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Abstract—The recent prosperity of temporal graph research
redefines many traditional concepts on static graphs, such as
triangle, motif, k-core, etc. Inspired by that, we propose a novel
(k, δ)-truss on temporal graphs, which requires its triangles to
exist in short enough time windows ever. The (k, δ)-truss satisfies
both static and temporal cohesion, while the original k-truss is
its special case when δ = ∞. In order to address the (k, δ)-truss
query, we propose both index-free and index-based approaches.
By leveraging the dual containment relation on (k, δ)-trusses,
our indexes can compress all (k, δ)-trusses losslessly into map
or tree structures with dramatically less space, so that a specific
(k, δ)-truss can be retrieved from indexes in the optimal time. To
enable our index to scale to large temporal graphs, we develop
two index construction algorithms that can reduce redundant
computation significantly, based on truss decomposition and truss
maintenance respectively. The experimental results demonstrate
that index-based approaches process queries in interactive time
and outperform the index-free approach by 2∼4 orders of
magnitude, while indexes achieve compression ratios up to 10−4.

Index Terms—temporal graph, cohesive subgraph, truss, tri-
angle, time span, index, query processing

I. INTRODUCTION

Recently, temporal graphs in which each edge is associ-

ated with a set of timestamps have drawn intensive research

interests, as introduced by [1], [2]. The typical examples

of temporal graph are such as social networks [3], transac-

tion networks [4], transportation networks [5], communica-

tion networks [6], power networks [7], disease transmission

networks [8], etc. In those graphs, the temporality enables a

variety of time-relevant constraints in analytics, such as time

order, time window, time span, etc.

For temporal graphs, the traditional definitions of cohesive

subgraphs such as k-clique, k-truss, and k-core also need to be

extended with time-relevant constraints, so that both temporal

and topological features can be exploited for comprehensive

analysis. For example, there have been a bunch of temporal k-

core studies, which mainly fall into two categories. The first is

to find primitive k-cores that exist in specific time windows,

such as span-core [9], temporal k-core [10], [11], historical

k-core [12], temporal (k,X )-core [13], etc. The second is to

� Ming Zhong is the corresponding author.
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Fig. 1: A running example temporal graph and several (k, δ)-
trusses, which forms a “δ-shell” with a fixed k.

study various new temporal k-cores models, such as frequent

core [14], persistent core [15], bursting core [16], periodic

core [17], continual core [18], reliable core [19], etc.

However, the models and approaches designed for k-core

query are not sufficient for k-truss query on temporal graphs.

In contrast to migrating them to k-truss directly, like [20] for

the first category and [21] for the second category, it is more

important to investigate the models and approaches dedicated

to temporal k-truss query. As we know, k-truss in which each

edge is contained by at least k − 2 triangles is defined on

top of another more fundamental concept, namely, triangle.

Thus, a reasonable definition of temporal k-truss should take

the temporal constraint on triangles into consideration.

Actually, many meaningful temporal triangle or motif (note

that, triangles can be seen as a kind of motifs sometimes)

models [22]–[27] have been proposed recently. These models

mainly consider two kinds of temporal constraints. The first is

the total or partial time order among edges, which is usually

defined on directed temporal graphs, so that a triangle or motif

can be seen as a sequence of edges in order of timestamps.

Such constraints are too specific and complicated for a basic

component of k-truss, and would result in over-tailoring of k-

truss. The second is the duration, which is generally measured

by the maximum time lag between timestamps of edges.
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(a) (16,∞) (b) (16, 200) (c) (16, 150) (d) (16, 100)

(k, δ)-truss (a) (b) (c) (d)
vertex# 213 130 108 38
edge# 4402 2355 1735 564

triangle# 42683 21738 14978 4670
coefficient 0.72 0.77 0.81 0.85
duration 803 803 803 802

Fig. 2: A case study on (k, δ)-trusses of Email dataset, which demonstrates the effectiveness of δ on improving cohesion. In

each truss, we remark the vertices and edges of successive truss with different colors, so that the changes can be observed.

In this paper, we propose a novel definition of (k, δ)-truss

for undirected temporal graphs, on top of a kind of “span”-

constrained δ-triangles. The rationale is two-fold. Since k-truss

considers a triangle as a strong evidence of its vertices are

bonded tightly in a community, it is better to consistently

guarantee the tightness of triangle but not truss from the

perspective of time. Moreover, different from the related

works, (k, δ)-truss requires the minimum time span but not

normal duration of triangles to be no greater than δ, which

regulates temporal cohesion beyond static cohesion k. Because

a triangle that ever occurs in a short enough period should be

more cohesive in the sense of time than another triangle that

has the same duration but no interactions close in time between

each pair of its vertices, as illustrated in Fig 3.
Let us consider the following empirical (k, δ)-truss queries.

EXAMPLE 1 (Case Study). To demonstrate the effectiveness
of (k, δ)-truss query, we conduct a case study on Email [28],
a communication network between members of a European
research institution. Fig 2 illustrates four trusses with k = 16
and δ = ∞, 200, 150, and 100 respectively. The (k, δ)-truss
query can help us to further tailor the static k-truss (a) in time
dimension. We can see that, the stricter temporal cohesion
indeed makes the truss structure compacter. The k-truss (a) is
composed of several smaller communities. With the decrease
of δ, the successive (k, δ)-trusses (b), (c), and (d) become more
and more clustered. As an evidence, the clustering coefficient
increases from 0.72 to 0.85 gradually. In contrast, the duration
of whole trusses does almost not change, which means we will
not find the compacter trusses like (b), (c), and (d) by using
the duration of truss as temporal constraint.

In order to address the (k, δ)-truss query, we propose

both index-free and index-based approaches. Compared with

the index-free approach that performs a straightforward truss

decomposition under the constraint of δ, the index-based

approach only needs to scan each edge in the result once,

thereby being theoretically time-optimal. Since there could be

a great number of (k, δ)-trusses in a temporal graph, we use

Temporal Containment Index (TC-Index) or Dual Containment

Index (DC-Index) to preserve trusses incrementally. Moreover,

for large-scale temporal graphs, we develop two scalable index

construction algorithms based on two classical paradigms,

truss decomposition [29]–[33] and truss maintenance [34]–

[38], respectively. Decomposition Based Algorithm (DBA) can

compute the incremental edge sets between (k, δ)-truss and

(k, δ + 1)-truss, and Maintenance Based Algorithm (MBA)

can also compute the incremental edge sets between (k, δ)-
truss and (k + 1, δ)-truss.

In summary, our contributions are as follows.

• Inspired by the latest studies on temporal triangle and

motif, we formalize a novel (k, δ)-truss query problem on

temporal graphs, with respect to a meaningful temporal

triangle metric called minimum time span. The (k, δ)-
truss considers both static and temporal cohesion, while

the static k-truss is its special case when δ = ∞.

