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Abstract

Despite the rapid progress that existing automated feedback
methods have made in correcting the output of large language
models (LLMs), these methods cannot be well applied to the
relation extraction (RE) task due to their designated feedback
objectives and correction manner. To address this problem,
we propose a novel automated feedback framework for RE,
which presents a rationale supervisor to verify the rationale
and provides re-selected demonstrations as feedback to cor-
rect the initial prediction. Specifically, we first design a causal
intervention and observation method to collect biased/unbi-
ased rationales for contrastive training the rationale supervi-
sor. Then, we present a verification-feedback-correction pro-
cedure to iteratively enhance LLMs’ capability of handling
the RE task. Extensive experiments prove that our proposed
framework significantly outperforms existing methods.

Code — https://github.com/NLPGM/SRVF

Introduction
The relation extraction (RE) task aims to extract the se-
mantic relation between entities in the text, which is an
important task in information extraction. Unlike previous
fine-tuning strategies based on small language models (Wu
and He 2019), recent studies (Wan et al. 2023; Ma et al.
2023) leverage the strong instruction understanding abili-
ties and rich intrinsic knowledge of large language models
(LLMs) (Ouyang et al. 2022; Touvron et al. 2023; Bai et al.
2022) to enhance the performance of RE.

Despite their significant progress, LLM based methods
may suffer from relation bias when performing relation ex-
traction. For example, given a sentence “data is derived
from a study”, where “data” and “study” form the “Entity-
Origin” relation, LLMs may be influenced by the pre-
trained knowledge and have the stereotype that “data is the
product that someone produces”, thus making a biased rela-
tion prediction “Product-Producer”, which ignores that the
real producer is investigators (producer of the study). Fur-
thermore, existing LLM based RE methods focus on the pre-
selection of in-context demonstrations (Wan et al. 2023; Ma,
Li, and Zhang 2023) or instruction design (Zhang, Gutiérrez,
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Figure 1: Comparison between current automated feedback
methods (a) and ours (b). The main difference is that our
rationale supervisor can verify whether the relation bias oc-
curs and provide re-selected demonstrations as feedback.

and Su 2023) to improve the performance. The verification
and feedback mechanism for correcting the biased predic-
tion is still missing from current LLM based RE research.

To fill this gap, in this study, we focus on exploring the
verification and feedback mechanism (Pan et al. 2023) of
LLMs for RE. Specifically, we aim to examine whether the
relation prediction of LLMs is biased by verifying the ratio-
nale (the generated explanation when LLMs perform RE)
and providing feedback for correction. However, the cur-
rent verification and feedback mechanism faces the follow-
ing two problems when being applied to RE.

Firstly, existing methods are mainly designed for other
tasks, e.g., the reasoning task. The objectives of their feed-
back are also tailored for those tasks, e.g., correcting code,
factual, or calculation errors in initial responses (Zhang et al.
2023; Gou et al. 2023), or choosing an optimal prefix for
the next step in multi-step reasoning (Khalifa et al. 2023),
as shown in Fig. 1 (a). For example, for the mathematical
reasoning task, Self-Refine (Madaan et al. 2023) utilizes the
LLM agent to find calculation errors in the initial answer and
provide error information as feedback to correct the answer.
However, such feedback objectives are based on the logical
properties of reasoning tasks, which are not available for RE.

Secondly, existing methods (Madaan et al. 2023; Nathani
et al. 2023) do not include demonstrations in their feedback.
However, the demonstrations are essential for RE even at
the correction stage. This is because without demonstrations
in the feedback, the RE task would degrade to zero-shot
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RE and is harder than the initial few-shot one. Moreover,
the demonstrations in initial few-shot RE cannot be directly
used in feedback since they will mislead the model back to
the initial one, and thus the impact of feedback is discarded.

To address the above problems, we propose a novel auto-
mated feedback framework for RE, which trains a rationale
supervisor based on a BERT-like small model and utilizes it
to not only verify the prediction but also provide new demon-
stration improved feedback for correction during the infer-
ence. As shown in Fig. 1 (b), our rationale supervisor pro-
vides re-selected demonstrations as feedback for correcting
the initial prediction of LLMs.

