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Abstract: This paper begins with a quick survey of potential space applications and a brief review of
previous experiments on the shape control of a spherical shell reflector with a thin film of PVDF-TrFE.
Next, the problem of thermal sensitivity is addressed numerically; it is found that, because of the
large thermal expansion of the active material, the surface figure error generated by a linear thermal
gradient on a unimorph reflector is considerable and its correction requires large control voltages.
The surface figure accuracy can be greatly improved by a balanced design (i.e., adding a passive layer
symmetrical to the PVDF-TrFE layer) and using a low CTE substrate. Finally, the paper considers
a petal reflector; the unimorph design is even more sensitive than the full reflector to the thermal
gradient, but the balanced design turns out to be better than the full reflector, both from the point of
view of the surface figure error and the control voltages.

Keywords: PVDF-TrFE; piezoelectric polymers; deployable space telescope; thermal balancing; petal
reflector; optical communication; shape control

1. Introduction

The surface figure accuracy of space reflectors must be maintained to a fraction of
the wavelength in spite of the manufacturing and deployment errors, gravity gradient
and thermal loads. The thermoelastic loads due to thermal gradients often constitute the
main contributor to the shape distortion, especially in LEO (Low Earth Orbit), because of
the frequent eclipses, which induce unsteady thermal loads [1]. The jitter induced by the
attitude control wheels are the main disturbance to the pointing stability.

1.1. Large Reflectors

The goal of using larger reflectors in space is to improve the sensitivity and resolution
of antennas, spectrographs and imaging devices while meeting the volume and weight
constraints of the launcher. When the limited space in the fairing of the launcher does not
allow a rigid reflector, folding is necessary during the launch and the reflector is unfolded
once in orbit. This brings the challenge of maintaining the surface figure accuracy of
the deployed reflector for the mission, which is becoming increasingly difficult as the
wavelength λ becomes shorter (RMS wavefront accuracy of λ/14 for optical systems).
This often requires some kind of active control. The weight constraints associated with
launching large reflectors to distant operating locations such as the Lagrange L2 point
brings another requirement on the low areal density.

The James Webb telescope with a primary mirror of 6.5 m relies on articulated rigid
segmented mirrors. Several alternative concepts of deployable reflectors with low areal
density (<3 kg/m2) and high stowability have been proposed: Lenticular pressure stiffened
membranes [2]; and doubly curved form stiffened elastic shells [3,4]. None of them offer
accuracy acceptable in the optical range. Others rely on a deployable mesh antenna
supporting a membrane reflector controlled by a set of electrostatic actuators [5].
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Our work [6,7] investigates the control a thin spherical polymer shell covered with
a thin film of electrostrictive copolymer (PVDF-TrFE) used as in-plane strain actuator
(according to the d31 mode); the target shape is obtained by applying voltages to a set of
independent electrodes. Earlier work has shown that strain actuators are very efficient to
control a flat plate; they are widely used in Adaptive Optics (AO) (e.g., see [8]). However,
the response of a thin spherical shell is far more complicated; the accurate shape control
requires that the electrode size $ be such that

$ < (Rc t)1/2 (1)

where Rc is the radius of curvature and t is the shell thickness [9,10]. Any significant
departure from this condition will lead to a wavy reflector shape at the transition be-
tween electrodes excited with different strains (i.e., different voltages for an electrostrictive
material). According to the foregoing equation, assuming electrodes with an aspect ratio
close to 1, the number of electrodes N follows N ∝ (Rc t)−1; thus, more curvature and
thinner shell will mean more electrodes, more sophisticated metrology and more complex
control algorithms.

1.2. Small Satellites

In recent years, low-cost small satellites and cubesats have become increasingly pop-
ular for Earth observation, inter-satellite laser communication and LIDAR (e.g., [11,12]).
The performance of these systems depends critically on the reflector size, and they can
greatly benefit from using deployable light collectors much larger than the satellite itself,
provided however that the imaging quality can be maintained with a deployable mirror.
A passive Ka-band radar deployable antenna of 0.5 m has been demonstrated at JPL on a
6U cubesat [13]. Attempts to use deployable reflectors made of four rigid petals for optical
applications have also been reported (e.g., [14,15]). In contrast, our goal is an actively
controlled flexible deployable reflector.

