the
normalized forming accuracies (δ = σw/PV) for various electrode patterns. According to
those results, significantly larger amplitudes of the deformation can be found for petal
configurations, for generating a target shape where the curvatures in orthogonal directions
have the same signs (Defocus Z4, Coma Z7, and Spherical Aberration Z11). The active
reflector with a petal-like division presents excellent performance for the surface error
reduction for forming Defocus Z4, and this can be impacted by the radial order nR of the
electrode pattern; when the targets are Coma Z7 and Spherical Aberration Z11, even a
slight degradation can be observed (for Spherical Aberration Z11) compared to monolithic
(full) configured reflectors.

In contrast, the monolithic configuration shows better performance in both morph-
ing strokes and surface precision when forming a target shape; where the curvatures in
orthogonal directions have opposite signs that are wavy on the edge (Astigmatism Z5 and
Trefoil Z10), the performance will be degraded for the petal configuration but still within an
acceptable range due to the inherently good performance of the full-coverage configuration.

In general, the performance for wavefront error reduction can be improved by a
finer patterning of the electrode array (i.e., by using large values of nAZ and nR for the
keystone layout); this applies for most cases in Figure 8, except that the performance of the
monolithic configuration is insensitive to the radial order nR when forming target shapes
with periodically fluctuated edges (Astigmatism Z5 and Trefoil Z10) or axisymmetric
shapes (e.g., Defocus Z4 and Spherical Aberration Z11). On the other side, the increased
number of electrodes deteriorates the Jacobian matrix conditioning, leading to a larger
consumption of the applied voltages. Table 2 lists the results of the modal reconstruction for
10 µm amplitude shapes of Defocus Z4 and Astigmatism Z5; the condition number of J is
computed by the ratio between the maximum and minimum singular values of the matrix,
and this increases with the electrode number. In addition, a reference case with a monolithic
configured reflector is also reported, and the electrode number N = nRnAZ = 2250
is chosen to be close to the approximate value based on Equation (15); thus, a good
performance can be expected for the wavefront error reduction. Note that petal-configured
active reflectors require much fewer electrodes and exhibit better performances in achieving
larger actuation strokes.

Figure 9 presents the performances for the active wavefront control of the unimorph
shell with respect to the petal number m with a target shape of 10 µm. Finer divisions of
sub-reflectors result in better performances for morphing strokes (less voltage required) and
surface accuracies when forming the target shapes of Defocus Z4 and Spherical Aberration
Z11, showing a relaxing of the error budget for those on-axis aberrations. Similar to
the above results, the residual error becomes large (within an acceptable range) with the
number of petals for the target shapes with periodically fluctuated edges. Various options
for the petal divisions allow for a potential optimal design for stowing the reflector during
the launch.
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Figure 8. Simulated results of forming low-order Zernike modes with the layer of various reflector
configurations and patterned electrodes shown in Figure 7, with both the wavefront RMS error σw

and voltage range ∆V computed. According to those results, significantly larger amplitudes of the
deformation can be found for petal configurations, for generating a target shape where the curvatures
in orthogonal directions have the same signs; the monolithic configuration shows better performance
in both morphing strokes and surface precision when forming a target shape where the curvatures in
orthogonal directions have opposite signs that are wavy on the edge.

Table 2. Numerical results of controlled surface precision (wavefront RMS error) of forming 10 µm
amplitude Zernike modes of primary optical aberrations.

nR nAZ Config. Electrode Condition Defocus Z4 Astigmatism Z5

Number Number σw [nm] ∆V [V] σw [nm] ∆V [V]

15 36 Petal-6 540 4211.7 154.36 11.61 53.29 14.65
15 48 Petal-6 720 6701.2 92.16 12.55 40.65 22.04
20 48 Petal-6 960 8216.9 85.93 13.13 28.09 13.35

25 90 Full 2250 132574.2 124.13 722.49 3.76 2.81
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Figure 9. Performances of active surface control (the wavefront RMS error σw and the voltage range
∆V) with different numbers m of petal segmentation. The electrodes are arranged with a keystone
pattern of nR = 5 and nAZ = 24, and the amplitude of the target shape is PV = 10 µm.