In order to train a rationale supervisor, we need to col-
lect both unbiased and biased rationales, i.e., positive and
negative samples. Though several verification methods have
been proposed to collect positive and negative rationales in
other tasks, both their purpose and the collection method are
not suitable for our RE task. (1) Firstly, their collected posi-
tive and negative rationales are used for training the verifier,
which only needs to discriminate the positive predictions
from negative ones. In contrast, the rationale supervisor in
our framework is designed to correct biased predictions, thus
needing to further discriminate different negative rationales.
(2) Secondly, the way of collecting rationales in current ver-
ification methods relies on the manually annotated golden
reasoning steps as positive samples and perform rule-based
perturbation (Paul et al. 2023; Golovneva et al. 2023) or er-
ror step alignment (Khalifa et al. 2023; Li et al. 2023b) to
obtain negative samples. Unfortunately, such annotated sam-
ples and rules for perturbation are not available in RE.

In view of this, we propose a causal intervention and
observation method to address the lack of annotated ratio-
nales and collect biased rationales for training the supervi-
sor. Specifically, we first present a label-guided intervention
strategy to collect unbiased rationales, and we also present a
diversified intervention strategy to collect biased rationales.
In addition, during the inference, we utilize the rationale
supervisor to retrieve new demonstrations from the labeled
samples and include them in the feedback, which are then
used by the LLM for re-generating predictions. Since the
supervisor has learned the difference among various biased
rationales, the LLM gets the signal to adjust its direction for
correction. This verification-feedback-correction procedure
iterates until the output rationale is verified as unbiased.

Overall, we make three major contributions. 1) We ex-
tend the LLM based RE research to the automated feedback
paradigm, which equips LLM with the ability of correct-
ing the biased prediction. 2) We propose a novel supervised
rationale verification and feedback framework, which first
collects rationales with a causal intervention and observa-
tion method for training the supervisor, and then employs
the supervisor to retrieve sample-related demonstrations as
feedback for guiding the LLM in correction. 3) Extensive
experiments prove that our proposed method can improve
the performance of LLM based RE methods and is superior
to existing automated feedback methods.

Related Work
LLMs for Relation Extraction Recently, many stud-
ies (Xu et al. 2023; Li et al. 2023a; Wei et al. 2023; Wad-
hwa, Amir, and Wallace 2023; Li, Wang, and Ke 2023) have
explored how to unlock the potential of LLMs for the RE
task, including designing the in-context demonstration se-
lection strategy (Wan et al. 2023; Ma, Li, and Zhang 2023;
Pang et al. 2023) and optimizing instruction patterns (Zhang,
Gutiérrez, and Su 2023; Wang et al. 2023a; Ma et al. 2023).
Despite great success, these methods rely solely on optimiz-
ing the initial prompt to improve performance. However, we
find that due to the relation bias, LLMs may still confuse
certain relations with similar entities and thus make biased
predictions. To alleviate this issue, we introduce the idea of
automated feedback to RE for the first time, expecting to
correct biased predictions via the provided feedback.

LLMs with Automated Feedback Some researchers
have exploited the automated feedback for correcting the
undesirable output of LLMs (Pan et al. 2023; Kamoi et al.
2024). However, the feedbacks in existing methods are de-
signed for correcting various reasoning mistakes, e.g., code
errors (Zhang et al. 2023), factual errors (Gou et al. 2023),
calculation errors (Nathani et al. 2023; Madaan et al. 2023;
Paul et al. 2023), or as an optimal prefix for the next step in
multi-step reasoning (Khalifa et al. 2023; Li et al. 2023b).
These feedbacks are dependent on the reasoning task and
unavailable for RE. Moreover, they do not include the
demonstrations which are essential for RE. To address this
issue, we propose a novel automated feedback framework
which provides re-selected demonstrations as feedbacks to
help LLMs correct the biased prediction.

Method
This section presents our proposed supervised rationale ver-
ification and feedback (SRVF) framework for the RE task.

Task Formulation Given a set of pre-defined relation
types YD, the relation extraction (RE) task aims to predict
the relation type y ∈ YD between the head entity eh and
the tail entity et of each test example x = {s, eh, et}, where
s denotes the sentence. In this study, we adopt in-context
learning (ICL) with the rationale to prompt LLMs for the
RE task. Specifically, for each test example x, we need to
randomly select or retrieve m initial in-context demonstra-
tions Dicl = {{x1, r

u
1 , y1}, ..., {xm, rum, ym}} related to x

from the labeled dataset Dl
1. Then, the LLM fθ with pa-

rameters θ is expected to output the relation type y ∈ YD

between eh and et, along with the rationale r, denoted as
{r, y} = fθ(Dicl, x).