Optical communication allows wider data transfer bandwidth, but requires greater
precision. The transmission gain G of laser communication (e.g., [16]) is directly propor-
tional to

G ∝ (
πDt

λ
)2 × ηt × (

πDr

λ
)2 × ηr (2)

where (πDt/λ)2 is the gain of the transmitting aperture and (πDr/λ)2 that of the receiver.
ηt accounts for the imperfection of the transmitter if not perfectly diffraction limited (the
imperfection in the wavefront is usually accounted for by the Strehl ratio Str = exp(−σ2),
where σ is the RMS wavefront error expressed in radian). Similarly, ηr accounts for the
imperfection of the receiver. Assuming the same aperture for the transmitter and the
receiver, Equation (2) suggests that, providing the optical quality of the telescopes can be
maintained, the transmission gain is a function of the fourth power of the aperture.

Figure 1 shows a conceptual view of a deployable reflector with flexible petals,
in folded (left) and deployed (right) configurations. The Figure illustrates the deployment
with a simple translation mechanism moving the reflector outside the cubesat (upwards
in the figure); the reflector, initially constrained inside the cubesat is freed gradually as
its base support moves and the petals return elastically to their original position thanks
to their own elastic strain energy. The final shape of the petals is achieved using in-plane
piezoelectric strain actuators distributed over their back surface as discussed later in this
paper, compensating for misalignment, manufacturing errors, creep, etc. The thermal
behavior of the multilayer material necessary to manufacture such a reflector is the main
concern of this paper. The deployment of the secondary mirror is not the focus of this
research, but an example is shown. In this deployment scheme, the secondary mirror is
attached to a sliding stage, which deploys along the base using a spring. The base of the
stage doubles in function as a stray light baffle.
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Figure 1. Deployable reflector made of 6 petals folded in a 3U cubesat (left) and deployed (right)
thanks to a translation mechanism.

It is clear that, if the image quality in the deployed configuration can be achieved at
a reasonable cost, the significant increase of the light collecting area will tremendously
improve the system performance.

1.3. Organization of the Paper

This paper is organized as follows: Section 2 summarizes earlier results on thin film
PVDF-TrFE used as strain actuator material; a simple uniaxial material model was found
consistent with experimental results and all the material parameters have been determined.
Section 3 summarizes experimental results obtained with a small demonstrator controlled
with 25 independent electrodes. Section 4 addresses the thermal sensitivity of the earlier
(unimorph) design and considers options for improving the thermal stability: addition of a
layer thermally balancing the PVDF-TrFE layer, and using a low CTE substrate (Figure 2b).
These design changes are analyzed numerically on a reflector of D = 1 m controlled
with an array of 120 independent electrodes. Section 5 considers the case of a petal
reflector: numerical simulations show that the unimorph design is even more sensitive
than the full reflector, but the balanced design has very good performance with a very
small control budget.
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Figure 2. Layer configurations: (a) unimorph configuration used in earlier studies; (b) with a thermal
balancing layer and low CTE substrate.

2. Electrostrictive PVDF-TrFE Film

The behavior of the electrostrictive polymer was investigated in an earlier phase of
the project [17], in the configuration described in Figure 2a. The active material consists of
PVDF-TrFE (PVDF-TRFE FC25 from Piezotech, 0.12 g/mL in Acetone:Dimethylacetamide
95:5), annealed at 140 ◦C for 2 h. The material was applied by spin coating in [6] and by
spray coating in [7] (spray coating can be easily scaled up to large sizes).

