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A B S T R A C T   

The temporal variations of latent heat flux (λET) and its affecting factors vary from seconds to decades, and alter 
with crop species. Understanding the temporal coherence between λET and its influencing factors across different 
underlying surfaces is a crucial research topic with practical implications, and can enable better water man-
agement. To investigate this, we conducted a study in southern China measuring water and heat fluxes over 
flooded rice-winter wheat rotation fields from 2017 to 2021. Wavelet transform technology was employed to 
analyze the spectral properties of λET and its affecting factors. Results showed that the power spectra of λET 
exhibited different cascade laws for rice and winter wheat. The spectral variabilities of λET occurred at daily and 
seasonal time scales for both rice and winter wheat, and an additional weekly time-scale for rice. Furthermore, 
the cospectrum between λET and soil water content (SWC) for rice showed a significant temporal correlation at 
2–4 days, indicating the period of water input. We found that the daily λET of both crops changed synchronously 
with daily net radiation (Rn), and preceded daily vapor pressure deficit (VPD) and air temperature (Ta) by 
1.5–2.6 h. The phase angle between λET and Ta was significantly lower for rice (mean = 1.8 h) than winter wheat 
(mean = 2.3 h). Partial wavelet coherence revealed that Rn, followed by VPD, was the main meteorological factor 
affecting λET for the rotated flooded rice-winter wheat system at each time scale, especially at the daily time 
scale. Additionally, the effect of VPD on λET was lower for winter wheat than rice at scales below a month. These 
findings offered a useful insight into selecting models of λET for varying time scales and promoting better 
agricultural water management.   

1. Introduction 

Latent heat flux (λET) involves in water circulation and energy 
conversion, which are the most basic properties and functions of farm-
land ecosystems (Conway, 1987; Djaman et al., 2015; Yang et al., 2014). 
The majority of the water in the field is consumed by plant transpiration 
and soil evaporation (Rana and Katerji, 2000; Sutanto et al., 2012; Qiu 
et al., 2023). In addition, λET also has an important role in crop pro-
ductivity and water use efficiency (Qiu et al., 2021). Furthermore, the 
interaction and feedback between microclimatic and plant physiological 
ecology can also be comprehensively represented by the dynamics of 
λET (Allen et al., 1998; Kişi, 2011). For instance, local and regional 
climate may change due to crop λET via affecting energy partitioning. 
On the other hand, the temporal variation of crop λET can be affected by 

regional climatic changes (e.g. global warming) through affecting at-
mospheric evaporation capacity (Baldocchi et al., 2001). Hence, water 
management is critically dependent of understanding variations in λET. 

Previous researches indicate that the controlling factors of λET 
change at varying time scales (Ding et al., 2013; Kang et al., 2003; Lei 
and Yang, 2010; Suyker and Verma, 2008). The main factor affecting 
λET is the eddy motion of atmospheric turbulence at the time scale less 
than hours (Katul et al., 2001), while is the eco-physiological, micro--
meteorological, and soil moisture conditions from daily to monthly 
scales (Allen et al., 1998; Steduto and Hsiao, 1998), and is seasonal 
variation of climate and plant phenology from seasonal to annual scales 
(Baldocchi et al., 2001; Suyker and Verma, 2008). Furthermore, the 
temporal variations of λET for varying species are likely to be different. 
Therefore, it is of great importance to determine the temporal 
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characteristics of λET and its main influencing factors, which is benefi-
cial to improve understanding of the mechanism for water and heat 
cycles and to determine the appropriate prediction models at varying 
time scales used for agricultural water management (Burba and Verma, 
2005; Gong et al., 2021; Katul et al., 2001; Yan et al., 2022). 

Wavelet transform can analyze non-stationery time series in the 
time-frequency domain (Gill et al., 2013; Kumar and Foufoula Georgiou, 
1997), and this has been shown to be better than Fourier transform 
(Huang et al., 2010; Katul et al., 2001; Sifuzzaman et al., 2009). It has 
been widely used in many engineering applications and scientific 
research (Ding et al., 2013; Fawen et al., 2023; Mouatadid et al., 2019; 
Partal, 2009; Sen, 2009; Torrence and Compo, 1998; Vargas et al., 2010; 
Wang et al., 2022; Zhou et al., 2022). Wavelet transform has also been 
used to study the temporal pattern of λET over maize fields and its 
correlation with the main affecting factors on varying time-scales (Ding 
et al., 2013). In a subtropical coniferous plantation, Tang et al. (2021) 
used wavelet analysis to determine the spectral characteristics of net 
ecosystem productivity, evapotranspiration, as well as to identify the 
time lag between the fluxes and affecting factors. However, these studies 
mainly investigated the spectral information of water, heat, and carbon 
fluxes and their affecting factors from a single underlying surface (Ding 
et al., 2013; Tang et al., 2021). Agricultural systems can be complex and 
the varying growth conditions for different crops may change the 
spectral characteristics for water, heat, and carbon fluxes and their 
correlation with other factors (Hickman et al., 2010; Hu and Lei, 2021). 