Overview In this paper, we propose a rationale verifica-
tion and feedback framework to guide LLMs towards bet-
ter predictions for RE iteratively. Generally, this framework

1Since there is no annotated golden rationale in the original
dataset, we add the induced unbiased rationale in the following sec-
tion to Dl to enable it for the setup of ICL with the rationale, i.e.,
Dl = {{x1, r

u
1 , y1}, ..., {xn, r

u
n, yn}}.
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consists of three phases: 1) causal intervention and observa-
tion for rationale collection, 2) contrastive training rationale
supervisor, and 3) rationale verification and feedback.

Specifically, we first adopt the causal intervention and ob-
servation method to collect unbiased and biased rationales,
i.e., Ru and Rb. Then, we use Ru and Rb to train the ratio-
nale supervisor Rγ with parameters γ. Finally, as shown in
Fig. 3, in the inference time, once the output rationale r is
verified as a biased one by Rγ , we use Rγ to retrieve feed-
back demonstrations Dfb based on r, where Dfb ⊂ Dl. The
feedback demonstrations are used for re-generating r and y
using ICL, i.e., {r, y} = fθ(Dfb, x). The procedure iterates
until the rationale r is verified as unbiased, and the corre-
sponding relation prediction y will finally be output.

Causal Intervention and Observation for Rationale
Collection
Generally, during this phase, for each labeled sample
{xi, yi}, we aim to collect the unbiased rationale corre-
sponding with the golden label {rui , yui }, as well as the bi-
ased rationale with corresponding biased relation prediction
{rbi , ybi }. This process consists of two steps: 1) induce unbi-
ased rationale, and 2) observe biased rationale. As shown in
Fig. 2, we use the structural causal model (SCM) in causal
inference (Pearl et al. 2000) to illustrate the strategy.

Preliminary of SCM As shown in Fig. 2, the SCMs show
the relationships among the input (X), the relation predic-
tion (Y ), the rationale for prediction (R), the certain bias of
LLMs (B) and in-context demonstration I . The arrows be-
tween nodes indicate causal directions. For example, “X →
R” means that the LLM generates the rationale R related to
the prediction for the sample X . “X → B → R” indicates
that the LLM activates some biased knowledge B related
to the sample X and generates a rationale R influenced by
the biased knowledge B. Besides, in Fig. 2 (b), the “do(Y )”
indicates that cutting off all factors that could influence the
value of Y and assigning Y a certain value as needed.

Induce Unbiased Rationale Previous methods rely on the
human-annotated rationales, e.g., golden reasoning steps in
mathematical tasks (Khalifa et al. 2023), which are not avail-
able in the RE dataset. To address this issue, we propose
a label-guided intervention strategy to obtain the unbiased
rationale for each labeled sample, which explains why the
sample xi should be predicted as the golden label yi.

As shown in Fig. 2 (b), this strategy consists of two steps:
1) cut causal directions that could make bias (B) influence
the prediction (Y ), and let the golden label guide the ratio-
nale (R) generation, formally denoted as do(Y = yi) and
do(Y ) → R. The observed generated rationale is R = rui ;
2) conduct similar do-operation to the rationale R and let
do(R) point to Y , i.e., do(R = rui ), do(R) → Y . If the ob-
served value of Y is equal to the golden label yi, we treat
{rui , yi} as the unbiased one and add it to Ru.

Observe Biased Rationale In previous methods, incor-
rect rationales are synthesized from golden ones using
perturbation or error step alignment based on certain
rules (Golovneva et al. 2023; Khalifa et al. 2023). However,

(b) Induce Unbiased Rationale (c) Observe Biased Rationale 
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Figure 2: The structure causal model for illustrating the pro-
posed causal intervention and observation strategy.

these rules are designed based on the logical properties of
reasoning tasks, which are not available in RE. To tackle
this problem, we propose a diversified intervention strategy
for collecting the biased rationales.

