
Commun. Math. Anal. Appl.
doi: 10.4208/cmaa.2024-0021

Vol. 3, No. 4, pp. 501-518

November 2024

Global Solutions to the Compressible Navier-

Stokes Equations for a Reacting Mixture with

Temperature Dependent Transport Coefficients

Ling Wan1, Tao Wang2,* and Huijiang Zhao2,3

1 School of Mathematics and Physics, China University of Geosciences,
Wuhan, 430074, China.
2 School of Mathematics and Statistics, Wuhan University,
Wuhan 430072, China.
3 Computational Science Hubei Key Laboratory, Wuhan University,
Wuhan 430072, China.

Received 20 August 2024; Accepted 25 September 2024

Dedicated to Professor Gui-Qiang G. Chen on the occasion of his 60th
birthday, with admiration and affection.
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1 Introduction

We study global well-posedness of a mathematical model governing the dynamic
combustion of viscous and exothermically reacting gases with large initial data
and temperature dependent transport coefficients. The motion of the gas can be
described by the following compressible Navier-Stokes equations for a reacting
mixture in the Eulerian coordinates (see Williams [56]):$’’’’’&’’’’’%

ρt`∇¨pρuq“0,

pρuqt`∇¨pρubuq`∇P“∇¨S,

pρEqt`∇¨pρEu`Puq“∇¨pκ∇θ`Su`qdρ∇Zq,
pρZqt`∇¨pρZuq“∇¨pdρ∇Zq´KφpθqρZ.

(1.1)

Here the density ρ, velocity u PRn, temperature θ, and reactant mass fraction
Z P r0,1s are the primary unknowns of time tě0 and spatial variable xPRn with
space dimension ně 1. The specific total energy E and viscous stress tensor S

have the form

E“ e` 1

2
|u|2`qZ, S“µ

`
∇u`p∇uqT˘`λ∇¨uIn,

where the constant q is the heat release, µą0 and λ are the viscosity coefficients
with 2µ`nλą0, and In is the identity matrix of order n. The pressure P, the in-
ternal energy e, and the transport coefficients κ (thermal conductivity), d (species
diffusion), µ, and λ are prescribed through constitutive relations as functions of ρ
and θ. The constant K is the rate of reactant, while φpθq denotes the reaction rate
function.

For ideal polytropic gases, the thermodynamic variables satisfy the equations
of state

e“cvθ, P“Rρθ, cv“ R

γ´1
, (1.2)

where Rą0 is the gas constant and γą1 is the adiabatic exponent. We assume that
φpθq is nonnegative and smooth for θą0, which typically includes the modified
Arrhenius equation φpθq“θβe´A{θ with β and Aą0 being constants [29].

Gui-Qiang Chen [2] initiated the study of global solutions to the reactive
Navier-Stokes equations (1.1) in one dimension. Since then, global well-posed-
ness for (1.1) has become an active topic of research (cf. [3, 4, 8, 9, 11, 13–18, 20, 31,
33–36,39,42–45,50,51,54,55,57,58,60]). More precisely, for ideal polytropic gases
(1.2), Chen [2] first established the global existence of large-data solutions to (1.1)
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in one-dimensional bounded and unbounded domains. Also see Chen et al. [3, 4]
and Hoff [18] for multi-species models with large discontinuous initial data. The
time-asymptotic behavior of global large solutions is proved in [2–4, 18, 31] for
one-dimensional bounded and unbounded domains, respectively. One can re-
fer to [14, 39, 42–45, 57] for asymptotic stability on various wave patterns. For
a gas model that incorporates real gas effects, Wang [51] proved the global well-
posedness of large solutions to the initial-boundary value problem of (1.1). For
radiative gases (P“ Rρθ`aθ4{3 and e “ cvθ`aθ4{ρ with constant a ą 0), we re-
fer the reader to [11, 17, 35, 36] for one-dimensional global large solutions and
[15, 16, 33, 58] for asymptotic stability of wave patterns.

For multi-dimensional reactive Navier-Stokes equations (1.1), the global exis-
tence of variational solutions was established by Donatelli and Trivisa [8, 9] for
radiative gases in the spirit of Feireisl [12] and Lions [37]. However, the unique-
ness of solutions in [8, 9] is still unknown. As for the classical solutions, the lo-
cal existence was proved in [20] for sufficiently smooth initial data, while the
global existence, uniqueness, optimal time decay, and pointwise estimates were
obtained recently in [13, 54, 55] for small initial perturbations. Furthermore, the
global solvability of (1.1) with large initial data was achieved in [34, 50, 60] for
spherically and cylindrically symmetric flows.