3.2. Structural Dynamics

Usually, there is a trade-off between structural rigidity and morphing capabilities
for an active space reflector. Rigid structures always have a higher resistance to complex
disturbances in space, leading to a restrained magnitude of shape aberrations. This is
advantageous for maintaining the reflector in its original shape. However, the morphing
capability of a deformable reflector can be significantly deteriorated by a rigid design,
especially for the actuator stroke. The responses (shape errors) of a thin-shell reflector by the
excitations in space can be assessed by the dynamic characteristics of the structure, where
an important measure for this is the resonant frequency ω (in rad). In general, the quasi-
static deformation W of a structure can be roughly associated with ω by W ∝ ω−2 [23].
For a thin plate structure, the resonant frequency ωP can be predicted theoretically by

ωP = α(tD−2)

√
E

ρ(1− ν2)
(18)

where the structural dynamics are determined by the geometric factors tD−2 and material
factors E/ρ(1− ν2), and α is a constant controlled by the boundary condition. Using the
models of circular PET flat plates (similar to the cases in Figure 7), which are isostatically
supported at the inner edge, a fitted value of α = 3.13 can be obtained, with a range for the
geometric parameters of D = 0.5− 1.5 m and t = 100− 250 µm. The dynamic behaviors
become complicated if a large shell structure is curved, and a literature review shows
an establishment of conditionally valid formulae for evaluating the natural frequency
ωS for spherical shells by their analogical flat plates [24]. In this study, we develop a
phenomenological model for ωS by rewriting Equation (18) and using exponential functions
on the geometric factors of the curved shell

ωS = β(Ra
c tbDc)

√
E

ρ(1− ν2)
(19)

where the fitted values of β = 1.433, a = −0.16, b = 0.8, and c = −2.08 can be obtained
with a wide range of RC = 0.4− 100 m (a total of 167 random numerical cases are tested).
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The exponent a < 0 (for RC) shows the structural stiffness increases with the curvature
of the reflector. Note that a = −1 can be used for very curved shells when the curvature-
induced stiffness dominates the structural dynamics [8]. The resonant frequencies are
also influenced by other factors, such as membrane tensioning and large initial shape
aberrations, which are numerically verified in [25].

Figure 10 illustrates the softening effect of the petal segmentation on a curved thin-
shell reflector. The numerical examples in Figure 7 are tested, and the resonant frequency
(plotted in Hz) decreases with the petal number because the division of the reflector reduces
the hoop stiffness. Therefore, larger responses to the disturbances might be present for the
petal configured reflectors, resulting in a larger shape error to be compensated by those
strain actuators.
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0

0.1
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Config.

Figure 10. Resonant frequencies of a curved thin shell with respect to the petal numbers.

4. Compound Control with a Deformable Relay Mirror

The active thin-shell reflector acts as a self-corrector maintaining the designed shape
and compensates wavefront aberrations at the telescope aperture; a shape error budget can
be defined for the primary mirror (the entrance pupil), which causes the wavefront error
on the image plane in such a way that√√√√ N

∑
i=1

γ2
i ≤ η

λ

14
(20)

where γi is the RMS error budget of the residual wavefront for the Zernike mode i
(i = 1− N), η represents the weighting factor of the error allocated to the primary mirror,
with the rest,

√
1− η2 of the overall budget λ/14, for other optical components in the

system. In another sense, we can accordingly define a modal shape error budget for the
amplitude Ai, by using Ai = γi/δi, where δi is the normalized forming accuracy of the
mode i as computed in Figure 8; a large value of δi indicates insufficient capabilities for
forming the mode, leading to a limitation on the achievable amplitude (small value of Ai)
for the modal reconstruction. In this section, we propose a compound control strategy using
a deformable relay mirror to compensate the residual wavefront error, which has been
corrected partially by the active unimorph primary mirror, and the goal of the additional
wavefront corrector is to relax the stringent budget on Ai.

This study is based on a classical R-C design of space telescope as shown in Figure 11:
the telescope optics consist of a hyperboloid concave primary mirror and a hyperboloid
convex secondary mirror, and this configuration eliminates passively both typical optical
errors of on-axis Spherical Aberration Z11 and off-axis Coma Z7/8, enabling a wide field
for observation and is widely used for astronomical telescopes. The active primary mirror
uses the structural parameters of the unimorph thin shell investigated in Section 3 with a
conic constant of K = −1.01 (very close to the paraboloid mirror). The telescope is designed
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with a full FoV of 9.6 arcmin and an overall f-number of 9. A deformable relay mirror is
utilized to fold the optical path, and the deformation WD is actively controllable to abate the
optical error made by the residual shape error W of the primary. Two parameters determine
the layout of this mirror: the folding angle θ and the distance L to the secondary mirror,
which influence the compactness of the space telescope structure.