The rotated flooded rice-winter wheat system in southern China is the 
dominant cropping mode (10 % of the total arable land in China), where 
the flooded rice and winter wheat plants are grown during the period of 
May-October, and November-next May, respectively. This leads to a 
quite different magnitude and dynamics of λET for rice and wheat (Qiu 
et al., 2019). In addition, the effect of microclimate on hourly λET has 
also been reported to be different for rice and winter wheat (Qiu et al., 
2019). Our former study has investigated the dynamics of λET and its 
correlation with influencing factors in the time domain (Qiu et al., 
2019). However, the multi-scale spectral characteristics of λET and its 
main affecting factors over flooded rice and winter wheat rotation sys-
tems remain unclear. 

Therefore, the objectives of this study are (1) to reveal the temporal 
patterns of λET and the main affecting factors for varying underlying 
surfaces; (2) to identify the temporal relationships between λET and its 
controlling factors at different time scales for two crops; (3) to study the 
degrees of correlation between λET and controlling factors for the 
different underlying surfaces. 

2. Materials and methods 

2.1. Experimental information 

The water and heat fluxes measurements were carried out at five km 
away from the Agro-Meteorology Research Station in Nanjing, China 

Fig. 1. Haar wavelet power spectra of net radiation (Rn), air temperature (Ta), vapor pressure deficit (VPD), wind speed (u), leaf area index (LAI), and mean soil 
volumetric water content in the 0–50 cm soil layer (SWC) for rice (a, b) and winter wheat (c, d). 
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(32◦13’N, 118◦41’E, altitude 14.4 m) from 2017 to 2021. The site has a 
subtropical monsoon climate. The annual air temperature is 15.4 ◦C, and 
precipitation is 1106 mm. The soil is classified as a silt loam. The mean 
bulk density of the soil in 0–50 cm is 1.53 g cm− 3. The mean field water 
holding capacity and wilting point are 0.40 and 0.06 cm3 cm− 3, 
respectively. 

In this region, the dominant agricultural rotation is rotated flooded 
rice and winter wheat. In this experiment, the rice seeds (Oryza sativa L., 
cultivar Nanjing 5055) were direct sown in the field with sowing rate of 
240 kg ha− 1 on June 1, 2018, May 30, 2019, and June 20, 2020, 
respectively, and harvested on November 8, 2018, October 30, 2019, 
and November 3, 2020, respectively, for 2018, 2019 and 2020 seasons. 
After the harvesting of rice, the winter wheat seeds (Triticum aestivum L., 
cultivar Ninmai 13) were direct sowing in the field with sowing rate of 
300 kg ha− 1 on November 22, 2017, November 12, 2019, and November 
7, 2020, respectively, and harvested on June 1, 2018, May 24, 2020, and 
May 27, 2021, respectively, for 2017–2018, 2019–2020, and 2020–2021 
seasons. Wheat for the 2018–2019 season was not planted due to heavy 
and frequent precipitation during the last two months of 2018. The 
winter wheat plants were not suffered from water stress during the three 
growing seasons based on our former studies (Qiu et al., 2019, 2022). 

The water and heat fluxes during the period 2017–2021 were 
measured using a Bowen-Ratio Energy Balance System (BREB) (Camp-
bell Scientific, USA) installed in the north of the field (210 m × 100 m). 