Our main interest concerns the influence of temperature dependence of the
transport coefficients µ,λ,κ, and d on the global large solutions for the Eqs. (1.1)-
(1.2). For concreteness, we assume that µ,λ,κ, and d are general smooth functions
of θ satisfying

µpθqą0, κpθqą0, 2µpθq`nλpθqą0, dpθqą0 for θą0. (1.3)

This choice of temperature dependent transport coefficients is motivated by the
kinetic theory and experimental results for gases (see Williams [56, Appendix E],
Zel’dovich and Raizer [59]). It is worth pointing out that, while there is a signif-
icant literature for the well-posedness of global strong solutions of (1.1) (cf. [2–4,
11, 17, 18, 31, 34–36, 50, 51, 60]), a completely satisfactory theory with temperature
dependent transport coefficients (1.3) and large initial data remains open.

In this paper, we establish the existence and large-time behavior of global so-
lutions to the Eqs. (1.1)-(1.3) for one-dimensional, spherically symmetric, or cylin-
drically symmetric flows in the bounded domain Ω“tx“px1,¨¨¨,xnq : aă ră bu,
where

• r“x1 and pρ,u,θ,Zqpt,xq“pρ̂,û, θ̂, pZqpt,rq for one-dimensional flow (n“1),

• r“|x|,pρ,θ,Zqpt,xq“pρ̂, θ̂, pZqpt,rq, and upt,xq“ ûpt,rqx{r for spherically sym-
metric flow (ně2),
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• r“
b

x2
1`x2

2, pρ,θ,Zqpt,xq“pρ̂, θ̂, pZqpt,rq, and

upt,xq“ ûpt,rq
r

¨̋
x1

x2

0

‚̨̀ v̂pt,rq
r

¨̋´x2

x1

0

‚̨̀ ŵpt,rq
r

¨̋
0
0
1

‚̨
for cylindrically symmetric flow (n“3).

The Eqs. (1.1)-(1.3) are supplemented with the initial data

pρ,u,θ,Zq|t“0“pρ0,u0,θ0,Z0qpxq, xPΩ, (1.4)

and the boundary conditions

u“0,
Bθ

Bn

“ BZ

Bn

“0 on BΩ, (1.5)

where a,bą0 are constants, 0ďZ0pxqď1, and n is the unit exterior normal to BΩ.
The initial data are supposed to be compatible with the boundary conditions.

Set m“0 and v̂“ ŵ”0 for the one-dimensional case, m“n´1ě1 and v̂“ ŵ”0
for the spherically symmetric case, and m“1 for the cylindrically symmetric case.

Then the scalar functions ρ̂, û, v̂, ŵ, θ̂, and pZ satisfy

ρ̂t`prmρ̂ûqr
rm

“0, (1.6a)

ρ̂pût`ûûrq´ ρ̂v̂2

r
` pPr“

„
ν̂prmûqr

rm


r

´ 2mûµ̂r

r
, (1.6b)

ρ̂pv̂t`ûv̂rq` ρ̂ûv̂

r
“pµ̂v̂rqr` 2µ̂v̂r

rm
´mpµ̂rm´1v̂qr

rm
´ µ̂v̂

r2m
, (1.6c)

ρ̂pŵt`ûŵrq“pµ̂ŵrqr`mµ̂ŵr

r
, (1.6d)

cvρ̂pθ̂t`ûθ̂rq` pPprmûqr
rm

“
`
κ̂rmθ̂r

˘
r

rm
` pQ`qKφpθ̂qρ̂pZ, (1.6e)

ρ̂ppZt`ûpZrq“
`
d̂ρ̂rm pZr

˘
r

rm
´Kφpθ̂qρ̂pZ (1.6f)

together with the initial and boundary conditions

pρ̂,û,v̂,ŵ, θ̂, pZq|t“0“
`
ρ̂0,û0,v̂0,ŵ0, θ̂0, pZ0

˘prq, aďrďb, (1.7)`
û,v̂,ŵ, θ̂r, pZr

˘|r“a,b“0, tě0, (1.8)
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where

pP“Rρ̂θ̂, pµ̂,κ̂,d̂q“pµ,κ,dqpθ̂q, ν̂“νpθ̂q“2µpθ̂q`λpθ̂q,
pQ“ ν̂prmûq2r

r2m
´ 2mµ̂prm´1û2qr

rm
`µ̂ŵ2

r`µ̂

ˆ
v̂r´ v̂

rm

˙2

.