• We leverage the dual containment relation on (k, δ)-
trusses to design compact indexes that store and retrieve

all possible (k, δ)-trusses efficiently. Firstly, we present

a map-structured index called TC-Index that preserves

the incremental edges in δ dimension. Then, we present

a tree-structured index called DC-Index that preserves

the globally minimum incremental edges in both k and

δ dimensions. Both indexes provide the optimal query

efficiency, and DC-Index is space-optimal when query

efficiency cannot be degraded.

• To enable proposed indexes to scale to large temporal

graphs, we follow the line of truss decomposition and

truss maintenance respectively to improve the scalability

of index construction. DBA decomposes k-truss gradually

by removing triangles in descending order of minimum

time span for each k. MBA maintains all edge trussness

simultaneously when invalidating triangles in descending

order of minimum time span. Both of them can reduce re-

dundant computation in index construction significantly.

• We conduct comprehensive experimental evaluation on

eight real-world temporal graphs, on which we observed

that triangle counts distribute widely on minimum time

span. Our index-based TC-Query and DC-Query process

queries in interactive time, and outperform the index-free

Online-Query by 2∼4 orders of magnitude. Meanwhile,

our indexes can achieve the compression ratio up to 10−4.

We present the preliminaries, index-free approach, index-

based approaches, index construction, experimental evaluation,
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Fig. 3: Abstract comparison of different minimum time spans

of a triangle Δ = {u, v, w}. For each edge like (u, v) of Δ, its

timestamps are marked by a kind of symbols like rectangles

in a timeline from 0 until n. The combination of dark symbols

of each kind determines the minimum time span of Δ.

related work, and conclusion in the rest sections respectively.

II. PRELIMINARIES

Let G = (V, E) be an undirected static graph, where V is

a set of vertices and E ⊆ V × V is a set of edges. For each

edge e = (u, v) ∈ E , the pair of vertices u and v may have

multiple interactions at different times. We denote the set of

timestamps of interaction between u and v by τ(u,v). Thus,

the temporal edge between u and v can be represented by

(u, v, τ(u,v)), and the temporal graph can be represented by

Gt = (V, E ,Γ), where Γ = {τ(u,v)|(u, v) ∈ E} is the set of

nonempty timestamp sets for each edge in E . Fig 1 illustrates

a temporal graph as our running example. Without loss of

generality, we use consecutive natural numbers from 0 until n
to denote timestamps in a temporal graph.

Then, let us consider the reasonable definition of k-truss for

temporal graphs. Given a static graph G, the k-truss, denoted

by Tk, is defined as the maximal subgraph of G in which

each edge is contained by at least k − 2 triangles, where

k ≥ 2 is a user-specified integer that represents topological

cohesion of the subgraph. Obviously, the definition of k-truss

is closely associated with that of triangle, a more fundamental

concept for graph. Inspired by [22]–[27], we propose a novel

and meaningful definition of temporal triangle in the context

of truss study as follows.

Definition 1 (Minimum Time Span). Given a temporal graph
Gt, for a triangle Δ = {u, v, w} of Gt with u, v, w ∈ V and
(u, v), (v, w), (w, u) ∈ E , its minimum time span mts(Δ) rep-
resents the shortest duration of time window in which each two
vertices have interaction, namely, mts(Δ) = min{max{|t1 −
t2|, |t2 − t3|, |t3 − t1|} | t1 ∈ τ(u,v), t2 ∈ τ(v,w), t3 ∈ τ(w,u)}.

Definition 2 (δ-Triangle). Given a threshold δ of minimum
time span, a triangle Δ is called a δ-triangle if mts(Δ) ≤ δ.

Intuitively, δ-triangles represent tight bonds in the sense of

both topology and time, which require the involved vertices to

interact with each other during at least one same short period.

As illustrated in Fig 3, the left triangle is considered as a

tighter bond than the right one from the perspective of time,

though them have the same duration. Because, in the shorter

Fig. 4: An illustration of (k, δ)-truss graph of a temporal graph,

where each arrow Tk,δ → Tk′,δ′ denotes that Tk′,δ′ ⊆ Tk,δ .

minimum time span, all three vertices may participate in a

same event. In contrast, the right triangle represents a typical

counterexample. When two of the vertices have contacts,

neither of them interacts with the other vertex. Like in a social

network, I know both of you but do not know you know each

other, which means the three of us are not that close.

On top of δ-triangle, we give the definitions of δ-support of

temporal edge and (k, δ)-truss of temporal graph as follows.

Definition 3 (δ-Support). Given a temporal graph Gt and an
integer δ ≥ 0, the δ-support of an edge e = (u, v) ∈ E ,
denoted by δ-sup(e), is the number of δ-triangles that contain
e, namely, |{Δ|u, v ∈ Δ,mts(Δ) ≤ δ}|.

EXAMPLE 2. Consider an edge e = (v2, v8) in Fig 1. The
triangles containing e are Δ1 = {v2, v3, v8} and Δ2 =
{v2, v7, v8}. We have mts(Δ1) = 2 and mts(Δ2) = 6, so
that δ-sup(e) is 2 if δ ≥ 6, 1 if 2 ≤ δ < 6, or 0 otherwise.

Definition 4 ((k, δ)-Truss). Given a temporal graph Gt, an
integer k ≥ 2, and an integer δ ≥ 0, the (k, δ)-truss of Gt,
denoted by Tk,δ , is defined as the maximal subgraph of Gt

in which the δ-support of each edge e is no less than k − 2,
namely, δ-sup(e) ≥ k − 2 in the temporal subgraph Tk,δ .

EXAMPLE 3. In Fig 1, given k = 4, we use colored dashed
lines to remark the (k, δ)-trusses with different δ. The edges
surrounded by black dashed line comprise the largest (4, 6)-
truss. When δ is decreased to 4, the edges such as (v2, v8)
are excluded due to inadequate δ-support, and the edges
surrounded by red dashed line comprise the smaller (4, 4)-
truss. Similarly, with the decrease of δ, the (k, δ)-truss shrinks
gradually, like the (4, 2)-truss surrounded by green dashed line
and (4, 0)-truss surrounded by blue dashed line.

More importantly, similar to the static cohesive subgraphs

like k-truss and k-core, (k, δ)-truss also has the containment

property, which is however dual with respect to both k and

δ. As illustrated in Fig 4, each (k, δ)-truss is contained

3340

Authorized licensed use limited to: Wuhan University. Downloaded on August 22,2024 at 07:54:48 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Online-Query

Input: a temporal graph Gt, a support threshold k, a

minimum time span threshold δ
Output: the (k, δ)-truss Tk,δ of Gt

1 compute δ-sup(e) for each edge e ∈ E ;

2 push all the edges to Q;

3 Tk,δ ← Gt;

4 while ∃e ∈ Q such that δ-sup(e) < k − 2 do
5 e ← Q.pop();

6 for each Δ containing e in Gt do
7 if mts(Δ) ≤ δ then
8 let e′ and e′′ be the other two edges of Δ;

9 δ-sup(e′) ← δ-sup(e′)− 1;

10 δ-sup(e′′) ← δ-sup(e′′)− 1;

11 Tk,δ ← Tk,δ/e;

12 return Tk,δ;

by both (k − 1, δ)-truss and (k, δ + 1)-truss directly. Such

containment properties are the keys to developing efficient

algorithms for retrieving cohesive subgraphs, such as truss

decomposition [29] and core decomposition [39]. The dual

containment property is formally defined as follows.