The detailed instruments installed are listed elsewhere (Qiu et al., 2022). 
Briefly, the system included one NR Lite2 net radiometer installed at 2.0 
m height above the ground (above the crop canopy for at least 0.9 m) for 
monitoring net radiation, one CS320 digital thermopile pyranometer for 
measuring solar radiation, two 083E-1 temperature–humidity sensors 
mounted at 1.5 and 2.9 m heights for monitoring air temperature and 
relative humidity, two HFP01 heat flux plates for measuring soil heat 
fluxes at 0.05 m below the soil surface for rice and 0.08 m for wheat, four 
TT-T-24-SLE thermocouples for measuring soil temperature, one CS451 
pressure transducer for measuring surface water level, five CS616 soil 
water content reflectometers installed in 0–50 cm soil layers for 
measuring soil water contents, one SI-111 infrared radiometer for 
measuring surface water temperature, one 034B wind monitor, and one 
TE525MM rain gauge. All data were recorded every 10 min by a CR1000 
data logger. The detailed calculation procedure for water heat storage 
(Fw) and surface soil heat flux (G) is given in Qiu et al. (2019). 

A canopy analysis system (LAI 2000, LI-COR Inc., USA) was 
employed to determine leaf area index (LAI) for the rice and winter 
wheat every 7–15 days. Then the Matlab software was applied to fit a 
temporal trend in the daily LAI. 

2.2. BREB method and data management 

The BREB method is determined based on energy balance method 

Fig. 2. Wavelet power spectra of 10 min water and heat fluxes for rice: (a) original time series of λET; (b) original time series of sensible heat flux (Hs); (c) global 
power spectra of λET in the frequency domain by Haar wavelet transform and normalized by the variance of the relevant time series; (d) global power spectra of 
water and heat fluxes in the time domain. 
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Fig. 3. Similar to Fig. 2, but for winter wheat.  

Fig. 4. Haar wavelet global cospectra between 10 min λET and net radiation (Rn), air temperature (Ta), vapor pressure deficit (VPD), wind speed (u), soil water 
content (SWC), and leaf area index (LAI), for rice (a) and winter wheat (b). The cospectra between λET and precipitation (P) for winter wheat is also shown in (b). 
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and Bowen-ratio (β), as 

Rn − G − Fw = λET +Hs (1)  

β =
Hs

λET
(2)  

where Rn is the net radiation (W m− 2); Hs is the sensible heat flux 
(W m− 2); Fw is 0 when there is no surface water. Combining Eqs. (1) and 
(2), λET and Hs can be calculated as 

λET =
Rn − G − Fw

1+ β
(3)  

Hs =
β

1+ β
(Rn − G − Fw) (4)  

where β ∕= − 1. The β is determined based on the gradient of air tem-
perature (Ta) and actual vapor pressure between the two heights 

β = γ
ΔT
Δe

(5)  

where γ is the psychrometric constant (kPa ◦C− 1), ΔT and Δe are the 
difference of Ta (◦C) and actual vapor pressure between the two 
measured heights of 1.5 and 2.9 m in this study. 

The data were continuedly measured during the growing period of 
rice and winter wheat. In addition, the information on quality-control of 
data and procedures of interpolation for the fluxes are shown elsewhere 
(Qiu et al., 2019). Briefly, all raw data were quality controlled based on 
the method proposed by Perez et al. (1999), depending on the physical 
inconsistency of the data and the resolution limitations of 

Fig. 5. Morlet wavelet coherence and phase spectra between λET and net radiation (Rn) and vapor pressure deficit (VPD) for rice and winter wheat. The DAS 
represents days after sowing. 
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temperature/humidity sensors. Overall, after quality control, more than 
60 % of data for calculated λET and Hs are acceptable, and refused data 
are mainly appeared during night-time period. The refused λET fluxes 
were then interpolated by using a linear regression relationship between 
10-min λET and available energy, which established every 4 days. The 
missing Hs values were interpolated by using energy residual method (i. 
e. Hs = Rn − λET − G − Fw). The data quality control and interpolation 
procedure has been developed by Matlab software, and the code has 
been freely shared in Github website: https://github.com/shuilibite?tab 
=repositories. 

2.3. Research methodology 

Power spectrum, cospectrum, coherence spectrum, phase-angle 
spectrum, and partial wavelet coherence (PWC) were used to analyze 
the time series. The variations of the variables (Rn, vapor pressure deficit 
(VPD), Ta, wind speed (u), soil water contents over 0–50 cm soil layers 
(SWC), and LAI) related to the specified frequencies can be represented 
by the power spectra (Kaimal et al., 1972). The covariant range of two 
different series can be expressed by the cospectrum (Baldocchi et al., 
2001; Torrence and Compo, 1998). The phase-angle spectrum can show 
the consistency and sequence of changes for two different series 
(Grinsted et al., 2004), while PWC reflects the correlation degree of two 
different time series after the removal of an influence variable (Hu and 
Si, 2021). For instance, the PWC of λET-Rn~VPD denotes partial wavelet 
coherence between λET and Rn after the removal of the influence of VPD. 
The meteorological factors investigated for PWC included Rn, VPD, and u 
in this study. 