Specifically, for the labeled sample {xi, yi}, we first ran-
domly select a demonstration set Ddi with diverse labels,
where Ddi ⊂ Dl and the label of each demonstration in Ddi

is not equal to yi. The diversity of labels in Ddi is designed
to induce LLMs to make diverse errors on the same sample,
to increase the diversity of collected biased rationales. Then,
as shown in Fig. 2 (c), we set the in-context demonstration I
as {xj , r

u
j , yj} from Ddi, i.e., do(I = {xj , r

u
j , yj}). Finally,

the observed value of rationale R is robs while the observed
value of rationale Y is yobs. If yobs ̸= yi, we treat the ob-
served robs with its corresponding relation prediction yobs as
a potentially biased one, i.e., {rbi , ybi }, and add it to Rb.

Contrastive Training Rationale Supervisor
We expect the rationale supervisor to 1) verify whether the
output rationale is biased, and 2) provide different feedbacks
for different bias situations to correct the initial prediction.
To reach this, we adopt contrastive learning to train the ra-
tionale supervisor to acquire two abilities: 1) discriminating
biased and unbiased rationales, and 2) learning the differ-
ence of various biased rationales.

We design two kinds of positive and negative pairs for
contrastive training.

For positive pairs, we treat “unbiased rationales with the
same golden label”, and “biased rationales under the same
bias situation” as the two kinds of positive pairs. For exam-
ple, if samples s1 and s2, which have the same label, are
also predicted as the same wrong relation, we call “samples
s1 and s2 are in the same bias situation”. Thus, the biased ra-
tionales (rb1 and rb2) of s1 and s2, are treated as a positive pair
and should be pulled together in the rationale representation
space, i.e., rb1 →← rb2.

For negative pairs, we first consider the “biased and un-
biased rationales from the same sample” as a negative pair.
This is designed to train the rationale supervisor to distin-
guish between biased and unbiased rationales. For example,
a sample s1 = {ru1 , y1} where y1 is the golden label and
ru1 is the corresponding unbiased rationale, is wrongly pre-
dicted as relation y2 and corresponding biased rationale is
rb1. Thus, rb1 and ru1 are treated as a negative pair and should
be pushed away in the rationale representation space, i.e.,
rb1 ↔ ru1 . Second, we also treat “biased rationales under
different bias situations” as a negative pair to train the ratio-
nale supervisor, which can distinguish different bias situa-
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Figure 3: An example of correcting the initial biased prediction of LLMs via the proposed SRVF framework in the inference
time. The rationale supervisor first verifies the initial prediction in (a) as biased. Then, with the feedback demonstrations
retrieved by the rationale supervisor, the LLM makes a correct relation prediction in (b). Note: The rationale supervisor here is
obtained by contrastive training using collected biased and unbiased rationales as described before.

tions and provide feedback based on the biased rationale in
the inference time.

In general, the contrastive loss is calculated as:

Lcl = − log

1
∥Spos∥

∑
{r1,r2}∈Spos

exp(sim(r1, r2)/τ)∑
{r1,r2}∈(Spos∪Sneg)

exp(sim(r1, r2)/τ)
, (1)

sim(r1, r2) = Rγ(r1) · Rγ(r2)
T, (2)

where Spos = Spos
1 ∪ Spos

2 , Sneg = Sneg
1 ∪ Sneg

2 . Spos
1

and Spos
2 denote the two kinds of positive pair set, and Sneg

1
and Sneg

2 denote two kinds of negative pair set. Here we
adopt the dot product as the similarity function sim() and
add a temperature hyper-parameter τ to focus more on diffi-
cult pairs (Chen et al. 2020). During the procedure of ratio-
nale contrastive training, the parameters γ ofRγ are updated
to minimize Lcl.

Rationale Verification and Feedback
As shown in Fig. 3, in the inference time, the trained ra-
tionale supervisor Rγ first verifies whether the prediction
is biased. If the prediction is biased, the rationale supervi-
sor will retrieve a feedback demonstration set, which then
guides LLMs toward refined predictions. In this subsection,
we will elaborate on the “Rationale Verification” and “Feed-
back Demonstration Retrieval” in Fig. 3 in detail. Here we
denote the test example, output rationale, and relation pre-
diction of LLMs as x, r, and y, respectively.

Rationale Verification For verification, we need to select
the subsets Sb and Su related to the prediction y from Rb

and Ru, respectively, which are then used as anchors to de-
termine whether the current output rationale is close to the
biased or unbiased groups. Sb and Su are defined as follows:

Sb = {{rb, yb} | {rb, yb} ∈ Rb, y
b = y}, (3)

Su = {{ru, yu} | {ru, yu} ∈ Ru, y
u = y}, (4)

Then, the indicator score to judge whether r is a biased
rationale is calculated as follows:

pb = max
{rb,yb}∈Sb

sim(r, rb)− max
{ru,yu}∈Su

sim(r, ru), (5)

where the similarity function sim() is defined in Eq. 2.
When pb is greater than 0, it implies that the feature of r is
closer to the feature field of Sb than that of Su, which means
r and corresponding relation prediction y should be regarded
as biased, and feedback is needed to correct them.