Property 4.1 (Dual Containment). For any two (k, δ)-trusses
Tk,δ and Tk′,δ′ of a temporal graph Gt, Tk,δ is contained by
Tk′,δ′ as a subgraph, denoted by Tk,δ ⊆ Tk′,δ′ , if k′ ≤ k and
δ′ ≥ δ.

PROOF. The result can be proved by separately showing that

(i) k′ ≤ k =⇒ Tk,δ ⊆ Tk′,δ , and (ii) δ′ ≥ δ =⇒ Tk,δ ⊆ Tk,δ′ .

The first argument holds as each edge e ∈ Tk,δ is contained

by at least k−2 δ-triangles, so that e is surely contained by at

least k′ − 2 δ-triangles if k′ ≤ k, which means Tk,δ ⊆ Tk′,δ .

Similarly, the second argument can also be proved.

In this paper, we aim to address the following problem.

PROBLEM. Given a temporal graph Gt, an integer k ≥ 2,
and an integer δ ≥ 0, find the (k, δ)-truss Tk,δ of Gt.

III. INDEX-FREE APPROACH

In this section, we firstly propose a straightforward online

solution derived from the classic truss decomposition [29] as a

baseline. Algorithm 1 gives the pseudo code of online solution.

It firstly computes the δ-support of each edge in E , and pushes

all edges into a priority queue Q in ascending order of δ-

support (Lines 1-2). Then, it performs an edge peeling process

that iteratively removes the edge with the minimum δ-support

from queue until the δ-supports of all rest edges are no less

than k − 2 (Lines 3-11). Upon the removal of an edge e, for

the other edges in each same triangle Δ with e, we will keep

their δ-support unchanged if mts(Δ) is greater than δ because

they are never counted in the first place, or decrease their δ-

support otherwise (Lines 8-10). After the peeling process, the

remaining edges in the queue comprise the target (k, δ)-truss.

Correctness. The correctness of Algorithm 1 is obvious as

long as the correctness of truss decomposition holds.

Complexity. The original truss decomposition algorithm takes

O(
∑

(u,v)∈E min{deg(u), deg(v)}) time, where deg(u) is the

degree of u in G. Compared with that, the main extra time cost

of Algorithm 1 is to compute mts(Δ) for each triangle in Gt.

Let |τ | denote the average number of timestamps associated

with an edge (u, v) and |Δ| denote the total number of trian-

gles. The time cost of computing mts(Δ) for a single triangle

is O(|τ |) if τ(u,v) is ordered. Thus, the time complexity of

Algorithm 1 is O(
∑

(u,v)∈E min{deg(u), deg(v)}+ |τ | · |Δ|).

IV. INDEX-BASED APPROACH

The complexity of index-free Algorithm 1 is at least sub-

quadratic to the number of edges for a temporal graph, and

thus is infeasible for real-time processing when the graph

is large. Therefore, we propose index-based approaches to

efficiently answer (k, δ)-truss queries in this section.

A. TC-Index

1) Index Structure: A basic idea of indexing is to preserve

all possible (k, δ)-trusses for a temporal graph, which can

answer any query in the optimal time due to precomputation.

However, directly preserving all possible (k, δ)-trusses takes

O(kmax · δmax · |E|) space in the worst case, where kmax

and δmax are the maximum values of k and δ respectively

for a given temporal graph. It means the index could be

thousands of times or even larger than the graph itself in

practice. Consequently, we propose a Temporal Containment

Index (TC-Index) that adopts an incremental storage scheme

to reduce the index size. With only a little compromise of

query efficiency compared with the uncompressed index, the

size of TC-Index is reduced to O(kmax · (|E|+ δmax)).
Before introducing TC-Index, let us consider the following

pilot concept firstly.

Definition 5 (k-Span). Given a temporal graph Gt and a
support threshold k, the k-span of an edge e ∈ E is an integer
δ = k-spn(e), such that (i) the (k, δ)-truss contains e and (ii)
the (k, δ′)-truss does not contain e for any δ′ < δ.

Property 5.1. The k-span of edges in the (k, δ)-truss is no
greater than δ.

PROOF. The argument is obvious regarding Definition 5.

With Property 4.1 and 5.1 , we only need to consider edges

in the k-truss of G whose k-span is no greater than δ in order

to find the (k, δ)-truss of Gt, because the (k, δ)-truss of Gt is

certainly a subgraph of the k-truss of G.

Based on the above observation, for a temporal graph Gt,

TC-Index maintains a map structure Ik = (Ek, Dk) for each

possible k value. Ek is a sequence that preserves edges of

the k-truss in descending order of k-span, and Dk is an index

that records the unique k-spans and the offsets of the first

edges with the corresponding k-span in Ek. Then, TC-Index

I = (I3, I4, · · · , Ikmax
) is comprised of the map structures

for all possible k. Note that TC-Index does not store the map
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Algorithm 2: TC-Query

Input: TC-Index I, a support threshold k, a minimum

time span threshold δ
Output: the (k, δ)-truss Tk,δ of Gt

1 (Ek, Dk) ← access Ik;

2 δ′ ← binary search of the maximum k-span in Dk no

greater than δ;

3 o ← the offset associated with δ′ in Dk;

4 return the edges in Ek from o to the end of file;

structures for k ≤ 2 because the (2, δ)-truss is actually the

entire temporal graph, regardless of δ.

EXAMPLE 4. The TC-Index for the temporal graph in Fig 1 is
given in Fig 5. Three are three map structures I3, I4, and I5.
Within I4, there are four unique k-spans 6, 4, 2, and 0 in D4,
which have pointers to the first edges with these k-spans in
E4. We can see the edges (v2, v3), (v2, v7), (v2, v8), (v3, v7),
and (v3, v8) have the k-span 6 when k = 4.

THEOREM 1. For a temporal graph Gt, the size of TC-Index
is bounded by O(kmax · (|E|+ δmax)).

PROOF. For each Ik = (Ek, Dk), the size of Ek is linear to

the number of edges in the k-truss of G, which is less than

|E|. Meanwhile, the size of Dk is at most δmax. Thus, the size

of Ik is bounded by O(|E|+ δmax). As a result, the total size

of TC-Index is bounded by O(kmax · (|E|+ δmax)).

2) Query Processing: The TC-Index based query algorithm

is named TC-Query, whose pseudo code is presented in

Algorithm 2. For the given k and δ, Algorithm 2 firstly

retrieves Ik = (Ek, Dk) from TC-Index (Line 1). Then, it finds

the maximum δ′ in Dk with δ′ ≤ δ, and locates the position in

Ek with respect to the offset associated with δ′ in Dk (Lines

2-3). Lastly, it scans Ek from the position until the end, and

all scanned edges comprise Tk,δ (Line 4).