Since orthogonal wavelet transform (OWT) does not generate 
redundant data, its calculation speed is fast and the cost is low. These 
advantages make it suitable to analyze the global spectral features and 
some periodic features of time series in the frequency domain (Yoshida 
et al., 2010). However, the continuous wavelet transform (CWT) can 
analyze local information and correlation between two different series 
(Ding et al., 2013). The mother wavelet functions of the OWT and the 
CWT used in this study are the Haar function and the Morlet function. 
The OWT of time series y(t) can be expressed as (Ding et al., 2013; 
Grinsted et al., 2004; Li et al., 2013; Torrence and Compo, 1998) 

Wy

(

i, j

)

=
∑N− 1

t=0
y(t)2− i

2ψ
(

2− it − j

)

(6)  

where Wy(i, j) is the wavelet transform coefficient; Ψ(t) is the mother 
wavelet function; N is the total number of time series, which is required 
to be an integer power of two; i is the number of an integer from 0 to M-1 
(M = log2N); j takes the value of an integer from 0 to 2M-i. 

The global power spectrum (Py) is the mean squared difference of 
whole wavelet coefficients in the scale range, determined as (Ding et al., 
2013) 

Py(i) =
1

2M− i

∑2M− i − 1

j=0

(
Wy
(
i, j
))2
=
(
Wy
(
i, j
))2 (7)  

where ( ) is the mean value. For two different time series x(t) and y(t), 
the cospectrum (Coxy) is calculated as 

Coxy(i) =
(
Wx
(
i, j
))

⋅
(
Wy
(
i, j
))

(8)  

where Wx(i, j) and Wy(i, j) are the wavelet transform coefficients of the 
two time series. In this study, the total number of time series for the 
10 min values of λET is 64,369 and 84,816, respectively, for rice and 
winter wheat over three growing seasons. Since the amount of data in 
the time series of the OWT should be an integer power of two, 217 

(131,072) is the closest power of two for both crops, and the time series 
for non-growing period were interpolated by 0. According to the Nyquist 
frequency, the highest frequency is 50 % of the sampling. Hence, the 
number of coefficients of 10 min λET for both crops after the OWT is 216. 
The lowest and highest frequencies corresponding to OWT are 
2.54 × 10− 8 and 8.33 × 10− 4 Hz which correspond to 455 d and 20 min 
for 10 min λET. 

If y(t) is square integrable, y(t) ∈ L2(R), then the CWT of y(t) (Wy) can 
be obtained as follows (Li et al., 2013; Mallat, 1999) 

Wy

(

m, n
)

=
1̅
̅̅̅
m
√

∫ N− 1

0
y(t)ψ∗

(t − n
m

)
dt, m > 0 (9)  

where m is the scale factor reflecting the size of the period; n is the 
translation factor reflecting the shift in time; Ψ* is the complex conju-
gate of the mother wavelet function (Sen, 2009); m and n varied 
depending on differences of wavelet functions. The cross spectrum (Gxy) 
is expressed as 

Gxy

(
m, n

)
= Wx

(
m, n

)
W∗

y

(
m, n

)
(10)  

where Wy* is the complex conjugate of Wy. 
The expression of the coherence spectrum (Cohxy) is given by 

Coh2
xy(m) =

⃒
⃒
〈
s− 1Gxy

(
m, n

)〉⃒
⃒2

〈
s− 1|Wx(m, n)|2

〉〈
s− 1
⃒
⃒Wy
(
m, n

)⃒
⃒2
〉 (11)  

where < > is the smoothing of time and scale; s− 1 can convert energy to 
power spectral density; the definition of coherence spectrum is similar to 
correlation, which refers to the local correlation of time series in the 
wavelet time-frequency space (Grinsted et al., 2004). The spectral angle 
spectrum (Φxy) represents complex argument of cross spectrum (Gxy) 
and its expression is 

Φxy(m) = tan− 1( I
{〈

s− 1Gxy
(
m, n

)〉}/
R
{〈

s− 1Gxy
(
m, n

)〉})
(12)  

where I is the imaginary part of the complex function; and R is its real 
part. The phase angle represents the before and after changing of the 
order of two time series in the time-frequency domain, its range is 
− 180◦ to 180◦. 