The behavior of the thin film of PVDF-TrFE can be modeled by a linear dielectric model:

D3 = Ps + ε1E3 (3)

and the quadratic unidirectional material model of the strain S3 along the polarization di-
rection:

S3 = Q33D2
3 = Q33P2

s + 2ε1PsQ33E3 + ε2
1Q33E2

3 (4)

where D3 is the electric displacement, Ps is the spontaneous polarization, ε1 = ε0εr is the
dielectric constant (ε0 = 8.85 × 10−12 F/m) and E3 the electric field. Q33 is the electrostric-
tive coefficient, Q33P2

s is the poling strain which takes place during the polarization. Q33
and Ps are material properties that are determined experimentally. The isotropic in-plane
strain (normal to the poling direction) is related to S3 by the Poisson’s ratio ν

S1 = −νS3 = −ν(Q33P2
s + 2ε1PsQ33E3 + ε2

1Q33E2
3) (5)

It follows that the piezoelectric coefficient d31 is given by

d31 =
∂S1

∂E3
= −2ν(ε1PsQ33 + ε2

1Q33E3) (6)

Thus, after polarization, the PVDF-TrFE behavior is essentially piezoelectric, with a
piezoelectric constant d31 increasing slightly with the bias electric field E3 (Figure 3). This
equation confirms that an electrostrictive material can be made piezoelectric by applying a
bias electric field [18]. The method for determining the material properties (ε1, d31, Q33, Ps)
has been described in [6,7]; they are reported in Table 1; the two values for Ps refer to two
independent methods of estimation. Notice that the value of the dielectric constant εr has
been found consistently smaller for the spray-coated samples than for the spin coated ones.

According to Equation (5), the poling strain is given by

Sp = −νQ33P2
s (7)

This was confirmed by direct measurement of the curvature during the poling process
of a thin glass plate covered with PVDF-TrFE. The details of the experiment leading to
Figure 3 can be found in [6].
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Figure 3. Piezoelectric coefficient d31 as a function of the bias electric field.

Table 1. Estimation of material parameters of PVDF-TrFE.

Deposition Technique Spin Coating Spray Coating

Dielectric constant 11.86 9.6
εr [/]

Piezoelectric constant 13.54 12.54d31 [pC/N] (EB = 0)

Electrostrictive constant −12.65 −13.81
Q33 [m4/C2]

Spontaneous polarization 0.0152 0.0157

Ps [C/m2] 0.0163 0.0144

3. Control of a Spherical Shell

So far, our work has been focused on the shape control with piezoelectric unimorph
strain actuators of a thin spherical shell, ignoring its thermal response. The demonstra-
tors consist of a PET substrate covered with a thin layer of PVDF-TrFE with Aluminum
electrodes (Figure 2a); the material properties are listed in Table 2 (notice the large value
of the CTE of the PVDF-TrFE). The sphere has a radius of 2.5 m; two mirrors have been
built, one with a diameter of 100 mm, provided with a set of 7 independent electrodes,
and one of 200 mm with 25 electrodes arranged in a keystone layout (Figure 4). The demon-
strators were manufactured by MateriaNova according to the procedure described in [7].
The experimental determination of the influence functions of the electrodes is described
in [6]. For illustration purpose, Figure 5 compares the cross sections of the measured
influence functions of 6 electrodes of the same row (rotated successively by 60◦) with a
numerical simulation. More comprehensive results and details on the experimental setup
are provided in [7].
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Figure 4. Demonstrators built and tested in the earlier part of the project: D = 100 mm with
7 independent electrodes [6] and D = 200 mm with 25 independent electrodes [7].

Figure 5. Comparison between experimental 30◦ cross sections of the influence functions of the six
electrodes of the same row and a numerical simulation. The voltage applied is 100 V.

Table 2. Material properties.

Property PET PVDF-TrFE Al

Young Modulus Y [GPa] 5.6 2.5 70
Poisson’s ratio ν [/] 0.38 0.34 0.32

Dielectric constant εr [/] - 10 -
Piezoelectric constant d31 [pC/N] - 15 -

CTE [10−6K−1] 30 140 23
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4. Thermal Response

The unimorph design with the layer configuration shown in Figure 2a and the CTE
properties of the last line of Table 2 is extremely sensitive to even small temperature
changes, whether it be uniform or a gradient. In this section, we examine numerically
how the thermal deformations can be reduced in such a way that they can be controlled
actively with the piezoelectric layer with only a small share of the control budget (i.e., a set
of voltages much smaller than the maximum allowed, Vi � Vmax).