For global solvability, it is convenient to reformulate the problem (1.6)-(1.8) in
Lagrangian coordinates. To this end, we introduce

pρ,u,v,w,θ,Zqpt,xq :“`ρ̂,û,v̂,ŵ, θ̂, pZ˘pt,rq,
where pt,xq are the Lagrangian variables defined by

r“rpt,xq :“h´1pxq`
ż t

0
û
`
s,rps,xq˘ds, hprq :“

ż r

a
ymρ̂0pyqdy. (1.9)

Assume without loss of generality that hpbq“1. It follows from (1.6a) that

rtpt,xq“upt,xq, rxpt,xq“r´mτpt,xq, (1.10)

where τ“1{ρ is the specific volume. Then we can reformulate the problem (1.6)-
(1.8) as

τt“prmuqx, (1.11a)

ut´ v2

r
`rmPx“rm

ˆ
νprmuqx

τ

˙
x

´2mrm´1uµx , (1.11b)

vt`uv

r
“r
´µrvx

τ

¯
x
`2µvx´pµvqx´µτv

r2
, (1.11c)

wt“r
´µrwx

τ

¯
x
`µwx, (1.11d)

cvθt`Pprmuqx“
ˆ

κr2mθx

τ

˙
x

`qKφpθqZ`Q, (1.11e)

Zt“
ˆ

dr2mZx

τ2

˙
x

´KφpθqZ (1.11f)

for tą0 and xP I :“p0,1q, subject to the initial and boundary conditions

pτ,u,v,w,θ,Zq|t“0“pτ0,u0,v0,w0,θ0,Z0q, (1.12)

pu,v,w,θx,Zxq|x“0,1“0, (1.13)
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where ν :“2µ`λ and

Q“ νprmuq2x
τ

´2mµprm´1u2qx`µτ
´rvx

τ
´ v

r

¯2`µr2w2
x

τ
. (1.14)

Let us state the main result of this paper in the following theorem, which is the
global well-posedness for the problem (1.11)-(1.14) with temperature dependent
transport coefficients (1.3) and large initial data. It is clear that this theorem can
lead to an equivalent statement for the corresponding problem (1.6)-(1.8) in the
Eulerian coordinates.

Theorem 1.1. Suppose that the transport coefficients satisfy (1.3). Let the initial data

pτ0,u0,v0,w0,θ0,Z0q be compatible with the boundary conditions (1.13) and satisfy

}pτ0´1,u0,v0,w0,Z0q}H2pIq`}Z0}L1pIq`
?

cv}θ0´1}H1pIq`}θ0xx}L2pIqďΠ0,

V´1
0 ďτ0pxqďV0, θ0pxqěV´1

0 , @xP I, (1.15)

where Π0 and V0 are positive constants independent of γ´1. Then there exist positive

constants ǫ0 and C1, which depend only on Π0 and V0 such that if γ´1 ď ǫ0, then

the problem (1.11)-(1.14) has a unique global solution pτ,u,v,w,θ,Zq PCpr0,8q,H2pIqq
satisfying

1

2
ďθpt,xqď2, C´1

1 ďτpt,xqďC1, @pt,xqPr0,8qˆ I, (1.16)

and the exponential decay rate››`τ´τ̄,u,v,w,θ´ θ̄,Z´ sZ˘ptq››
H1pIqďCγe´cγt, @tPr0,8q, (1.17)

where Cγ and cγ are positive constants depending on γ, and

τ̄“
ż

I
τ0dx, cvθ̄`qsZ“ż

I

ˆ
cvθ0` 1

2

`
u2

0`v2
0`w2

0

˘`qZ0

˙
dx, φpθ̄qsZ“0.

Remark 1.1. The initial perturbations can be large if the adiabatic exponent γ is

sufficiently close to 1. Hence, Theorem 1.1 provides a Nishida-Smoller type global

solvability result for the Eqs. (1.11) with temperature dependent transport coeffi-

cients (1.3). See [41] for the corresponding original Nishida-Smoller type global

existence result for one-dimensional isentropic compressible Euler equations.