The PWC analysis between the time series x(t) and y(t) without 
considering one variable Z(t) at scale s and location τ, and ρy,x⋅Z can be 
expressed as follows (Hu and Si, 2021) 

ρ2
y,x●Z =

⃒
⃒γy,x(s, τ) − γy,Z(s, τ)γx,Z(s, τ)

⃒
⃒

(
1 − R2

y,Z(s, τ)
)(

1 − R2
x,Z(s, τ)

) (13)  

where γy,x (s, τ) is the complex wavelet coherence between y and x; the 
symbol⋅is the notation for excluding variables; R2

y,x,Z (s, τ), R2
y,Z (s, τ), 

and R2
x,Z (s, τ) can be calculated from (Hu and Si, 2016) 

Table 1 
Mean phase angles of daily-scale latent heat fluxes (λET) and the meteorological 
factors for rice and winter wheat (h). ± is the standard deviation. Different 
letters in the same column for mean values show significant differences at the 
P < 0.05 level.  

Crop types Year λET-Rn λET-VPD λET-Ta λET-u 

Rice 2018 -0.7 ± 0.4 1.7 ± 0.7 1.5 ± 0.9 0.3 ± 1.5 
2019 -0.7 ± 0.5 2.3 ± 0.7 2.0 ± 0.7 0.7 ± 1.0 
2020 -0.6 ± 0.8 2.0 ± 1.0 1.7 ± 0.8 0.5 ± 1.1 
Average -0.6 

± 0.6a 
2.0 
± 0.8a 

1.8 
± 0.8b 

0.5 
± 1.2a 

Winter 
wheat 

2017–2018 -0.6 ± 0.7 2.4 ± 2.0 2.3 ± 2.1 0.4 ± 2.5 
2019–2020 -1.1 ± 1.0 2.2 ± 1.3 2.2 ± 1.4 0.1 ± 3.1 
2020–2021 -0.6 ± 0.5 2.6 ± 1.0 2.5 ± 1.0 0.4 ± 1.6 
Average -0.8 

± 0.8a 
2.4 
± 1.5a 

2.3 
± 1.5a 

0.3 
± 2.5a  
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Fig. 6. Partial wavelet coherence of rice latent heat flux (λET) in combination with net radiation (Rn), vapor pressure deficit (VPD), and wind speed (u) The DAS 
represents days after sowing. 
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Fig. 7. Similar to Fig. 6, but for winter wheat.  
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R2
y,x,Z

(

s, τ
)

= w̅→←̅
y,Z (

s, τ
) w̅→←̅

Z,Z
(s, τ)− 1 w̅→←̅

x,Z (
s, τ
)

w̅→←̅
y,x
(s, τ)

(14)  

Ry,Z
2

(

s, τ
)

= w̅→←̅
y,Z (

s, τ
) w̅→←̅

Z,Z
(s, τ)− 1 w̅→←̅

y,Z (
s, τ
)

w̅→←̅
y,y
(s, τ)

(15)  

Rx,Z
2

(

s, τ
)

= w̅→←̅
x,Z (

s, τ
) w̅→←̅

Z,Z
(s, τ)− 1 w̅→←̅

x,Z (
s, τ
)

w̅→←̅
x,x
(s, τ)

(16)  

where R2
y,x,Z (s, τ) is a matrix with complex values; R2

y,Z (s, τ) and R2
x,Z (s, 

τ) are matrices with real numbers; ( )
̅̅̅̅̅̅̅̅̅̅̅̅→←̅̅̅̅̅̅̅̅̅̅̅̅

indicates the 
smoothing operator; ( )− 1 is the inverse of the matrix; ( ) indicates 

the complex conjugate operator; w̅→←̅
i,j
(s, τ) is the smoothed auto- 

wavelet power spectrum (if i = j) or cross-wavelet power spectrum (if 
i ‡ j) at scale s and location τ. According to the definition of complex 
coherence between two variables in the time-frequency space, the 
complex wavelet spectrum in the frequency domain can be deduced (Hu 
and Si, 2021). Detailed operational steps can be found elsewhere (Hu 
and Si, 2021). 

We employed the Monte Carlo method to measure the significant 
differences of the wavelet transform coherence at the 95 % confidence 
level (Grinsted et al., 2004). Wavelet transform and wavelet analyses 
were performed in MATLAB software using the WAVELAB 850 packages 
(https://statweb.stanford.edu/~wavelab/). 