Feedback Demonstration Retrieval Once the output ra-
tionale r is verified as biased, we need to retrieve a new set
of in-context demonstrations based on the feature of r for
guiding LLMs toward correct predictions. Specifically, we
first select the k most similar biased rationales to r in Sb,
denoted as Stopk

b , which is defined as:

Stopk
b = {{rb, yb} | rank{rb,yb}∈Sb

(sim(r, rb)) ≤ k},
(6)

Then, we select the labeled samples corresponding to the
biased rationales in Stopk

b from Dl as the feedback demon-
strations Dfb, which is defined as:

Dfb = {{xi, r
u
i , yi} | {xi, r

u
i , yi} ∈ Dl, {rbi , ybi } ∈ Stopk

b },
(7)

where the biased {rbi , ybi } and unbiased {rui , yi} corre-
spond to the same labeled sample {xi, yi}.

Correction via In-context Learning After the feedback
demonstrations Dfb are selected, we re-generate r and y us-
ing the LLM fθ, i.e., {r, y} = fθ(Dfb, x). This process will
be iteratively performed until r is verified as unbiased, and
the corresponding prediction y will be finally output.
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Method SemEval TACRED Re-TACRED Avg.
5-shot 10-shot 20-shot 50-shot 5-shot 10-shot 20-shot 50-shot 5-shot 10-shot 20-shot 50-shot

R
an

do
m

In-context Learning 48.40 49.11 49.65 49.31 24.17 23.69 24.66 24.21 21.37 21.99 21.52 21.10 31.60
w/ Self-Refine 47.93 48.50 49.19 48.88 23.15 23.05 24.18 23.12 21.04 21.51 20.71 21.32 31.05
w/ Self-Consistency 49.30 49.09 50.11 50.35 25.69 24.76 25.64 25.42 22.08 22.56 21.84 22.01 32.40
w/ GRACE 50.80 49.22 54.28 54.83 25.89 25.78 26.49 26.46 22.50 22.67 23.65 24.34 33.91

w/ our SRVF 54.89 59.67 62.98 71.27 30.07 31.42 32.84 34.58 28.36 31.49 32.87 36.52 42.25

Si
m

C
SE

In-context Learning 57.33 59.13 62.49 64.26 27.48 28.64 30.08 27.81 34.78 41.85 42.82 43.69 43.36
w/ Self-Refine 57.01 58.91 62.27 63.89 27.13 26.89 29.11 27.30 34.33 41.87 42.30 43.16 42.85
w/ Self-Consistency 57.54 58.81 62.98 65.00 28.82 29.85 30.98 25.42 35.83 42.84 43.71 44.59 43.86
w/ GRACE 57.93 58.48 66.32 67.48 28.76 28.60 30.03 26.46 33.95 41.53 42.35 44.37 43.86

w/ our SRVF 60.76 64.12 69.54 76.32 32.99 33.50 34.81 36.13 39.48 46.54 49.73 54.31 49.85

Ta
sk

-s
pe

ci
fic In-context Learning 58.68 64.90 65.67 77.32 26.11 26.35 31.15 33.35 42.75 45.53 52.89 56.22 48.41

w/ Self-Refine 58.38 64.96 65.68 77.35 25.01 25.48 30.62 32.67 42.10 44.98 52.11 55.62 47.91
w/ Self-Consistency 59.62 65.45 65.74 77.48 26.93 26.83 31.67 33.61 43.54 46.04 53.34 56.69 48.91
w/ GRACE 60.83 65.14 66.21 76.98 27.12 26.34 30.95 33.40 43.12 45.23 52.61 55.83 48.65

w/ our SRVF 62.12 67.03 68.94 80.08 30.50 30.92 34.83 36.32 46.13 48.09 55.07 59.82 51.65

Table 1: Results (micro-F1 scores) on the SemEval, TACRED, and Re-TACRED datasets under various few-shot settings. Here
we adopt the Llama-2-7b-chat as the LLM. The best results are in bold.