EXAMPLE 5. Consider the (k, δ)-truss query with k = 4 and
δ = 1. In D4, the first k-span no greater than δ is 0. Thus, we
locate the edge (v6, v8) in E4 and start to scan the following
edges. Lastly, we get the edges of (4, 1)-truss, namely, (v6, v8),
(v6, v9), (v6, v10), (v8, v9), (v8, v10), and (v9, v10), which can
be verified in Fig 1 (see the blue edges).

THEOREM 2. TC-Query computes the edge set of Tk,δ in
at most O(log δmax + |Tk,δ|) time, where |Tk,δ| denotes the
number of edges in Tk,δ .

PROOF. The argument is obvious regarding Algorithm 2.

Compared with the optimal time of processing (k, δ)-truss

query that is certainly O(|Tk,δ|), TC-Query is almost optimal

since log δmax is usually much less than |Tk,δ|.

B. DC-Index

1) Index Structure: Although TC-Index exploits temporal

containment to achieve incremental storage, it is still not

space-efficient enough as it only takes into account one aspect

of Property 4.1. To fully exploit the property, we propose an

advanced tree-structured index called Dual Containment Index

(DC-Index). DC-Index is space-optimal while guaranteeing the

same order of query efficiency as TC-Index. Specifically, DC-

Index is derived in the following steps.

Definition 6 ((k, δ)-Truss Graph). Given a temporal graph Gt,
we define a (k, δ)-truss graph as a directed weighted graph
G = (V,E,w), where V = {Tk,δ|3 ≤ k ≤ kmax, 0 ≤ δ ≤
δmax} is the set of all possible (k, δ)-trusses of Gt, E = Ev∪
Eh = {(Tk,δ, Tk+1,δ)|3 ≤ k ≤ kmax − 1, 0 ≤ δ ≤ δmax} ∪
{(Tk,δ, Tk,δ−1)|3 ≤ k ≤ kmax, 1 ≤ δ ≤ δmax} is a subset of
dual containment relation on V , and w : E → N indicates the
number of incremental edges between two connected trusses.

Fig 6(a) illustrates the (k, δ)-truss graph of our example

temporal graph. Intuitively, we call the edges in Ev as vertical

edges and the edges in Eh as horizontal edges. For each edge

in this graph, if the sink truss has been stored, the cost of

incrementally preserving the source truss is the weight of edge.

Definition 7 ((k, δ)-Truss Arborescence). Given a (k, δ)-truss
graph G, we derive a (k, δ)-truss arborescence A from it by
removing the outgoing edge (Tk,δ, Tk+1,δ) or (Tk,δ, Tk,δ−1)
with greater weight for each truss Tk,δ . Note that, if Tk,δ has
one or none outgoing edge, no edge will be removed.

Fig 6(b) illustrates the (k, δ)-truss arborescence, which is

actually a minimum-weight directed spanning tree. For each

truss, there is a single directed path that leads to the root,

namely, (kmax, 0)-truss.

Definition 8 (Reduced (k, δ)-Truss Arborescence). Given a
(k, δ)-truss arborescence A, we reduce it to another arbores-
cence A− by (i) removing each truss and its outgoing edge if
the edge weight is zero and (ii) reconnecting each truss to the
next truss on its original path in A if its sink truss is removed.

Fig 6(c) illustrates the reduced (k, δ)-truss arborescence.

Obviously, each omitted truss can still be retrieved because

there is certainly another truss identical to it remained.

Then, we use an incremental storage scheme to preserve

all possible (k, δ)-trusses according to the reduced (k, δ)-truss

arborescence. As illustrated in Fig 6(d), the incremental edge
set tree of DC-Index is logically equivalent to the reduced

(k, δ)-truss arborescence, and preserves the Incremental Edge

Sets (IESes) between trusses in each node of the tree. Com-

pared with TC-Index, DC-Index surely has fewer redundant

edges. For example, the total number of edges in Fig 6(d) is

40, and in contrast, the total number of edges in Fig 5 is 54.

Actually, the space cost of DC-Index is the minimum under a

precondition.

THEOREM 3. Given a temporal graph Gt, the incremental
edge set tree of DC-Index is space-optimal for preserving all
possible (k, δ)-trusses of Gt, when the efficiency of retrieving
a specific (k, δ)-truss cannot be degraded.

PROOF. Logically, retrieving a specific (k, δ)-truss from DC-
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Fig. 5: An example of TC-Index, in which (vi, vj) is represented by (i, j).
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Fig. 6: An example of DC-Index, in which (vi, vj) is represented by (i, j).

Index is simply a scan of edges in the (k, δ)-truss, the

time complexity of which is O(|Tk,δ|). To guarantee this

complexity, for each (k, δ)-truss, the index needs to store it as

a single sequence of IESes, thereby avoiding to search multiple

sequences with duplicated edges. Under this precondition, we

prove that DC-Index is space-optimal using induction. Let

Sc be a space-optimal store of all possible (k, δ)-trusses.

The initial Sc only contains Tkmax,0, because Tkmax,0 is the

minimal (k, δ)-truss and cannot be compressed incrementally.

Then, the neighbors of Tkmax,0, namely, Tkmax,1 and Tkmax−1,0

are added into Sc, and only their incremental edges regarding

Tkmax,0 are preserved. It is obvious that the updated Sc is still

space-optimal. Furthermore, we keep on adding the neighbors

of current trusses in Sc into Sc, namely., Tkmax−2,0, Tkmax,2,

and Tkmax−1,1. It is certain that, for each newly added truss,

the minimum incremental storage cost is one of the weights of

its outgoing edges to the trusses of Sc. For example, the truss

Tkmax−1,1 has two outgoing edges to Tkmax−1,0 and Tkmax,1

respectively, and thus the IES corresponding to the edge with

less weight is stored. As a result, each truss in Sc is still

stored with the minimum cost. Applying this recursively, Sc

is actually the incremental edge set tree of DC-Index.

Moreover, to retrieve a specific (k, δ)-truss in the tree, DC-

Index uses a lookup table to record the pointers to tree nodes.

As illustrated in Fig 6(e), the cell in k row and δ column

contains the pointer to the tree node that represents an identical

truss of (k, δ)-truss. For example, to lookup T3,0, the pointer

to T4,0 in the tree is returned. We further compress the lookup

table by skipping the consecutively repeating pointers for each

row. As illustrated in Fig 6(f), when k = 5, there are only two

unique pointers to T5,0 and T5,2 respectively, and we only

record them and their smallest column ids (namely, 0 and 2)

in the row. For 0 < δ < 2 or 2 < δ ≤ 6, it is easy to know

the corresponding T5,δ is identical to T5,0 or T5,2.

2) Query Processing: The DC-Index based query algorithm

is named DC-Query, which is similar to TC-Query. For the

given k and δ, it firstly finds the maximum δ′ ≤ δ in row k
and gets the pointer to a node of incremental edge set tree.

Then, we traverse the path from this node to the root, and the

union of all traversed edge sets is the edge set of Tk,δ . The

pseudo code is omitted.

THEOREM 4. DC-Query is as efficient as TC-Query.