Remark 1.2. We can apply the arguments in this paper to deduce corresponding

well-posedness results for both the initial boundary value problem (1.11)-(1.12)
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with boundary conditions pu,v,w,θ,Zq|x“0,1“p0,0,0,1,0q and the one-dimensional

Cauchy problem (1.11)-(1.12) in the whole space R with the far-field condition

lim
xÑ˘8pτ0,u0,v0,w0,θ0,Z0qpxq“p1,0,0,0,1,0q.

However, global existence of large solutions to (1.11) with mě1 (symmetric case)

and (1.3) is still unknown for unbounded domains. See [50] for the result on the

symmetric flows with constant transport coefficients in unbounded domains.

Remark 1.3. Only H2 regularity of the initial perturbations is required in Theo-

rem 1.1, and thus we improve the results in [38,48] for which the initial perturba-

tions need to be in H3.

We prove Theorem 1.1 in Section 2 by first establishing certain a priori energy
estimates and then combining these estimates with the continuation argument to
conclude the proof of the theorem. As shown in [2–4, 31, 50], the crucial step to
construct global large solutions of the reactive Navier-Stokes equations (1.11) is
to deduce the positive upper and lower bounds of the specific volume and the
temperature. In the one-dimensional case (m“v“w“0) with constant viscosity,
the pointwise bounds are achieved by employing an elaborate representation of
the specific volume and the maximum principle in Kazhikhov et al. [1, 27, 28] for
non-reacting flows and in Chen et al. [2–4] for reacting flows. See [22, 23, 30, 31,
36, 52] for the bounds uniformly in space and time over unbounded domains,
and [21, 32, 34, 40, 49, 50, 60] for the spherically and cylindrically symmetric cases.
In the one-dimensional case when the viscosity ν depends only on the specific
volume τ, one can employ the identityˆ

νpτqτx

τ
´u

˙
t

“Px

observed by Kanel [25] to deduce global existence of large solutions of the com-
pressible (reactive) Navier-Stokes equations for certain types of density-depen-
dent viscosity, see, for instance, [5–7, 26, 35, 47, 51].

However, the above methodologies seem not valid for the case with tempera-
ture dependent viscosity, where the corresponding identity becomes´ντx

τ
´u

¯
t
“Px`Bν

Bθ

τxθt´τtθx

τ
. (1.18)

The temperature dependence of the viscosity has turned out to have a strong in-
fluence on the solutions and lead to difficulty in mathematical analysis for global
solvability with large data (cf. [19, 24]). One of the main difficulties in analysis
arises from the last highly nonlinear term in (1.18). Nevertheless, some progress
on the global existence has been made for ideal polytropic gases (1.2) recently.
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Liu et al. [38] observed that }pθ´1,θt,θxq}L8 can be small if the adiabatic expo-
nent γ is close to 1. Thanks to this observation, global large solutions to one-
dimensional compressible Navier-Stokes equations with general temperature-
dependent transport coefficients are constructed in [38] under certain assump-
tions on the H3 norm of the initial perturbations. See Wan and Wang [48] for the
corresponding result in the spherically and cylindrically symmetric cases. For the
general adiabatic exponent case with the transport coefficients being proportional
to hpτqθα, the global well-posedness of large solutions is obtained in [53] for cer-
tain non-degenerate function h and in [46] for h”0, provided that the constant |α|
is sufficiently small.

In this paper, we prove a Nishida-Smoller type global solvability result for
the one-dimensional, spherically symmetric, or cylindrically symmetric reacting
flows by a modification of the analysis in [38, 48]. In particular, we show that the
smallness of }θtptq}L2 and the H2 regularity of the solutions is enough for deriv-
ing the estimate of }τx{τptq}L2 (cf. Lemma 2.3) and the pointwise bounds of the
specific volume τ (cf. Lemma 2.4). Therefore, we refine the results in [38, 48] that
require the smallness of }θtptq}L8 and the H3 regularity of the solutions. We refer
to [10] for applying a similar argument to study the large-behavior for the one-
dimensional compressible Navier-Stokes equations with temperature dependent
transport coefficients.