Experiments
Evaluation Protocal
Datasets and Metric We adopt three commonly used
datasets for RE, including SemEval (Hendrickx et al. 2010),
TACRED (Zhang et al. 2017), and Re-TACRED (Stoica,
Platanios, and Póczos 2021). Besides, compared to the sce-
nario with full data, the potential of LLMs under few-shot
settings is of more concern (Ma et al. 2023; Xu et al. 2023).
Hence we adopt the k-shot ( k ∈ {5, 10, 20, 50}) settings
to validate the effectiveness of the proposed method. For all
experiments, we report micro-F1 scores where Other and
no relation are considered negative labels.

Backbones We experiment with three different methods
as backbones for selecting initial in-context demonstrations
for LLM based RE, including: 1) Random, which randomly
selects initial demonstrations without any retriever. 2) Sim-
CSE, which uses SimCSE (Gao, Yao, and Chen 2021) to re-
trieve samples that have similar sentence semantics with the
test example as initial in-context demonstrations. 3) Task-
specific, which uses a task-specific retriever that has been
trained on the labeled samples (Wan et al. 2023).

Baselines To the best of our knowledge, we are the first to
explore the verification and feedback mechanism for LLM
based RE. Thus, we can only make modifications on cur-
rent feedback methods in other tasks to adapt them for RE.
Specifically, we choose the following baselines:
• Self-Refine (Madaan et al. 2023) consists of three LLM

based agents, i.e., RE agent, verifier agent, and refiner
agent, for iterative feedback and refinement.

• Self-Consistency (Wang et al. 2023b) is proposed to con-
duct verification for the multiple candidate responses and
choose the best response by majority voting.

• GRACE (Khalifa et al. 2023) trains a verifier to select the
best intermediate reasoning step, which is then used as
feedback for generating the next step.

For Self-Consistency, GRACE, and ours, the number of it-
erations or candidate responses is set to 5 for fairness. For
Self-Refine, the iteration number is set to 1 since we find that
more iteration rounds result in performance degradation 2.

Main Results
Table 1 reports the experimental results with various initial
demonstration selection strategies on Llama-2-7b-chat on
the SemEval, TACRED, and Re-TACRED datasets. From
Table 1, we can draw the following conclusions: 1) Our
proposed SRVF framework yields significant enhancements
upon various backbones with different demonstration selec-
tion strategies. Specifically, the improvement is most sig-
nificant when randomly selecting the initial demonstrations,
getting a 10.65% absolute micro-F1 score increase on av-
erage. Besides, when using SimCSE and task-specific re-
triever as backbones to carefully select initial in-context
demonstrations, there are also 6.49% and 3.24% absolute
micro-F1 score boosts on average, respectively. 2) Our pro-
posed method exhibits significant superiority over existing
verification and feedback methods under all settings. The
multi-agent based Self-Refine method is the worst, which
is mainly due to its unsuitable feedback objectives and cor-
rection manner. Existing methods for verifying the output of
LLMs, i.e., Self-Consistency and GRACE, can enhance the
performance of in-context learning to some extent. However,
since they do not provide explicit feedback signals for LLMs
to correct the prediction, their improvements are limited.

2Please refer to Appendix for detailed implementation details
of baselines and ours.
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Method SemEval TACRED Re-TACRED Avg.
5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Our SRVF 59.26 63.61 31.19 31.95 37.99 42.04 44.34

w/o LGI 55.31 55.46 25.13 29.83 24.44 30.46 36.77
w/o DI 57.90 62.50 28.52 29.78 35.64 39.99 42.39
w/o RCT 58.37 62.78 30.31 30.87 37.23 43.73 43.88
w/o FDR 57.03 60.23 29.27 29.85 35.59 39.39 41.89
w/o RG 52.27 62.09 27.52 29.33 35.14 38.38 40.79

Table 2: The ablation results (micro-F1) averaged over three
backbones. The best results are in bold.

Ablation Study
To validate the effectiveness of components in our method,
we introduce the following variants for ablation studies:

• w/o label-guided intervention (LGI), where the labels do
not guide the collecting of unbiased rationales.

• w/o diversified intervention (DI), which replaces the DI
with random sampling for collecting biased rationales.

• w/o rational contrastive training (RCT), which trains the
rationale supervisor with cross-entropy loss.

• w/o feedback demonstration retrieval (FDR), which re-
moves the FDR strategy and uses the initially selected
demonstrations as the feedback.