PROOF. Logically, they have the same computational com-
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plexity (see Theorem 2), though tree traversal is slower than

sequential scan in physical implementation.

V. INDEX CONSTRUCTION

In this section, we address the scalable construction of

TC/DC-Index on large-scale temporal graphs. For that, we pro-

pose two algorithms based on two classic paradigms, namely,

truss decomposition [29]–[33] and truss maintenance [34]–

[38], respectively.

A. TC-Index Construction based on Decomposition

Intrinsically, the construction of TC-Index can be addressed

by computing the Incremental Edge Sets (IESes) between each

pair of (k, δ)-truss and (k, δ + 1)-truss for a temporal graph.

Since these IESes correspond to the horizontal edges (Eh) of

the (k, δ)-truss graph illustrated in Fig 4, we call them Hor-

izontal IES (H-IES), The index construction algorithm needs

to reduce the redundant part in the computation of different

H-IESes to scale to large temporal graphs. A basic strategy

is to exploit the dual containment property to decrementally

decompose (k, δ)-trusses in a particular order with respect to

k and δ, like the existing temporal k-core decomposition [11].

However, temporal k-core decomposition does not involve

the extra metric like the minimum time span of triangle, which

may be needed repeatedly for evaluating δ-supports of edges.

Thus, to eliminate the repeating computation of minimum time

span, we design the following data structure to store mts(Δ)
for each Δ in a temporal graph.

Definition 9 (δ-Triangle List). Given a temporal graph Gt, a
δ-triangle list is a list of triangle sets (SΔ

0 , SΔ
1 , · · · , SΔ

δmax
),

where SΔ
δ is the set of all triangles in Gt whose minimum time

spans are exactly δ with 0 ≤ δ ≤ δmax.

Then, for each k, we decrementally induce each (k, δ)-
truss from (k, δ + 1)-truss, so that the H-IES between them

can be obtained. Algorithm 3 presents the pseudo code of

our Decomposition Based Algorithm (DBA). Initially, we

enumerate all triangles and evaluate their minimum time span,

for building the δ-triangle list (Line 1). Let XΔ
k denote the set

of triangles of k-truss. Obviously, the 2-truss is Gt itself, and

thereby XΔ
2 is the union of all sets in k-triangle list (Line

2). Then, for each k with 3 ≤ k ≤ kmax, we decompose

Tk,δmax
= Tk gradually until Tk,0 is obtained, and collect

the H-IESes (Lines 3-8). Specifically, each iteration starts

with obtaining Tk of G by a traditional truss decomposition

function decompv() (Line 4), since the (k, δ)-truss is always

a subgraph of k-truss. In particular, we can also obtain the set

of deleted triangles XΔ by decompv(). Thus, the triangle set

of k-truss XΔ
k can be computed by removing XΔ from XΔ

k−1

(Line 5). Then, for each δ from δmax−1 until 0, the (k, δ)-truss

is induced by a new decomposition function decomph(),

which invalidates the triangles in XΔ
k from the (k, δ+1)-truss

(Lines 6-7). In this function, the H-IES can also be obtained

(Line 8). The details of functions are as follows.

decompv(). This function could be any existing truss de-

composition algorithm like [29]. So the details are omitted.

Algorithm 3: Decomposition Based Algorithm (DBA)

Input: a temporal graph Gt

Output: H-IESes between (k, δ)-trusses of Gt

1 build the δ-triangle list (SΔ
0 , SΔ

1 , · · · , SΔ
δmax

);

2 T2 ← Gt, XΔ
2 ← ∪δmax

δ=0 SΔ
δ ;

3 for k ← 3 until kmax do
4 Tk, X

Δ ← decompv(Tk−1) ; // Tk,δmax
= Tk

5 XΔ
k ← XΔ

k−1/X
Δ;

6 for δ ← δmax − 1 until 0 do
7 Tk,δ, R ← decomph(Tk,δ+1, X

Δ
k );

8 collect R as the H-IES between (k, δ + 1)-truss

and (k, δ)-truss;

9 Function decompv(Tk):
10 decompose k-truss and return both Tk+1 and the

set of deleted triangles XΔ;

11 Function decomph(Tk,δ, X
Δ
k ):

12 Q ← ∅, R ← ∅;

13 for each triangle Δ ∈ XΔ
k ∩ SΔ

δ do
14 delete Δ from XΔ

k ;

15 for each e of Δ do
16 δ-sup(e) ← δ-sup(e)− 1;

17 if δ-sup(e) < k − 2 and e /∈ Q then
18 Q.push(e);

19 while Q is not empty do
20 e ← Q.pop();

21 Tk,δ ← Tk,δ/e;

22 add e to R;

23 for each Δ ∈ XΔ
k containing e do

24 delete Δ from XΔ
k ;

25 for each other e′ of Δ do
26 δ-sup(e′) ← δ-sup(e′)− 1;

27 if δ-sup(e′) < k − 2 and e′ /∈ Q then
28 Q.push(e′);

29 return Tk,δ , R;

decomph(). This function mainly consists of two phases. In

the first phase (Lines 13-18), for each triangle whose minimum

time span is δ in XΔ
k , we decrease the δ-support of its edges

by 1 and push the edges whose new δ-support is less than k−2
into a candidate container Q, which collects edges waiting to

be deleted. In the second phase (Lines 19-28), for each edge

e in Q, we remove it from Tk,δ , and meanwhile add it to the

H-IES R. Upon the removal of e, if there is any other triangle

Δ ∈ XΔ
k that contains e, we process the other edges of Δ

than e as in the first phase.

EXAMPLE 6. Consider the temporal graph in Fig 1. Since
the greatest minimum time span of its triangles δmax = 6, the
4-truss is actually the (4, 6)-truss surrounded by black dashed
line. For k = 4, we can get the 4-truss from previous 3-truss
by a traditional truss decomposition, and start to decompose
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(4, 6)-truss from δ = 5. The triangle Δ = {v2, v7, v8} ∈ XΔ
4

with mts(Δ) = 6 will be invalidated because we are trying to
obtain (4, 5)-truss currently. Thus, the δ-supports of its edges
are decreased by 1. Then, we have both 5-sup(v2, v7) and 5-
sup(v2, v8) = 1 < 4− 2, so (v2, v7) and (v2, v8) are pushed
into Q and waiting to be deleted. On the removal of edge
(v2, v7), the triangle {v2, v3, v7} containing it will be broken,
so that the other two edges (v2, v3) and (v3, v7) also need to
be checked like (v2, v7). Iteratively, the edges not belong to
(4, 5)-truss are all deleted and pushed into the H-IES between
(4, 6)-truss and (4, 5)-truss, until Q is empty. Similarly, when
δ decreases gradually, the edges remarked by red color and
green color will be deleted respectively, until only the blue
edges that comprise the (4, 0)-truss remain.

Correctness. We only discuss the correctness of decomph()
here, since the other parts of Algorithm 3 are straightforward.