2 Energy estimates

In this section, we shall prove Theorem 1.1 by establishing suitable a priori energy
estimates of solutions pτ,u,v,w,θ,ZqPXp0,T;M,Nq to the problem (1.11)-(1.13) for
Tą0 and M, Ną1. The solution space is defined by

Xp0,T;M,Nq :“
!
pτ´1,u,v,w,θ´1,ZqPC

`r0,Ts;H2pIq˘ :

τx PL2
`
0,T;H1pIq˘, pux,vx,wx,θx,ZxqPL2

`
0,T;H2pIq˘,

EpTqďN2, τpt,xqěM´1, @pt,xqPr0,Tsˆ I
)

,

where

EpTq :“ sup
0ďtďT

››`τ´1,u,v,w,
?

cvpθ´1q˘ptq››2

H1

` sup
0ďtďT

}pcvθt,θxxqptq}2`
ż T

0

››`?cvθt,τx

˘psq››2
H1dsďN2. (2.1)
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Here and below, for notational simplicity, we use

}¨} :“}¨}L2pIq, }¨}Hk :“}¨}HkpIq, }¨}Lq :“}¨}LqpIq.

From Sobolev’s inequality, we have the a priori assumptions:

}θtptq}`}pθ´1qptq}H1`}pθ´1qptq}L8Àpγ´1q 1
2 N, (2.2)

}θxptq}L8Àpγ´1q 1
4 N,

ż t

0
}θtpsq}2

H1dsÀpγ´1qN2, (2.3)

M´1ďτpt,xqÀN, @pt,xqPr0,Tsˆ I. (2.4)

For the (spherically or cylindrically) symmetric case that corresponds to mě1, we
will make repeated use of the bounds

aďrpt,xqďb, @pt,xqPr0,Tsˆ I, (2.5)

which comes from (1.9)-(1.10).
We can deduce the following lemma by utilizing integration by parts and the

maximum principle (cf. [2, Lemmas 1-2]).

Lemma 2.1. Suppose that the conditions in Theorem 1.1 are satisfied. Then

}Zptq}L1`
ż t

0

ż
I
KφpθqZ“}Z0}L1 , (2.6)

}Zptq}2`2

ż t

0

ż
I

ˆ
dr2mZ2

x

τ2
`KφpθqZ2

˙
“}Z0}2, (2.7)

0ďZpt,xqď1, @pt,xqPr0,Tsˆ I. (2.8)

Multiplying (1.11a)-(1.11e) by 1´τ´1,u,v,w, and 1´θ´1, respectively, and us-
ing the identity (2.6), we can follow the proof of [48, Lemma 2.1] to obtain the
entropy-type energy estimate in the next lemma.

Lemma 2.2. Under the conditions of Theorem 1.1, there is a positive constant ǫ1 ą 0

depending only on Π0 and V0, such that if

pγ´1qpMNq60ďǫ1, (2.9)

then

1

2
ďθpt,xqď2, @pt,xqPr0,Tsˆ I, (2.10)

sup
0ďtďT

}ηptq}L1`
ż T

0
VptqdtÀ››`τ0´1,u0,v0,w0,

?
cvpθ0´1q˘››2`}Z0}L1 , (2.11)
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where

η :“Rψpτq`u2`v2`w2

2
`cvψpθq, ψpzq :“z´lnz´1,

Vptq :“
ż

I

ˆ
mτu2`τv2` τ2

t `u2
x`v2

x`w2
x`θ2

x

τ

˙
dx.

To obtain pointwise bounds for the specific volume τ, we make the estimate
of }τx{τ} in the following lemma.

Lemma 2.3. Suppose that the conditions in Theorem 1.1 are satisfied. If (2.9) holds for

a sufficiently small ǫ1ą0, then

sup
tPr0,Ts

›››τx

τ
ptq
›››2`

ż T

0

ż
I

τ2
x

τ3
À1`}lnτ}L8pr0,TsˆIq. (2.12)

Proof. Using the chain rule and Eq. (1.11a) yields´ντx

τ

¯
t
“
ˆ

νprmuqx

τ

˙
x

` ν1pθq
τ

pτxθt´τtθxq. (2.13)

Substitute the above identity into (1.11b) and multiply the resulting equation by

ντx{τ to discover

d

dt

ż
I

ˆ
1

2

´ντx

τ

¯2´ u

rm

ντx

τ

˙
`
ż

I

νθτ2
x

τ3
“

7ÿ
q“1

Kq, (2.14)

where

K1 :“
ż

I

´ u

rm

¯
x

ντt

τ
, K2 :“

ż
I

ντxθx

τ2
, K3 :“

ż
I

ντx

τ

mu2´v2

rm`1
,

K4 :“
ż

I

ν1pθq
τ

r´muτtθx, K5 :“
ż

I

ν1pθqν
τ2

θtτ
2
x ,

K6 :“
ż

I

τx

τ
θx

`
2mr´1uµ1pθqν´νν1pθqτ´1τt

˘
, K7 :“´

ż
I

ν1pθq
τ

r´muτxθt.