• w/o RG, which skips the re-generation process and di-
rectly adopts the label of the top-1 retrieved demonstra-
tion as the final prediction.

The results of the ablation study are shown in Table 2.
From the table, we make the following observations. 1) Re-
moving LGI and DI strategies significantly degrades perfor-
mance, indicating that LLMs struggle to collect unbiased ra-
tionales based solely on generation without causal interven-
tion. 2) Eliminating RCT also reduces performance, demon-
strating its effectiveness in helping the rationale supervisor
distinguish between unbiased and various biased situations.
3) Omitting FDR significantly decreases performance, high-
lighting its crucial role in guiding LLMs toward corrected
predictions despite iterative verification. 4) Removing the
re-generation process results in a substantial performance
drop, showcasing that simple assignment of retrieved top-1
demonstrations isn’t sufficient and that in-context feedback
for re-generation adds robustness to the correction process.

Analysis
Effectiveness on Various-scale LLMs To examine
whether the proposed method remains effective for various-
scale LLMs, we conduct experiments on various sizes of
LLMs from the Llama-2-chat (Touvron et al. 2023), Meta-
Llama-3-Instruct (AI@Meta 2024), and GPT-3.5 (Ouyang
et al. 2022), and present their results in Table 3.

From Table 3, it can be seen that our rationale supervisor
can boost the performance of LLMs with various sizes.
Specifically, even with the most powerful Meta-Llama-
3-70B-Instruct, there is still a 2.47% micro-F1 score
improvement over the original in-context learning. The

Method SemEval TACRED Re-TACRED Avg.
5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

R-BERT 42.75 57.25 9.87 16.24 26.64 35.01 31.29
KnowPrompt 53.92 56.42 27.86 30.34 50.08 55.41 45.67

Llama-2-7b-chat

ICL 58.68 64.90 26.11 26.35 42.75 45.53 44.05
w/ SRVF 62.12 67.03 30.50 30.92 46.13 48.09 47.47

Llama-2-70b-chat

ICL 68.92 69.86 27.32 27.12 43.63 44.94 46.97
w/ SRVF 69.97 70.00 27.69 29.47 45.13 46.93 48.20

Meta-Llama-3-8B-Instruct

ICL 69.90 69.79 32.63 32.26 48.23 50.69 50.58
w/ SRVF 71.14 71.41 35.26 34.29 52.23 55.25 53.26

Meta-Llama-3-70B-Instruct

ICL 71.21 72.40 34.71 34.97 56.10 57.41 54.47
w/ SRVF 74.68 74.33 37.05 36.35 59.27 59.96 56.94

GPT-3.5-turbo

ICL 67.26 70.58 32.46 31.38 43.56 46.88 48.69
w/ SRVF 69.62 71.67 37.78 34.63 46.22 49.66 51.60

Table 3: Results (micro-F1 scores) using various LLMs with
the task-specific retriever.

experimental results indicate that the “relation bias” issue
exists in LLMs of various scales, and our proposed method
can function as a plug-in module for various LLMs to
effectively mitigate this problem.

Comparision with Well-designed Few-shot Methods for
RE As shown in Table 3, we include two established su-
pervised fine-tuning methods for RE as baselines: 1) R-
BERT (Wu and He 2019), which fine-tunes a BERT for the
RE task, and 2) KnowPrompt (Chen et al. 2022), which is
tailored for few-shot scenarios and has shown good few-shot
performance. As we can see from the results, with the help
of our proposed SRVF, even the relatively weak Llama-2-
7b-chat can outperform KnowPrompt by 1.80% averagely.
Moreover, when deploying our SRVF on the most power-
ful Meta-Llama-3-70B-Instruct, there is an average perfor-
mance improvement of 11.27% compared to KnowPrompt.

Analysis on Successfully Corrected Samples To visual-
ize which samples are successfully corrected by the pro-
posed method, we compare the error matrix on the SemEval
dataset before and after correction. The results are obtained
by summing the number of error predictions of all settings
in Table 1. The results are shown in Fig. 4.