Due to Property 4.1, we can induce the (k, δ)-truss from

the (k, δ + 1)-truss. It is easy to know, we can finish that

by invalidating all triangles in XΔ
k whose minimum time

span is greater than δ. However, for avoiding unnecessary

computation, we have a trick that is to only invalidate the

triangle whose minimum time span is exactly δ + 1, because

the other triangles have been invalidated during the previous

calls of decomph(). The rest decomposition procedure is

correct obviously.

Complexity. The time complexity of building the δ-triangle

list is O(
∑

(u,v)∈E min{deg(u), deg(v)} + |τ | · |Δ|), which

is the same as Algorithm 1. The total time cost of calling

decompv() is O(
∑

(u,v)∈E min{deg(u), deg(v)}. For the

inner loop with a specific k, the time complexity is O(|XΔ
k |+∑

(u,v)∈Tk
min{deg(u), deg(v)}), since each triangle in Tk

is invalidated at most once and each edge in Tk is visited at

most once. Thus, the total time cost of calling decomph() is

O(
∑kmax

k=3 (|XΔ
k | + ∑

(u,v)∈Tk
min{deg(u), deg(v)})), which

dominates the total time cost of DBA (Algorithm 3).

B. TC/DC-Index Construction based on Maintenance

DBA (Algorithm 3) can only produce H-IES but not IES

between each pair of (k, δ)-truss and (k+1, δ)-truss, which are

called Vertical IES (V-IES) for corresponding to the vertical

edges (Ev) of the (k, δ)-truss graph in Fig 6, and thereby is not

efficient for constructing DC-Index. Thus, we propose another

Maintenance Based Algorithm (MBA). MBA can construct

both TC-Index and DC-Index, and is more efficient than DBA.

The traditional truss maintenance problem is to update the

trussness of edges when edges are inserted or deleted, which

has been widely studied [34]–[37]. Different from that, we

mainly focus on truss maintenance when triangles are validated

or invalidated with respect to minimum time span. Moreover,

similar to edge-oriented maintenance, updating trussness for

triangle invalidation is much more efficient than triangle

validation. Therefore, we only maintain edge trussness when a

triangle becomes invalid due to the decease of δ, with respect

to the following observations.

Lemma 1. Given a graph G, the trussness of any edge in E
can be decreased by at most 1 if a triangle Δ of G gets invalid.

PROOF. The previous work [34] has proved the conclusion for

deleting an edge, which will cause the invalidation of at least

one triangle. Thus, the conclusion still holds for invalidating

only one triangle.

With Lemma 1, we only need to identify the edges whose

trussness will be affected by triangle invalidation and decrease

their trussness by 1 for maintenance.

Definition 10 (k-Triangle). Given a graph G, a triangle Δ of
G is a k-triangle if it is contained by the k-truss but not the
k+1-truss of G. We say the level of Δ is k, denoted by L(Δ).

Lemma 2. For any k-triangle Δ of G, the trussness trn(e)
of an edge e ∈ E will not be updated when Δ gets invalid if
trn(e) �= k.

PROOF. For trn(e) �= k, we consider two cases (i) trn(e) > k
and (ii) trn(e) < k respectively. For the case (i), we have the

edge e that belongs to the trn(e)-truss, and the k-triangle Δ
does not belong to the trn(e)-truss because trn(e) > k, so

that the invalidation of Δ will not affect the trn(e)-truss and

also the support of e in the trn(e)-truss. Thus, trn(e) will not

be updated. For the case (ii), we prove it by a contradiction.

Assume that an edge e with trn(e) < k has its trussness

decreased, it can be concluded that at least one support triangle

of e in trn(e)-truss has its level decreased, which implicates

that at least one edge e∗ with trn(e∗) = trn(e) of this support

triangle has its trussness decreased. Applying this recursively

through a series of triangles sharing common edges, we must

reach an edge e′ of Δ with trn(e′) = trn(e), and its trussness

is decreased. However, there is no edge e′ of Δ with trn(e′) =
trn(e) as the level of Δ is k, which causes a contradiction.

Lemma 3. For any k-triangle Δ of G, the trussness trn(e)
of an edge e ∈ E may be updated when Δ gets invalid, if
trn(e) = k and one of following conditions is satisfied: (i)
e ∈ Δ or (ii) e /∈ Δ and ∃e′ ∈ Δ such that trn(e′) = k and
e is connected with e′ though a series of k-triangles sharing
common edges.

PROOF. For the case (i), we have Δ that belongs to the k-truss

because it is a k-triangle, and thus the edge e with trn(e) = k
loses a support triangle in the k-truss when Δ gets invalid. As

a result, the support of e may no longer satisfy the requirement

of k-truss, which means trn(e) may be decreased. The case

(ii) can be proved like the case (ii) of Lemma 2.

With Lemma 2 and 3, we develop an algorithm to main-

tain the edge trussness for a single triangle invalidation,

which draws inspiration from the removal algorithm proposed

by [35]. The most important trick is that, for each edge e ∈ E ,

we maintains a stricter k-support ks(e) = |{Δ|e ∈ Δ, L(Δ) =
trn(e)}|, which is the number of trn(e)-triangles containing

e. In the trn(e)-truss, ks(e) actually becomes the number of

triangles that contain e, so that ks(e) is no less than trn(e)−2.
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Algorithm 4: Triangle Invalidation

Input: a static graph G of Gt, a triangle Δ
Output: the set R of edges affected by invalidating Δ

1 Q ←− ∅; R ← ∅;

2 k ← L(Δ);
3 for each e ∈ Δ with trn(e) = k do
4 ks(e) ← ks(e)− 1;

5 if ks(e) < trn(e)− 2 then
6 Q.push(e);

7 while Q is not empty do
8 e ← Q.pop();

9 R ← R ∪ e;

10 trn(e) ← trn(e)− 1 (Lemma 1);

11 for each Δ containing e in G do
12 if Δ is valid then
13 invalidate Δ;

14 let e′ and e′′ be the other two edges of Δ;

15 k∗ ← min{trn(e′), trn(e′′)};

16 if k∗ = k then
17 if trn(e′) = k∗ and e′ ∈ Q then
18 ks(e′) ← ks(e′)− 1;

19 if ks(e′) < trn(e′)− 2 then
20 Q.push(e′);

21 repeat Lines 17-20 for e′′;

22 compute ks(e) according to the new trn(e);

23 return R;

The pseudo code is present in Algorithm 4. After the

invalidation of input k-triangle Δ, we firstly decrease the k-

support of each edge e of Δ with trn(e) = k according to the

case (i) of Lemma 3, and pushes e to a queue Q if ks(e) is

no longer greater than trn(e)− 1, implying that its trussness

will decrease (Lines 3-6). Then, for each edge e ∈ Q, since

the decrease of trn(e) can further result in the decrease of

trussness of other edges in a same triangle with e, we perform a

breadth-first search to find such edges according to the case (ii)

of Lemma 3 (Lines 7-22). Lastly, the algorithm returns the set

of edges whose trussness is decreased by triangle invalidation.

Then, let us consider how to construct DC-Index through

edge trussness maintenance. Since the construction of DC-

Index requires to compute both V-IES and H-IES, we present

the methods respectively.