Firstly, the design can be thermally balanced by adding a layer symmetrical to the
PVDF-TrFE (Figure 2b) with equal value of

Y
1 − ν

. CTE . t (8)

where M = Y/(1 − ν) is the biaxial Young modulus and t is the layer thickness (note that
the thermal balancing layer, being on the front side, would also have to satisfy the surface
roughness requirements).

Secondly, the thermal expansion of the substrate can be reduced, and even canceled,
by using a zero-CTE polyimide such as the Novastrat-905 [19], available as a film sheet or
liquid resin for spray and flow casting.

In order to investigate how the foregoing design changes affect the control, we consider
a spherical reflector of 1 m diameter with a radius of curvature of Rc = 4 m; the reflector
is fixed along the local axes y and z of a central hole of 0.2 m (Figure 6a). The layer
distribution is that of Figure 7a for the unimorph case and Figure 7b for the balanced
design. The balanced design assumes a passive layer of PVDF-TrFE on the inner (optical)
side of the reflector, although other options are possible, provided that Equation (8) is
satisfied. The material properties of Table 2 are assumed in the numerical calculations [20],
except for the case with a substrate of low CTE for which a near zero value of 4 × 10−8 K−1

is assumed. A linear temperature gradient going from −15◦ K on one side of the reflector
to +15◦ K on the opposite side is assumed.

A set of 120 control electrodes is assumed (Figure 6b); the voltage distribution which
minimizes the RMS residual surface figure error of the reflector is computed by inverting
the Jacobian between the 120 control voltages and the reflector surface displacements on a
regular grid of 200 × 200 points (with 31,000 points internal to the reflector shape); a simple
Moore–Penrose pseudo-inverse is used in this case [7].

Columns 2 and 3 of Table 3 give, respectively, the peak to valley (PV) and the root mean
squares (RMS) values of the surface figure error due to the thermal gradient of ∆T = 30◦,
respectively, for (i) the unimorph design, (ii) the balanced design with a substrate of large
CTE, and (iii) the balanced design with a substrate with a near zero CTE. Columns 4 to 5
give the PV and the RMS residual errors when the control has been applied, and column 6
gives the range of the voltage applied to the various electrodes, ∆V = Vmax −Vmin (measure
of the control budget). One sees that the addition of the thermal balancing layer and the
near-zero CTE substrate reduce tremendously the residual error and the control budget.

Figure 8 illustrates the case of the balanced layer design with near zero CTE substrate
(last line in Table 3). Figure 8a shows the displacements along the z axis induced by the
thermal gradient while Figure 8b shows the residual error when the control has been
applied. Figure 8c shows the thermal displacements (in blue) and the residual error (in
red) along the 30◦ cross section indicated on Figure 8a,b. Figure 8d shows the map of the
correcting control voltages. The thermal displacement, residual error and voltage maps are
similar to those of Figure 8 for both the unimorph and the thermally balanced high CTE
design, except for the amplitudes, which are given in Table 3.
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Table 3. Surface figure error due to a linear thermal gradient of ∓15◦K, before and after control with
an array of 120 electrodes. All amplitudes are in µm and voltages in V.

Full Reflector PV RMS PV (Control) RMS (Control) Voltage ∆V

Nominal 187 44 8.5 1.5 964

Balanced 34.3 6.3 13.3 0.46 147High CTE

Balanced 1.9 0.35 0.74 0.03 8.2Low CTE

(a) (b)

x

z

y

Figure 6. (a) Spherical reflector with D = 1 m, d = 0.2 m, Rc = 4 m, supported along the local axes y
and z along the inner boundary. (b) Layout of the 120 control electrodes.

0.1 µm Al

Optical coating

(a)

400 µm PET 

Substrate 400 µm Low CTE 

Substrate

0.1 µm Al

Seg. Electrodes

5 µm PVDF-TrFe

0.1 µm Al

Ground

0.1 µm Al

Seg. Electrodes

5 µm PVDF-TrFe

0.1 µm Al

Ground

(b)

Figure 7. Layer distribution used in the numerical simulation (a) unimorph design; (b) balanced design.
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(a) (b)

(c) (d)

Figure 8. Effect of a thermal gradient of ∓15◦ K on the full reflector with balanced layer design
and near zero CTE substrate (a) Thermal displacements along z without control. (b) Residual
displacements after control. (c) Cross section at 30◦ of the displacements before (blue) and after
control (red). (d) Map of the correcting voltages.