Primary Mirror

Secondary Mirror
Deformable Relay

Mirror

Image Plane

L

θ

D R= 1 m, = 2.5 m
= -1.01

C

K

D R= 0.184 m, = 0.582 m
= -1.851

C

K

D = 0.25 m
= 0.271 mR

C

W

W
D

Figure 11. A Ritchey–Chrétien (R-C) design of space telescope: a relay mirror is added to fold the
optical path; both primary and relay mirrors are deformable (L = 1.4 m, θ = 45◦).

The shape deviation of the primary mirror (thin-shell reflector) is set to be W = ∑ aiZi
at the entrance pupil, and the deformable relay mirror with a shape of WD = ∑ bjZj is used
to compensate the wavefront error of the aberrated primary. Both surfaces are decomposed
into Zernike modes with vectors of coefficients a and b, respectively. A mapping matrix T
exists, which associates two deviated surfaces in the telescope system for eliminating the
optical errors on the image plane. The vector b for the required shape WD is computed by

b = Ta (21)

in which the matrix T is obtained by utilizing the ray tracing technique, with an inverse
optimization process on minimizing the central moment of spots diagram on the optical
terminal. Note that this method applies for other sources of optical errors, e.g., the shape
error of the secondary mirror or the misalignment within optical surfaces. Usually, the en-
tries of T are the functions of the folding angle θ and the FoV. Figure 12 gives a view of
the elements in T, where the mapping orders for ai and bj are i = 4− 15 and j = 4− 21,
respectively, the modes of Piston (Z1) and Tilt (Z2/3) are not involved because they do not
affect the image quality, and L = 1.4 m is a constant in this example.

According to Figure 12a,b, the error compensation for on-axis observation shows
a good diagonal decoupling between corresponding modes, and the magnitudes of the
matrix entries are reduced when a small θ = 20◦ is present, due to a change in the elliptical
footprint of the incoming light path and the reflection projections. If the FoV is large
(see the full FoV for Figure 12c,d), the diagonality of T is broken down due to a complex
combination of modes for off-axis monitoring, which is always required, and the relay
mirror has a weakly optical conjugation to the primary reflector at the entrance pupil.

The design requirements for the deformable relay mirror are also influenced by the
distance L between optical surfaces. Figure 13 shows changes in the required pupil diameter
and forming amplitude with respect to L, and both on-axis and full FoV are considered,
with a folding angle of θ = 20◦. The clear pupil defines the minimal mechanical diameter
of a deformable mirror, and a geometric calculation shows a decreasing size of the mirror
with L, leading to a (limited) small actuator pitch for the deformable relay. When a wide
FoV is used, the mirror size should be increased for off-axis modal correction. Figure 13b
gives numerical results for the relative amplitude of compensating the corresponding mode
when a shape error of Astigmatism Z5 on the primary mirror is present; for a full FoV
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observation, a significant large actuation stroke is required for a large L, and the relative
amplitude is almost constant for the on-axis ray tracing. Note that a large value of L poses
technical difficulties for the design of the deformable mirror, because a small size is needed
with a large morphing stroke.

We assume the deformable mirror performs as a perfect Zernike mode modulator
within its own circular pupil, which is technically feasible for some current commercial
products [26]. Numerical tests are conducted on the wavefront error reduction on the image
plane (collocated with the terminal of the wavefront sensor) as shown in Figure 11, and
the error is caused by a shape deviation of the primary mirror with a Zernike mode of unit
amplitude. The correction can be made by the active primary mirror using Equation (17)
or by deformable relay mirror by a mode mapping optimization using Equation (21).
The simulated results for each Zernike mode are plotted in Figure 14, and they show that
a significant reduction can be made by the deformable mirror for the on-axis wavefront
correction, especially for low-order modes (i < 10). With a wider FoV, however, the per-
formance for wavefront compensation becomes limited, with a weighted summation of
the residuals over a full range of the fields and this is because the required shape projected
on the pupil of the deformable mirror varies with the fields when the error occurs at the
entrance pupil; usually, a direct correction on the primary mirror gives better performances
than morphing the supplemented optical components.