3. Results and discussion 

3.1. Wavelet power spectra for affecting factors of λET 

The Haar-wavelet global power spectrum can reflect the fluctuation 
status of different factors, which is useful for analyzing the dynamics of 
λET and other factors. Figs. 1a and 1c showed that the power spectra of 
Rn, Ta, VPD, and u had similar characteristics for both rice and wheat. 
They all exhibited significant spectral peaks at the daily scale, reflecting 
the diurnal variation of meteorological factors relating to day-night 
variation (Ding et al., 2013). The power spectrum of Rn on daily 
time-scale was the greatest among these meteorological elements, 
indicating Rn had the largest fluctuation on daily time scale (Baldocchi 
et al., 2001; Ding et al., 2013; Steduto and Hsiao, 1998). However, the 
magnitudes of the spectral peaks of these four factors differed at the 
daily level. The power spectrum magnitude for Rn was one order greater 
than that for VPD and u, and was two orders greater than that for Ta (i.e. 
ranking of Rn > VPD > u > Ta), which is consistent with that found by 
Ding et al. (2013). However, for winter wheat the ranked order of 
magnitude for the power spectra was Rn > VPD > Ta > u. In addition, 
the spectral peaks were also observed at the 228d time-scale with similar 
magnitudes for the four factors for both rice and winter wheat, showing 
that meteorological factors had seasonal variations (Ding et al., 2013). 
Different from the wavelet power spectra for winter wheat, the power 
spectrum of Rn for the growing period of rice also showed a weekly 
spectral peak, which indicates that Rn also fluctuates at the weekly scale 
(Tyagi et al., 2000). However, the Rn for the growth period of winter 
wheat did not have this feature. 

Compared to the power spectra of the meteorological factors, the 
power spectra for LAI showed a spectral cascade from daily to seasonal 
time-scale (Figs. 1b, 1d), showing the role of the growth period of LAI 
and crop phenology (Ding et al., 2013). The power spectrum of LAI at 
the 228 d scale was the greatest, and more than five orders of magnitude 
greater than the daily scale for both rice and winter wheat (Figs. 1b, 1d), 
although there was a plateau between 114 d and 228 d for rice. Power 
spectra for SWC showed a spectral cascade for both rice and wheat, and 
peaked at 228 d. 

3.2. Wavelet power spectra of λET and Hs, and cospectra between λET 
and affecting factors 

Since the meteorological conditions change over years and the 
growth periods, the time series of λET and Hs showed differences and 
non-stationary characteristics for the three growing seasons (Figs. 2a, 
2b; Figs. 3a, 3b). The peak values of λET mainly appeared in the middle 
stages for rice and the late stages for winter wheat (Figs. 2a, 3a). 
However, there was no fixed period for the peak for Hs, and it also varied 
between years (Fig. 2b, Fig. 3b). Note that there are some negative 
values of λET during the night (indicating condensation) for both rice 
and winter wheat, which are generally appeared when vapor pressure 
gradients are greater than 0 (i.e. vapor pressure in the upper measure-
ment level is greater than the lower measurement level) (Perez et al., 
1999). 

The global power spectra of λET had different power cascades before 
and after 1.30 × 10− 5 Hz for both rice and winter wheat (Figs. 2c, 3c). 
The power laws were − 1.10 and − 0.92 (Figs. 2c, 3c), respectively, for 
rice and winter wheat between 1.02 × 10− 7 and 1.30 × 10− 5 Hz, and 
− 1.70 and − 1.84, respectively, from 1.30 × 10− 5 to 8.33 × 10− 4 Hz 
(Figs. 2c, 3c). These results also indicated that the cascade power law of 
rice is different from that of winter wheat in the range of 
1.02 × 10− 7–8.33 × 10− 4 Hz (Figs. 2c, 3c). The time domain of power 
spectra of λET and Hs for rice and winter wheat ranged from 20 min to 
455 d (Figs. 2d, 3d). The fluctuation of λET on the 228d time scale is two 
orders of magnitude higher than the daily fluctuation of spectral energy 
(Figs. 2d, 3d) and the magnitude of the change is different between 
seasons. Similar results were also reported in former study (Ding et al., 
2013). Hence, it is necessary to determine λET in long-time series, as this 
is crucial for promoting regional water management (Howell et al., 
1998; Zhang et al., 2011). In addition, the global power spectra of λET 
also showed peaks at daily and weekly scales for rice, but only at the 
daily scale for winter wheat (Figs. 2d, 3d). The spectral peak of λET 
appeared on the daily time-scale, which is consistent with the daily 
fluctuation of λET reported in previous study (Allen et al., 1998; Ding 
et al., 2013; Howell et al., 1998). Furthermore, the daily and seasonal 
spectral peaks of λET indicate that λET has diurnal and seasonal varia-
tions. Hence, the determination of the growth period data in multiple 
years is necessary, which is conducive to the improvement of water 
resource utilization efficiency (Howell et al., 1998; Zhang et al., 2011). 