5. Petal Reflector

The petal configuration suggested in Figure 1 allows a simple deployment scenario,
and also reduces the excessive hoop stiffness of the full spherical shell, simplifying the
control of some optical aberrations, as investigated in [9]. In this section, we consider the
same spherical shell as in the previous section, except that it is formed of six petals as
shown in Figure 9. It is also controlled with a set of 120 electrodes. To give an idea of the
authority of the piezoelectric actuation, the application of 100 V to all the 20 electrodes of
one petal produces a tip displacement of 250 µm.

(a) (b)

x

z

y

Figure 9. (a) Geometry of the petal reflector (the boundary conditions are the same as in Figure 6).
(b) Layout of the 120 electrodes.
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Table 4 shows the surface figure error induced by the same linear thermal gradient of
∓15◦K, before and after control with the 120 piezoelectric actuators, for the same three layer
configurations considered in Table 3. One sees that, in absence of control, the distortion of
the unimorph reflector is significantly larger than with the full reflector, while the residual
surface figure error after control of the balanced configurations are even smaller than those
of the full reflector and obtained with a smaller actuator budget.

Table 4. Surface figure error of the petal reflector due to a thermal gradient of ∓15◦K, before and
after control with an array of 120 electrodes. All amplitudes are in µm and voltages in V.

Petal Reflector PV RMS PV (Control) RMS (Control) Voltage ∆V

Nominal 1681 218 20 1.6 967

Balanced 25.8 4.5 2 0.22 33High CTE

Balanced 1.4 0.25 0.11 0.01 1.9Low CTE

Figure 10 illustrates the case of the balanced layer design with near zero CTE substrate
(last line in Table 4). Figure 10a shows the displacements along the z axis induced by the
thermal gradient while Figure 10b shows the residual error when the control has been
applied. Figure 10c shows the thermal displacements (in blue) and the residual error (in
red) along the 30◦ cross section indicated on Figure 10a,b. Figure 10d shows the map of the
correcting control voltages. The thermal displacement, residual error and voltage maps are
similar to those of Figure 10 for both the unimorph and the thermally balanced high CTE
design, except for the amplitudes which are given in Table 4.

(a) (b)

(c) (d)

Figure 10. Effect of a thermal gradient of ∓15◦ K on the petal reflector with balanced layer design
and near zero CTE substrate. (a) Thermal displacements along z without control. (b) Residual
displacements after control. (c) Cross section at 30◦ of the displacements before (blue) and after
control (red). (d) Map of the correcting voltages.
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6. Conclusions

The first part of this paper summarizes earlier studies on PVDF-TrFE for controlling
the shape of thin polymer shell reflectors. With proper annealing conditions, a piezoelectric
coefficient close to d31 = 15 pC/N has been achieved. The electrode size to achieve an
accurate surface figure correction is critically related to the thickness and the curvature of
the shell.

The second part of this paper is focused on the thermal response to a temperature
gradient. It is shown numerically that, due to the very high CTE of the PVDF-TrFE,
the unimorph configuration provides a poor design, very sensitive to thermal gradients; the
thermal deformations are difficult to control with the array of piezoelectric actuators and
they require large control voltages. This drawback can be alleviated by adding a passive
layer of material to balance the thermal behavior of the shell (with sufficiently low surface
roughness). The behavior can be further improved by using a low-CTE substrate.

Finally, the paper examines the case of a petal reflector; the unimorph layer configura-
tion is even more sensitive than the full reflector, but the behavior of the thermally balanced
design turns out to be better than that of the full reflector. The petal reflector with thermal
balancing layer and low CTE substrate results in a 160-fold reduction in residual error,
and 500-fold reduction in control voltage as compared to the baseline design.
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