The idea in [38, 48] for controlling K5 is to use the smallness of }θt}L8pr0,TsˆIq,
which requires the H3 regularity of the solutions and initial data. In this paper,

we estimate the term K5 in a different way, which requires only the smallness

of }θtptq} and the H2 regularity of the solutions, see [10] for a similar argument.
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More precisely, it follows from the a priori assumptions (2.1)-(2.4) and Young’s

inequality thatż T

0
K5dtÀM2

ż T

0
}τxptq}L8}θtptq}}τxptq}dt

ÀM2 sup
0ďtďT

}θtptq}
ż T

0
}τxptq} 3

2 }τxxptq} 1
2 dt

ÀM2 sup
0ďtďT

}θtptq}
ż T

0
}τxptq}2

H1dtÀpγ´1q 1
2 M2N3.

The other terms Kq (q‰5) in (2.14) can be estimated as in [48, Lemma 2.2] under

the assumptions (2.1)-(2.4) and (2.9). Hence, we can conclude the proof of this

lemma.

Lemmas 2.2-2.3 enable us to apply the argument developed by Kanel [25, 38]
to establish the uniform positive bounds for the specific volume τ. We refer to [48,
Lemma 2.3] for the details of the proof.

Lemma 2.4. Suppose that the conditions in Theorem 1.1 are satisfied. If (2.9) holds for

a sufficiently small ǫ1ą0, then

τpt,xq„1, @pt,xqPr0,Tsˆ I. (2.15)

Let us make the estimates for the remaining first-order derivatives.

Lemma 2.5. Suppose that the conditions in Theorem 1.1 are satisfied. If (2.9) holds for

a sufficiently small ǫ1ą0, then

sup
0ďtďT

}pux,vx,wx,
?

cvθx,Zxqptq}2`
ż T

0
}puxx,vxx,wxx,θxx,Zxxqptq}2dtÀ1. (2.16)

Proof. Multiplying (1.11b), (1.11c), (1.11d), and (1.11f) by uxx ,vxx,wxx, and zxx ,

respectively, and following the proof of [48, Lemmas 2.5-2.6], we can use the as-

sumptions (2.1)-(2.4) and Lemmas 2.1-2.4 to derive

sup
0ďtďT

}pux,vx,wx,Zxqptq}2`
ż T

0
}puxx,vxx,wxx,Zxxqptq}2dtÀ1.

Multiply (1.11e) by θxx to obtain

d

dt
}?cvθxptq}2`2

ż
I

κr2mθ2
xx

τ
“

16ÿ
q“13

Kq,
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where

K13 :“
ż

I
2θxx

ˆ
θprmuqx

τ
´ νprmuq2x

τ
`2mµprm´1u2qx

˙
,

K14 :“
ż

I
2θxx

ˆ
´µr2mw2

x

τ
´µτ

ˆ
rmvx

τ
´ v

rm

˙2˙
,

K15 :“
ż

I
2θxx

ˆ
κr2mθxx

τ
´
ˆ

κr2mθx

τ

˙
x

˙
,

K16 :“
ż

I
2θxxqKφpθqZ.

It follows from (2.7) thatż T

0
K16ďǫ

ż T

0

ż
I
θ2

xx`Cpǫq
ż T

0

ż
I
φpθq2Z2ďǫ

ż T

0

ż
I
θ2

xx`Cpǫq.

As in [48, Lemma 2.7], we can control the terms Kq (q“13,14,15) and thus com-

plete the proof of this lemma.

The next lemma follows directly from the identities (1.10), Eqs. (1.11), and
Lemmas 2.1-2.5 (cf. [48, Lemma 2.8]).

Lemma 2.6. Suppose that the conditions in Theorem 1.1 are satisfied. If (2.9) holds for

a sufficiently small ǫ1ą0, then

sup
0ďtďT

}τtptq}2`
ż T

0
}pτxt,ut,vt,wt,cvθt,Ztqptq}2dtÀ1. (2.17)

Let us derive the uniform L2 bounds for the second-order derivatives. Un-
der the assumptions (2.1)-(2.4), we can use the similar arguments as in [48, Lem-
mas 2.9-2.12] to establish the following result. We omit the proof for brevity.