Since the spectral characteristics of the global power spectra of λET 
corresponded to those of Rn and VPD (Figs. 1a, c; 2d, 3d), and Hs is not 
significantly correlated with these, we only analyzed the relationships 
between λET and the affecting factors. The cospectra between λET and Rn 
was highest on the daily scale showed that daily λET may change with 
daily Rn synchronously (Ding et al., 2013). In addition, the cospectra 
between daily λET and precipitation for winter wheat was also high 
(Fig. 4b), indicating precipitation has great effect on daily λET of winter 
wheat. For different scales, the greatest cospectra between λET and 
affecting factors for rice and winter wheat were both around 228 d, 
followed by the daily scale (Fig. 4). In addition, the weekly spectral 
peaks between λET and both Rn and VPD were also observed for rice, 
showing that the dynamic relationship between λET and Rn and VPD will 
change on a weekly time scale (Tyagi et al., 2000). Furthermore, the 
markedly increased cospectra between λET and Ta from the 15 d to 228 
d scale indicates an enhanced correlation over the medium-term for rice 
and winter wheat. A similar magnitude of cospectra between λET and all 
factors at the 228 d scale shows that the long-term variability of λET was 
generally affected by all factors (Ding et al., 2013). However, at the daily 
scale, the cospectra between λET and SWC and LAI were lower than 
those of λET and the meteorological factors. The cospectra of λET and 
SWC appeared on the 2–4 d time-scale platform for rice, which may 
reflect the interval of the irrigation, plus any precipitation. On the 
contrary, the absence of a platform in the co-spectra of λET and SWC for 
wheat related to the irregular precipitation during the growth period of 
wheat since there is no irrigation event for winter wheat in Southern 
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China (Qiu et al., 2019). This is different from previous study, which 
reported that the cospectra between λET over maize field and SWC 
showed a flat region between the 5–10d time scale in northern China 
(Ding et al., 2013). 

3.3. Coherence spectra and phase-angle spectra for relationships between 
λET and affecting factors 

Since the correlations between λET and both Ta and u on the daily 
scale are not very high, the coherence spectra are not shown. During the 
three growth seasons for rice and winter-wheat, close relationships be-
tween λET and Rn were observed at or less than daily time scale based on 
the coherence spectra analysis (Fig. 5), indicating that Rn is the main 
driving variable of λET at these time scales (Ding et al., 2013; Lei and 
Yang, 2010; Qiu et al., 2019; Suyker and Verma, 2008). This provides 
theoretical basis for the application of radiation-based λET estimation 
models, such as the Priestley-Taylor method. Previous study showed 
that the modified Priestley-Taylor model can better estimate the 
short-term and daily λET (Qiu et al., 2019, 2021, 2023). On the daily 
time scale, λET also showed a good correlation with VPD. The 
phase-angle spectra at the daily scale showed that λET lagged behind Rn 
by 0.6 h for rice, and 0.8 h for winter wheat (Table 1). In contrast, λET 
preceded VPD by ~ 2 h for rice and 2.4 h for winter wheat (Table 1). The 
phase-angle relationships between λET and Ta were similar to that be-
tween λET and VPD (Table 1). Although the phase relationships between 
λET and meteorological factors are similar with those reported (Ding 
et al., 2013; Tang et al., 2021), the preceded and lagged times are 
different. In addition, there were significant (P < 0.05) differences in the 
phase angle between λET and Ta for rice (mean = 1.8 h) and winter 
wheat (mean = 2.3 h) (Table 1). Furthermore, the relationship between 
λET and u was weak when compared to that between λET and other 
meteorological factors (Ding et al., 2013; Qiu et al., 2019). 

