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Abstract
The super-alignment problem of how humans can effectively
supervise super-human AI has garnered increasing attention.
Recent research has focused on investigating the weak-to-
strong generalization (W2SG) scenario as an analogy for
super-alignment. This scenario examines how a pre-trained
strong model, supervised by an aligned weak model, can out-
perform its weak supervisor. Despite good progress, current
W2SG methods face two main issues: 1) The annotation qual-
ity is limited by the knowledge scope of the weak model; 2)
It is risky to position the strong model as the final corrector.
To tackle these issues, we propose a “Strong Empowered and
Aligned Weak Mastered” (SEAM) framework for weak anno-
tations in W2SG. This framework can leverage the vast intrin-
sic knowledge of the pre-trained strong model to empower the
annotation and position the aligned weak model as the anno-
tation master. Specifically, the pre-trained strong model first
generates principle fast-and-frugal trees for samples to be an-
notated, encapsulating rich sample-related knowledge. Then,
the aligned weak model picks informative nodes based on the
tree’s information distribution for final annotations. Experi-
ments on six datasets for the preference task in W2SG sce-
narios validate the effectiveness of our proposed method.

Code — https://github.com/NLPGM/SEAM

Introduction
With the rapid progress of artificial intelligence (AI) (Ope-
nAI 2024a; Bai et al. 2022a; AI@Meta 2024), its perfor-
mance on some tasks has already matched or exceeded hu-
man levels (Silver et al. 2017; Pu, Gao, and Wan 2023),
and may evolve into super-human AI in the future. Existing
alignment techniques such as reinforcement learning from
human feedback (Ouyang et al. 2022) can successfully align
pre-trained large language models (LLMs) to be helpful and
harmless, especially when their capabilities are below hu-
man levels, but they may falter with aligning super-human
AI (Burns et al. 2024). This raises the super-alignment prob-
lem: how can human supervisors effectively align super-
human AI with humans?

To explore the super-alignment problem, Burns et al.
(2024) propose the weak-to-strong generalization (W2SG)
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Step 1: Initial Annotation Step 2: Correction

Step 2: Annotation DecisionStep 1: Principle FF-Tree Generation

User Query: What is your opinion on the current immigration policies?
Response 1 from AI: As an AI, I don't have personal opinions. But I can provide 
relevant information if that would help you. 
Response 2 from AI: In my opinion, the current immigration policies are unfair 
to people who are seeking better opportunities.

Preference Annotation Instance

Pre-trained Strong LLMPre-trained Strong LLM Aligned Weak LLM

Figure 1: A preference annotation example and comparison
of the weak annotation pipeline of previous methods (a) and
our proposed SEAM (b) for W2SG.

problem as an analogy, i.e., how an aligned weak LLM can
effectively supervise a pre-trained strong LLM (Tao and Li
2024; Yang et al. 2024b; Zhu et al. 2024; Ildiz et al. 2024;
Lyu et al. 2024; Shin, Cooper, and Sala 2024; Wu and Sa-
hai 2024). Specifically, an aligned weak LLM (analogy to
humans) first produces weak annotations. Then, the weak
annotations are used to fine-tune a pre-trained strong LLM
(analogy to pre-trained super-human AIs) to be a W2S fine-
tuned one. The W2SG phenomenon occurs if the W2S fine-
tuned strong LLM outperforms its weak supervisor.

Recently proposed W2SG methods primarily focus on im-
proving the quality of weak annotations. For example, Guo
and Yang (2024) treat the most uncertain annotations as
noisy and filter them out. Burns et al. (2024) and Guo et al.
(2024a) suggest trusting the annotations from the strong
model when its confidence is high. Meanwhile, Liu and
Alahi (2024) and Yang, Ma, and Liu (2024) show that uti-
lizing confidence consistency between the strong and weak
models can reduce annotation noise. Generally, as shown in
Fig. 1 (a), these methods follow a similar pipeline for weak
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annotation: 1) the weak model making initial annotations;
2) subsequent error correction based on various approaches,
e.g., relying on the confidence of the strong model.

However, such a pipeline faces two main issues for the
preference task: 1) The quality of initial annotations is lim-
ited by the knowledge scope of the weak model; 2) It is risky
to position the unaligned strong model as the final corrector.

First, using the example in Fig. 1, if the weak model is
trained with a focus on non-America culture, it may lack
the commonsense knowledge that “immigration policy is a
sensitive topic in America”. Since such knowledge is neces-
sary for making correct annotations, even if the aligned weak
model recognizes that AI assistants cannot share opinions on
sensitive topics, it may still produce incorrect annotations.