V-IES. The V-IES between (k, δ)-truss and (k + 1, δ)-truss

is simply the set of edges whose trussness is k + 1 when the

triangles whose minimum time span is greater than δ have been

invalidated. Thus, we can obtain all V-IESes by invalidating

triangles in descending order of minimum time span gradually,

and maintain the edge trussness simultaneously.

H-IES. The H-IES between (k, δ)-truss and (k, δ−1)-truss can

be further obtained with respect to the following observation.

Lemma 4. When all triangles whose minimum time span is

6

8

6, 7 6

8

6, 7

Fig. 7: An example of executing MBA before and after δ = 6.

Algorithm 5: Maintenance Based Algorithm (MBA)

Input: a temporal graph Gt

Output: both H-IES and V-IES between (k, δ)-trusses

1 build the δ-triangle list (SΔ
0 , SΔ

1 , · · · , SΔ
δmax

);
2 initialize edge trussness by decompv();

3 for δ ← δmax until 1 do
4 for k ← 3 until kmax do
5 add edges whose trussness is k to the V-IES

between (k, δ)-truss and (k + 1, δ)-truss;

6 for each triangle Δ ∈ SΔ
δ do

7 mark Δ as globally invalidated;

8 k ← L(Δ);
9 R ← Algorithm 4 with Δ as input;

10 for each edge e ∈ R do
11 add e to the H-IES between (k, δ)-truss and

(k, δ − 1)-truss;

greater than δ have been invalidated, for an edge e with
trn(e) = k, it belongs to the H-IES between (k, δ)-truss and
(k, δ − 1)-truss if trn(e) decreases after any triangle Δ with
mts(Δ) = δ has been further invalidated.

PROOF. For a specific δ, since trn(e) = k before the invalida-

tion of a triangle Δ with mts(Δ) = δ, the edge e is contained

by Tk,δ . Moreover, since trn(e) = k′ < k after the invalidation

of Δ, the edge e is not contained by Tk,δ−1 (and is contained

by Tk′′,δ−1 with k′′ ≤ k′). Thus, e belongs to the H-IES

between Tk,δ and Tk,δ−1.

With Lemma 4, we can obtain both V-IES and H-IES in the

procedure of truss maintenance. Specifically, after invalidating

each triangle whose minimum time span is δ, we only need

to check the edges whose trussness is exactly the level of this

triangle according to Lemma 2, and add edges whose trussness

has decreased into the corresponding H-IES.

The pseudo code of MBA is given in Algorithm 5. We

firstly build the δ-triangle list (Line 1) and compute the

initial edge trussness of G (Line 2). Then, we enumerate δ
gradually in descending order and compute the H-IES and V-

IES respectively (Lines 3-11). For a specific δ, obtaining the

V-IES is straightforward since the edge trussness is already

known (Lines 4-5). Moreover, we invalidate each triangle Δ
with mts(Δ) = δ by calling Algorithm 4. For each edge
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returned, we add e to the H-IES between (k, δ)-truss and

(k, δ − 1)-truss, where k is the level of Δ.

EXAMPLE 7. Consider running MBA on the temporal graph
in Fig 1. As illustrated in Fig 7, we remark the trussness of
edges by different colors. The initial trussness before iterations
is shown on the left. We highlight the (4, 6)-truss comprised of
green and yellow edges because δmax = 6. Then, in the iter-
ation with δ = 6, the triangle Δ = {v2, v7, v8} is invalidated
because mts(Δ) = 6. According to Lemma 2, (v7, v8) will be
not affected since L(Δ) = 4 �= trn(v7, v8) = 5. According to
the case (i) of Lemma 3, (v2, v7) and (v2, v8) will be affected.
According to the case (ii) of Lemma 3, (v2, v3), (v3, v7), and
(v3, v8) will be affected. Lastly, according to Lemma 1, the
trussness of affected edges is decreased by 1. The updated
trussness is shown on the right, and the current green and
yellow edges comprise the highlighted (4, 5)-truss.

Correctness. The correctness of Algorithm 5 is established on

the corretness of Lemma 1, 2, 3, and 4.

Complexity. For brevity, we only compare the difference of

dominant time cost between DBA and MBA here. For the

quantity of visited edges (pushed into Q), two algorithms

are equivalent, though DBA enumerates k firstly and MBA

enumerates δ firstly. For the quantity of invalidated triangles,

MBA only needs to invalidate each triangle in Gt once, while

DBA does that for each k. Thus, the dominant time cost

of MBA is O(
∑kmax

k=3

∑
(u,v)∈Tk

min{deg(u), deg(v)}+ |Δ|),
which means MBA is more efficient than DBA.

VI. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate

the proposed approaches on a Linux machine with Intel

Xeon 3.5GHz CPU and 128GB RAM. All algorithms are

implemented in C++ 11 and compiled by g++.

A. Dataset and Empirical Study

We evaluate proposed approaches on eight real-world tem-

poral graphs, which are available publicly in [40] and [41].

The detailed statistics of these graphs are presented in Table I,

where |V| is the number of vertices, |E| is the number of

(static) edges, n is the number of distinct timestamps, |τ | is

the average number of timestamps associated with each edge,

|Δ| is the number of triangles, kmax is the maximum trussness

of edges, and δmax is the maximum minimum time span of

all triangles in the graph. In terms of |E|, the scales of test

datasets are in a wide range from 16K to 36M. While, no

matter how large is the graph, kmax fluctuates only within a

small range. This is because a k-truss is a subgraph with strict

static cohesion.

There are two observations that support our motivation of

studying (k, δ)-truss on the datasets. Firstly, by comparing n
and δmax, we can see there are indeed triangles with minimum

time span as long as the duration of whole graph, which are not

cohesive in terms of time. Moreover, we conduct an empirical

study on these datasets. Fig 8 illustrates the distribution of

triangle counts on minimum time span for four of them. We

(a) Mathoverflow. (b) Superuser.

(c) Wikitalk. (d) Youtube.

Fig. 8: Distribution of triangle counts on minimum time span.

Fig. 9: Response time of query processing on different

datasets, in which k = 30%kmax and δ = 60%δmax.

can see that, although the triangles with longer minimum time

span are less, the distribution does not have a typical long tail.

In contrast, the counts are not dropping that fast. Thus, δ is

effective to constrain the structure of (k, δ)-truss.

B. Query Processing

To the best of our knowledge, no existing work investigates

the (k, δ)-truss query. Thus, we use the proposed query pro-

cessing algorithms, Online-Query, TC-Query, and DC-Query

to evaluate efficiency. Given k and δ, we record the average

running time of 100 times of repeated execution.

Since each dataset has different value ranges of k and δ,

we adopt relative parameters and set k = 30%kmax and

δ = 60%δmax respectively in default for a given dataset. The

running time of three algorithms under the default parameters

is reported in Fig 9. TC-Query and DC-Query have similar

query efficiency, and are 2∼4 orders of magnitude faster than

Online-Query. Even for the two largest graphs with tens of

millions of edges, index-based approaches can finish within

less than 100 ms.