On-axis, θ = 20

Full FoV, θ = 20

On-axis, θ = 45

Full FoV, θ = 45

21

4

6

9

12

15

Zernike Mode (PM) [/]ai

Z
er

n
ik

e 
M

o
d

e
(D

M
) 

[/
]

b
j

4 6 9 12 15

21

4

6

9

12

15

Zernike Mode (PM) [/]ai

Z
er

n
ik

e 
M

o
d

e
(D

M
) 

[/
]

b
j

4 6 9 12 15

21

4

6

9

12

15

Zernike Mode (PM) [/]ai

Z
er

n
ik

e 
M

o
d

e
(D

M
) 

[/
]

b
j

4 6 9 12 15

21

4

6

9

12

15

Zernike Mode (PM) [/]ai

Z
er

n
ik

e 
M

o
d

e
(D

M
) 

[/
]

b
j

4 6 9 12 15

(a) (b)

(c) (d)

+

-

7.5

0

+

-

1.4

0

+

-

9.3

0

+

-

29.6

0

。 。

。 。

Figure 12. Elements in the matrix T in an absolute value, where the mapping orders for ai and bj

are i = 4− 15 and j = 4− 21, respectively. Four configurations are plotted: (a) on-axis, θ = 20◦;
(b) on-axis, θ = 45◦; (c) full FoV, θ = 20◦; (d) full FoV, θ = 45◦.
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Figure 13. (a) Required pupil diameter and (b) forming amplitude (for Astigmatism Z5) with respect
to L; both on-axis and full FoV are considered, with a folding angle of θ = 20◦.
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Figure 14. Evaluation of capabilities of wavefront correction for active primary and relay mirrors:
the primary mirror has a keystone electrode pattern with nR = 15 and nAZ = 36 with both petal-like
and monolithic configurations plotted; the effect of FoV on the optical error compensation with the
deformable mirror is considered.

The deformable relay mirror enables a complementary correction of the wavefront
error caused by the thin-shell primary mirror, which can be easily excited with a large
deformation. Hence, we may allocate the amplitude of the aberrated shape of a primary
surface (in the Zernike mode i) Ai into AP

i and AD
i (i.e., Ai = AP

i + AD
i ), allocating them,

respectively, to the unimorph thin-shell reflector itself and the deformable relay mirror for
error elimination on the image plane of the telescope optics. This leads to an optimiza-



Actuators 2023, 12, 100 20 of 23

tion problem solving the maximum possible amplitude Amax
i of the error budget of the

primary mirror.

max(AP
i + AD

i ) subject to
√
(AP

i δi)2 + (AD
i δD

i )2 ≤ γi (22)

where δD
i is the normalized forming accuracy for the mode i of the deformable mirror as

computed in Figure 14 and γi of the RMS error budget defined in Equation (20). The math-
ematical solutions for Equation (22) are

AP
i =

δD
i√

(δi)4 + (δD
i δi)2

γi, AD
i =

δi√
(δD

i )4 + (δD
i δi)2

γi (23)

Figure 15 shows the maximum allowed values of the amplitudes for the shape error
in Zernike modes (with a unit of wavelength λ), and the computation uses Equation (23)
with the RMS error budget γi equally distributed for the modes i = 4− 15 in Equation (13)
(assuming η = 0.5); a more delicated budget design on γi can be made if a reduction in
certain modes is needed. According to Figure 15, for an on-axis observation, the error
budget in amplitude for a thin-shell reflector can be increased by approximately an order of
magnitude, by supplementing a deformable mirror into the optical chain; this benefit can
be extended for a narrow field of view monitoring on a distant object. However, this benefit
might be lost for a wider FoV, with a dominant capacity of correcting wavefront errors by
the primary mirror over a wide range of field. Note that a weighting factor can be added
for the allocated amplitude AD

i of the deformable relay mirror, if the energy consumption
for the actuation is taken into account.
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Figure 15. Maximum allowed amplitudes of surface errors (in λ) for different modes.

5. Conclusions

This paper discusses the wavefront control strategies for a large active thin-shell pri-
mary mirror with unimorph actuators. The lightweight thin shell with a doubly curvature is
covered by an active layer (piezoelectric or electrostrictive) and the deformation is made by
the strain actuation. The curvature-induced rigidity of the thin-shell structure deteriorates
the performances of the forming accuracy of the active reflector and the morphing stroke of
the actuators, relating to a structural parameter of

√
RCt. The structure can be softened by a

petal-like division of the mirror surface, exhibiting a much larger morphing amplitude with
a constant voltage consumption; however, this may lead to larger responses (shape errors)
excited by the environmental disturbances. The performances of the forming accuracy are
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also compared, between the petal-like segmented and monolithic configurations of the
reflectors, showing a modal dependency on the capacities of the optical error reduction.
The performances of correcting the wavefront errors can be further enhanced by using
other active surfaces in the optical chain; a numerical example of an R-C telescope is tested,
where the unimorph thin-shell reflector acts as the primary mirror, and a deformable relay
mirror is supplemented to compensate the residual wavefront errors. An augmentation can
be achieved on the error budget of the shape error for the addition of the complementary
correction by the relay mirror, especially for an on-axis observation in space with complex
environmental disturbances.