3.4. Partial wavelet coherence for λET and main factors 

The PWC can be used to analyze the local relationship of two 
different series after the removal of an influencing variable at a specific 
scale (Hu and Si, 2021). According to the result of this PWC (Figs. 6, 7), 
the correlations between λET and Rn after removing the influence of VPD 
and u were still higher at or less than the daily time-scale. But λET had 
little correlation with VPD or u after removing the effect of Rn, indicating 
that Rn is the major influencing variable of λET at or less than the daily 
scale (Ding et al., 2013; Qiu et al., 2019; Tang et al., 2021). This is 
because solar radiation affects Ta and humidity, and these control sto-
mata opening and affect transpiration (Qiu et al., 2019). In addition, the 
correlation between λET and Rn without considering the VPD of rice was 
more affected than that of wheat at or less than the daily scale (Figs. 6, 
7). This shows that the correlation between λET and Rn was less affected 
by VPD for winter wheat than for rice at this time-scale (Qiu et al., 
2019). 

From the daily to monthly time-scale, the correlation between λET 
and Rn after removal of VPD for rice and winter wheat was discontin-
uous. This indicates that VPD has an indirect impact on the correlation 
between λET and Rn at this scale (Tang et al., 2021). However, Qiu et al. 
(2019) showed that the main indirect impact of Rn on λET is through the 
pathway of VPD on λET at 10 min time scale using path analysis. 

The correlation between λET and u after removal of Rn or VPD was 
insignificant and discontinuous at all time scales. In addition, the cor-
relation between λET and u after removal of VPD was weaker than that 
between λET and VPD after the removal of u. This shows that u has the 
weakest impact on the λET for both rice and winter wheat. 

4. Conclusions 

The λET is different in response to varying affecting factors for rice 
and winter wheat at different time scales, and the processes of λET for 

rotated rice-wheat system is complicated. In this study, we employed the 
wavelet transform method to analyze the spectral characteristics and 
driving relationships of λET and determine the main affecting factors for 
flooded rice-winter wheat rotation system. We found that the power 
spectra of λET in the frequency domain had cascade power law and the 
power law changed at 1.30 × 10− 5 Hz (corresponding to 1d). The 
cascade power laws were − 1.1 for rice and − 0.92 for wheat from 
1.02 × 10− 7 Hz to 1.30 × 10− 5 Hz, and they were about − 1.70 for rice 
and − 1.84 for wheat from 1.30 × 10− 5 to 8.33 × 10− 4 Hz. In addition, 
the global power spectra of λET in the time domain peaked at the diurnal 
and seasonal time-scales for both rice and winter wheat, and for addi-
tional weekly time-scale for just rice. This indicates the varying changes 
of λET under different underlying surfaces. Based on the diversity of 
time-scale information for λET, the above characteristics of λET should 
be considered in the empirical and physics models to accurately predict 
the dynamic variation of λET. 

The cospectra between λET and Rn for both rice and winter wheat 
were greatest on the daily scale indicating that λET changed synchro-
nously with daily Rn. A similar magnitude of co-spectra between λET and 
all factors at 228d showed that the seasonal λET was dominated by all 
affecting factors. In addition, the weekly covariant changes between λET 
and both Rn and VPD were also observed for rice. Phase-angle spectral 
analysis showed that λET lagged Rn, while it preceded VPD and Ta at the 
daily scale for both rice and winter wheat. In addition, the phase-angle 
between λET and Ta was significantly greater for winter wheat than rice. 
Partial wavelet-coherence analysis indicated that Rn was the main 
meteorological factor for λET, followed by VPD for all scales, especially 
for daily scale. In addition, the λET of rice was more affected by VPD 
than winter wheat, and u was the weakest among all meteorological 
factors. These support the selection of appropriate methods to predict 
λET for different crop species and crop management practices. 

This study provided a way to analyze the temporal characteristics 
between λET and affecting factors for varying underlying surfaces, 
which has increased our understanding of the water cycle at different 
time scales and provides a theoretical basis for the selection of estima-
tion models at varying time scales to enhance water management. 
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Kaimal, J.C., Wyngaard, J., Izumi, Y., Coté, O.R., 1972. Spectral characteristics of 
surface-layer turbulence. Q. J. R. Meteorol. Soc. 98 (417), 563–589. https://doi.org/ 
10.1002/qj.49709841707. 

Kang, S., Gu, B., Du, T., Zhang, J., 2003. Crop coefficient and ratio of transpiration to 
evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water 
Manag. 59 (3), 239–254. https://doi.org/10.1016/S0378-3774(02)00150-6. 
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