From Fig. 4 (a), we observe that LLMs struggle to distin-
guish between relations that share similar entities, e.g., 687
samples labeled as “Entity-Destination” are incorrectly pre-
dicted as “Content-Container”. Such error can arise when,
for example, given sentences “please move the eggs into the
box” and “there are 5 eggs in the box”, where the same en-
tity pair “eggs” and “box” form “Entity-Destination” and
“Content-Container” relations, respectively. Such ambigu-
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Figure 4: Error matrix before and after the verification-
feedback-correction procedure. The numbers show how
many samples labeled y (on the vertical axis) are incorrectly
predicted as x (on the horizontal axis).

ity often leads LLMs to misclassify relations when they fail
to focus on context, resulting in numerous errors. However,
as shown in Fig. 4 (b), the number of samples labeled as
“Entity-Destination” but incorrectly predicted as “Content-
Container” is reduced by 250. This indicates that our method
effectively alleviates the above issue.

Analysis on Method Efficiency Considering possible
concerns on the inference efficiency due to the iterative
feedbacks, we compare the inference time on the SemEval
dataset of different methods. Besides, we also evaluate the
pre-inference time of each method, e.g., the time to obtain
biased/unbiased data and train the rationale supervisor in our
SRVF. The comparison results are shown in Fig. 5.

From Fig. 5, we can observe that:
1) Basic in-context learning (ICL) is the most efficient.
2) Self-Refine does not require pre-inference time, but its

inference time is more than the sum of our pre-inference
time and inference time. Moreover, Self-Refine has the worst
performance among all methods (Table 1).

3) Self-Consistency and GRACE have much higher com-
putational costs than our SRVF, especially in terms of in-
ference time. This is mainly because the proposed rationale
supervisor can verify whether the LLM prediction is biased.
Only the test samples verified as biased by the rationale su-
pervisor will proceed to the correction round for regener-
ation. This greatly reduces the time cost of our method in
inference time after correction.

Overall, our SRVF is the second-best in computational ef-
ficiency while achieving the best performance (Table 1).

Experiments on Document-level RE To explore the ef-
fectiveness of our method for document-level RE, we apply
SRVF on three backbones and conduct experiments on two
commonly used document-level RE datasets, DocRED (Yao
et al. 2019) and Re-DocRED (Tan et al. 2022). The random
and SimCSE backbones are kept the same as before. For
the task-specific backbone, we borrow the idea from RE-
PLM (Ozyurt, Feuerriegel, and Zhang 2024), which obtains
the final prediction by aggregating the predictions based on
multiple retrieved demonstrations. The experimental results
are reported in Table 4.
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Figure 5: Efficiency comparison of different methods on the
5-shot SemEval setting. The results are accumulated along
the X axis. For example, “After Initial Generation” refers to
the sum time of “pre-inference” and “initial generation”.

Method DocRED Re-DocRED Avg.
5-shot 10-shot 5-shot 10-shot

ICL (Random) 7.76 7.82 8.27 7.73 7.90
w/ our SRVF 15.40 18.00 15.29 15.65 16.09

ICL (SimCSE) 15.67 16.40 11.97 12.53 14.14
w/ our SRVF 18.39 21.55 17.38 17.87 18.80

ICL (Task-specific) 18.29 18.40 17.44 18.67 18.20
w/ our SRVF 20.04 21.55 19.98 21.69 20.82

Table 4: Results (micro-F1) on the DocRED (document-
level RE task). The best results are in bold.

From Table 4, we can observe that: 1) LLM performs
poorly on document-level RE, which is consistent with em-
pirical observations in Li, Jia, and Zheng (2023); Sun et al.
(2024). This is due to the difficulty LLMs face in selecting
entity pairs that have certain relations from a vast space of
candidate entity pairs. Besides, the large number of candi-
date relation labels (96 in DocRED and Re-DocRED) fur-
ther increases the difficulty in assigning each entity pair a re-
lation. 2) Our proposed SRVF effectively enhances the per-
formance of LLM under various settings on DocRED and
Re-DocRED, indicating that our method remains to be ef-
fective in such challenging scenarios.

Conclusion
In this paper, we propose a novel automated feedback frame-
work for LLM based relation extraction (RE), which in-
cludes a rationale supervisor to iteratively correct the biased
relation prediction of LLMs. Specifically, we first present
a causal intervention and observation method to collect un-
biased and biased rationales, which are then used to train
the rationale supervisor. Then, we develop a verification-
feedback-correction procedure to iteratively enhance LLMs’
ability to correct the biased prediction. Extensive experi-
ments demonstrate the superiority of our framework over
existing methods. In the future, we will try to extend the
proposed framework to other NLP tasks.
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