Author Contributions: Conceptualization, K.W. and A.P.; methodology, K.W. and A.P.; software, K.W.
and Y.Y.; validation, K.W., Y.Y. and A.P.; writing—original draft preparation, K.W.;
writing—review and editing, K.W. and A.P.; All authors have read and agreed to the published
version of the manuscript.

Funding: The research is supported by the National Natural Science Foundation of China (62105249),
the Open Fund of Hubei Luojia Laboratory (220100052), the Fundamental Research Funds for
the Central Universities (2042022kf1065), and the Natural Science Foundation of Hubei Province
(2022CFB664). The part conducted at ULB is supported by ESA-ESTEC in the framework of the GSTP
program, project Multilayer Adaptive Thin Shell Reflectors for Future Space Telescopes (MATS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank G. Rodrigues and D. Alaluf from ESA-ESTEC for
their contributions to the earlier stages of this project.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AMTD Advanced Mirror Technology Development
AMSD Advanced Mirror System Demonstrator
BLAST Balloon-borne Large Aperture Submillimeter Telescope
CTE Coefficient of Thermal Expansion
ELT Extremely Large Telescopes
ESA European Space Agency
FoV Field of View
HST Hubble Space Telescope
JWST James Webb Space Telescope
LIS Large Inflatable Structures
LRD Inflatable Reflector Development
LS Least Squares
MISSE Materials International Space Station Experiment
MMSD Multiple Mirror System Demonstrator
NASA National Aeronautics and Space Administration
PET PolyEthylene Terephthalate
PI PolyImide
PV Peak to Valley
PVDF-TrFE PolyVinyliDene Fluoride-co-TriFluoroEthylene
RMS Root Mean Square
R-C Ritchey–Chrétien
SE-L2 Sun–Earth Lagrange point 2
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SiC Silicon Carbide
ULB Université Libre de Bruxelles
ULE Ultra-Low Expansion glass

Appendix A

The Zernike mode Zi(ρ, θ) is defined on a unit circle in polar coordinates (ρ, θ) where
0 < ρ < 1, and it is usually used as a modal basis to describe the wavefront w on the pupil.
Table A1 gives a list of analytical expressions of Zernike modes with an order of i = 1− 21
in Noll’s index [27], with a normalization of∫ 2π

0

∫ 1

0
Z2

i ρdρdθ = π (A1)

Table A1. Analytical expressions of the low-order Zernike modes (in Noll’s index).

Term Analytical Expression Classical Name

Z1 1 Piston
Z2 2ρcosθ Horizontal Tilt
Z3 2ρsinθ Vertical Tilt
Z4

√
3(2ρ2 − 1) Defocus

Z5
√

6ρ2sin2θ Oblique Astigmatism
Z6

√
6ρ2cos2θ Vertical Astigmatism

Z7
√

8(3ρ3 − 2ρ)sinθ Vertical Coma
Z8

√
8(3ρ3 − 2ρ)cosθ Horizontal Coma

Z9
√

8ρ3sin3θ Vertical Trefoil
Z10

√
8ρ3cos3θ Oblique Trefoil

Z11
√

5(6ρ4 − 6ρ2 + 1) Primary Spherical Aberration
Z12

√
10(4ρ4 − 3ρ2)cos2θ Vertical Secondary Astigmatism

Z13
√

10(4ρ4 − 3ρ2)sin2θ Oblique Secondary Astigmatism
Z14

√
10ρ4cos4θ Vertical Quadrafoil

Z15
√

10ρ4sin4θ Oblique Quadrafoil
Z16

√
12(10ρ5 − 12ρ3 + 3ρ)cosθ N/A

Z17
√

12(10ρ5 − 12ρ3 + 3ρ)sinθ N/A
Z18

√
12(5ρ5 − 4ρ3)cos3θ N/A

Z19
√

12(5ρ5 − 4ρ3)sin3θ N/A
Z20

√
12ρ5cos5θ N/A

Z21
√

12ρ5cos5θ N/A
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