Lemma 2.7. Suppose that the conditions in Theorem 1.1 are satisfied. If (2.9) holds for

a sufficiently small ǫ1ą0, then

sup
0ďtďT

}put,vt,wt,cvθt,Zt,τxt,uxx,vxx,wxx,θxx,Zxxqptq}2

`
ż T

0
}pτtt,uxt,vxt,wxt,

?
cvθxt,Zxtqptq}2dtÀ1, (2.18)

ż T

0

›››´uxxx ,vxxx,wxxx,c
´ 1

2
v θxxx,Zxxx

¯
ptq
›››2

dtÀ1`
ż T

0
}τxxptq}2dt. (2.19)
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To control the last term in (2.19) and close the a priori estimates, we deduce
the estimate for }τxx} in the following lemma.

Lemma 2.8. Suppose that the conditions in Theorem 1.1 are satisfied. If (2.9) holds for

a sufficiently small ǫ1ą0, then

sup
0ďtďT

}τxxptq}2`
ż T

0

›››´τxx,uxxx,vxxx,wxxx,c
´ 1

2
v θxxx ,Zxxx

¯
ptq
›››2

dtÀ1. (2.20)

Proof. Differentiating (1.11b) with respect to x and multiplying the resulting iden-

tity by pντx{τqx, we use (2.13) to obtain (cf. [48, Eq. (2.89)])

›››´ντx

τ

¯
x
ptq
›››2`

ż t

0

›››´ντx

τ

¯
x

›››2À1`
5ÿ

i“1

Ji, (2.21)

where

J1 :“
ż t

0

ż
I
|pθxx,θxτx,uxt,ut,vx,v,uxθx,θxx,θxq|2,

J2 :“
ż t

0

ż
I
|θxpτtx,τtτx,τtθxq|2 , J3 :“

ż t

0

ż
I

ˇ̌`
τ2

x ,τxθtx,τtθxx

˘ˇ̌2
,

J4 :“
ż t

0

ż
I
τ2

xxθ2
t , J5 :“

ż t

0

ż
I
|τxθtpτx,θxq|2.

It follows from Lemmas 2.2-2.7 that J1`J2À1. For the term J3, we have

J3À sup
0ďsďt

`}pτx,τtqpsq}}pτxx,τxtqpsq}
˘ż t

0
}pτx,θxt,θxxqpsq}2ds

Àǫ sup
0ďsďt

}τxxpsq}2`Cpǫq.

Regarding the terms J4 and J5, we infer from (2.2)-(2.3) that

J4À
ż t

0
}τxxpsq}2}θtpsq}}θxtpsq}ds

À sup
0ďsďt

}θtpsq}
ˆż t

0
}θxt}2

˙ 1
2

sup
0ďsďt

}τxxpsq}
ˆż t

0
}τxx}2

˙ 1
2

Àpγ´1qN2

ˆ
sup

0ďsďt

}τxxpsq}2`
ż t

0
}τxx}2

˙
,
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J5À
ż t

0
}θt}2}pτx,θxq}4

L8

À sup
0ďsďt

}θtpsq}2}τxpsq}2
ż t

0
}τxx}2`

ż t

0
}θt}2

Àpγ´1qN2

ˆ
1`

ż t

0
}τxx}2

˙
.

Plugging the above estimates into (2.21) and using (2.19), we can obtain (2.20) by

taking ǫ1ą0 in (2.9) small enough.

We combine the above a priori estimates to obtain the following corollary.

Corollary 2.1. Suppose that the conditions in Theorem 1.1 are satisfied. If (2.9) holds

for a sufficiently small ǫ1ą0, then

sup
0ďtďT

´
}pτ´1,u,v,w,Zqptq}2

H2`}p?cvpθ´1q,?cvθx,θxx,cvθtqptq}2
¯

`
ż T

0

´
}τx}2

H1`}pux,vx,wx,Zxq}2
H2`

›››pθx,θxx,c
´ 1

2
v θxxx ,cvθt,

?
cvθxtq

›››2¯À1.

With the above uniform a priori estimates in hand, we can use the continua-
tion argument and Poincaré’s inequality to prove the existence, uniqueness, and
large-time behavior of global solutions to the problem (1.11)-(1.13). We omit the
details and refer to [48, Section 3] for brevity. The proof of Theorem 1.1 is then
complete.
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