Then, we test the query efficiency with respect to varying

parameters. Firstly, the running time of three algorithms with

varying values of k on four datasets is reported in Fig 10.
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TABLE I: Statistics of datasets.

Dataset |V| |E| n |τ | |Δ| kmax δmax

Email 0.9K 16K 803 11.5 105K 23 800

MathOverflow 24K 187K 2350 1.6 1.4M 42 2336

AskUbuntu 159K 455K 2613 1.2 680K 26 2040

Superuser 194K 714K 2773 1.2 1.5M 35 2692

WikiTalk 1.1M 2.7M 2320 1.4 8.1M 49 2231

YouTube 322K 9.3M 225 1.0 12M 33 225

Stackoverflow 2.6M 28.1M 2774 1.2 114.2M 79 2768

Wikipedia 1.8M 36.5M 2235 1.1 126.6M 59 2231

Fig. 10: Response time of query processing with varying k and δ = 60%δmax.

Fig. 11: Response time of query processing with varying δ and k = 30%kmax.

Fig. 12: Response time of DC-

Query with varying k and δ.

As expected, index-based approaches spend less time on

processing queries with greater k, because fewer edges need

to be scanned. In contrast, Online-Query spends more time

because truss decomposition needs to peel more edges. Note

that, even when k = 10%kmax (which is usually the minimum

value 3), the running time of TC-Query and DC-Query is

never greater than 100 ms. Moreover, the running time of

three algorithms with varying values of δ on those datasets

is reported in Fig 11. Different from k, the running time of

index-based approaches increases gradually with increasing δ,

because the greater δ relaxes the constraint and more edges

need to be scanned. Lastly, we use heat map to visualize

the running time of DC-Query under more combinations of

query parameters (k = 10%, 20%, · · · , 100% of kmax and δ =

10%, 20%, · · · , 100% of δmax) in Fig 12. The time cost is at

most 0.41 sec on the largest dataset Wikipedia, and generally

decreases as k increases or δ decreases.

C. Index Construction

Firstly, we report the construction time of proposed TC-

Index and DC-Index. For each dataset, we use DBA (Al-

gorithm 3) to construct TC-Index and MBA (Algorithm 5)

to construct both TC-Index and DC-Index respectively. As

illustrated in Fig 13, index construction costs less than 1 sec

for the smallest dataset Email with 16K edges and nearly

10,000 sec for the largest dataset Wikipedia with 36M edges.

The construction time increases evenly with the increasing

scale of graph, which implies that DBA and MBA reduce

the redundant computation effectively. Moreover, as expected,

MBA is more efficient than DBA on all datasets.

Moreover, the statistics of constructed indexes are shown

in Table II. The total edge number of DC-Index is about

1.5X-10.4X large as the corresponding graph. Compared with

storing all possible (k, δ)-trusses directly, DC-Index achieves

the compression ratio up to 10−4 on most datasets. The

only exceptional dataset is Youtube. According to Theorem 1,

δmax is the key factor affecting the compression ratio. Since

YouTube has a very small δmax, the compression ratio of its

DC-Index is worse than other datasets. Due to the effective

compression, the space cost of DC-Index is at most 903MB in

our experiments. However, we observed that DC-Index is only

a little smaller than TC-Index. The rationale is that, since δmax

is much greater than kmax for these datasets, the weights of

horizontal edges in Eh are generally less than vertical edges
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TABLE II: Statistics of indexes.

dataset
avg. entry TC-Index DC-Index
(k-span) # total edge # total edge # total edge # / |E| space (MB) compression ratio (total edge # /

∑
k,δ |Tk,δ|)

Email 290 162K 154K 9.57 0.76 17.5× 10−4

MathOverflow 1365 1959K 1957K 10.40 9.35 6.754× 10−4

AskUbuntu 1086 959K 958K 2.10 7.33 11.43× 10−4

Superuser 1365 2108K 2106K 2.95 13.83 7.4× 10−4

WikiTalk 1089 10.60M 10.58M 3.79 62.01 7.67× 10−4

YouTube 170 16.74M 14.25M 1.52 125.93 1.11× 10−2

Stackoverflow 2028 139.07M 138.92M 4.93 746.15 6.00× 10−4

Wikipedia 1304 164.24M 163.40M 4.47 902.63 8.60× 10−4

Fig. 13: Construction time of TC-Index and DC-Index using

DBA and MBA for different datasets.

Fig. 14: Comparison of total edge number between DC-Index

and TC-Index with different time granularity.

in Ev , so that the (k, δ)-truss arborescence has only a few

vertical edges. As a result, the space of DC-Index is almost

as large as TC-Index.

For the above anomaly observed, we conduct an extra ex-

periment to verify the effectiveness of DC-Index. Specifically,

we merge every 20, 25, 30, 35, or 40 consecutive timestamps

into a single new timestamp for coarsening the time granularity

(like from day to month), which will decrease δmax but not

change kmax. Thus, the weights of horizontal edges in new Eh

will become greater. Fig 14 illustrates the comparison of total

edge number between DC-Index and TC-Index with the new

settings, on two selected datasets. Clearly, DC-Index regains

the advantage in the more balanced temporal graphs.

VII. RELATED WORK

Recently, there emerge studies on k-truss for temporal

graphs. The (k,Δ, θ)-truss [21] inherits the definition of

persistent core [15], and requires its edges to have supports no

less than k − 2 in a number of time windows no shorter than

Δ, the total duration of which is no less than θ. Such a truss

model is not general enough for many application scenarios.

The (k,Δ)-truss (also known as span truss) [20] defines the

temporal support of edges, which is the support in a projection

of temporal graph during a period, and aims to find the k-

truss that is cohesive enough in the specific time window Δ.

This truss model is more general. However, it always needs

the user to give a specific time window in which triangles

occur. In contrast, our (k, δ)-truss allows triangles to occur in

different time windows that are still short enough. Thus, our

(k, δ)-truss is more relaxed than span truss, and meanwhile,

can be equivalent to span truss when an extra time window is

specified and δ = ∞ if necessary.

Since our (k, δ)-truss is designed on top of temporal tri-

angles, we also investigate the related researches [22]–[27].

Different from their typical definitions of triangle/motif dura-

tion, we propose another kind of duration, namely, minimum

time span that is more meaningful in the context of k-truss.

Moreover, the design of our indexes is inspired by (k, l)-
core [42] and (k, p)-core [43], which also consider the similar

property with respect to dual parameters. The various elegant

algorithms [29], [34]–[37] to solve k-truss problems provide

useful guides to develop our index construction algorithms.

VIII. CONCLUSION

In this paper, we study a novel (k, δ)-truss on temporal

graphs, which constrains the minimum time span of triangles

to guarantee temporal cohesion. Such a constraint tailors the

static truss in time dimension effectively. To address the

query problem of (k, δ)-truss, we propose both index-free and

index-based approaches. The indexes that exploits the dual

containment property of (k, δ)-truss to compress the space

can deliver efficient query processing. Moreover, we develop

scalable index construction algorithms. The theoretical proof

and experimental evaluation of our approach are provided.
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