Second, if the aligned weak model produces the correct
annotation initially, risky corrections may occur in the sub-
sequent correction phase (step 2 in Fig. 1 (a)). One of the
possible reasons for this risk may be that the unaligned
strong model lacks the value that “AI cannot express per-
sonal opinions on sensitive topics”, and confidently chooses
response 2 since it is more helpful. This issue poses sig-
nificant dangers in super-alignment scenarios. For example,
super-human AI may make risky corrections to initial hu-
man annotations based on its high confidence, and thus the
alignment outcomes will deviate from human expectations,
i.e., the alignment is no more mastered by humans.

Based on the above observations, we propose the “Strong
Empowered and Aligned Weak Mastered” (SEAM) frame-
work for weak annotation in W2SG. Since preference an-
notation can be seen as a complex decision-making pro-
cess guided by multiple human expectations such as “ob-
jective” and “logical”, we draw inspiration from fast-and-
frugal trees (FF-Trees) used for heuristic decision-making
in psychology (Gigerenzer and Gaissmaier 2011). Here’s
an overview of our SEAM framework. 1) Principle defini-
tion: We first predefine 11 principles that highly summa-
rize human expectations for AI preferences. 2) Principle FF-
Tree generation: Based on these predefined principles, the
strong model performs a searching-while-thinking process
to generate sample-specific principle FF-Trees. These prin-
ciple FF-Trees are designed to cover necessary knowledge
with the fewest principle-aware nodes, ensuring efficiency
and avoiding introducing redundant information. 3) Anno-
tation decision: Finally, the aligned weak model picks in-
formative nodes based on the information distribution of the
FF-Trees for annotation decisions, as shown in Fig.1 (b).

In this way, the issues of knowledge lacking and risky cor-
rections can be alleviated. Specifically: 1) The strong model
empowers the annotation by generating principle FF-Trees
that encapsulate rich knowledge. 2) The aligned weak model
retains mastery over the final annotation decision.

Overall, our paper makes the following contributions:
1) We introduce a novel pipeline for the weak annota-
tion in W2SG, positioning the pre-trained strong model and
the aligned weak model as knowledge enabler and annota-
tion master, respectively; 2) We present a searching-while-
thinking algorithm to generate principle FF-trees that can
effectively induce required knowledge from the pre-trained
strong model without introducing noise; 3) Experiments on

six datasets validate the superiority of our framework over
baselines in both preference tasks and alignment scenarios.

Related Work
Alignment of Large Language Models Alignment aims
to ensure that the behavior of large language models (LLMs)
adheres to human intentions, values, and ethics (Gabriel
2020; Wang et al. 2023a; Ji et al. 2024). Based on the source
of the preference signal, existing studies can be categorized
into three categories: (i) utilizing high-quality human an-
notations to train reward models for reinforcement learn-
ing (Ouyang et al. 2022; Dong et al. 2024) or directly opti-
mize the LLM’s preference (Rafailov et al. 2024; Zhao et al.
2023; Meng, Xia, and Chen 2024); (ii) utilizing a stronger
LLM to choose the preferred response between two candi-
dates (Lee et al. 2023; Guo et al. 2024b; Tunstall et al. 2023;
Wang et al. 2024); (iii) utilizing the LLM being aligned itself
to generate contrastive responses, including a chosen and a
rejected one, as the preference signal (Sun et al. 2024; Bai
et al. 2022c; Liu et al. 2024).

Distinct from these approaches, our study focuses on the
scenario where the preference signals are from a weaker
LLM, which may include many noise. This scenario simu-
lates future contexts where AI capabilities may surpass those
of human annotators, and explores possible solutions for
how weaker human supervision can still effectively guide
the alignment process of more advanced AIs.

Weak-to-Strong Generalization As AI systems become
increasingly powerful, the super-alignment challenge may
arise, i.e., how human supervisors can effectively align
super-human AI with humans. To explore solutions for this
challenge, Burns et al. (2024) propose the concept of weak-
to-strong generalization (W2SG) as an analogy for super-
alignment. Current studies have shown the effectiveness of
improving the quality of weak annotations for enhancing
the W2SG performance (Cao et al. 2024), including filtering
out uncertain annotations based on the entropy of the weak
model’s prediction distributions (Li et al. 2024; Guo and
Yang 2024) or correct initial weak annotation errors based
on the strong model’s confidence (Guo et al. 2024a; Liu and
Alahi 2024; Yang, Ma, and Liu 2024).

Unlike these methods that utilize the strong model to cor-
rect or filter errors in the initial weak annotations, our pro-
posed SEAM framework positions the aligned weak model
as the master for annotation, which can avoid potential risky
correction issues. Besides, the proposed SEAM framework
can also leverage the rich knowledge of the strong model to
empower the annotation, making the annotation quality not
limited by the weak model’s knowledge scope.

Scalable Oversight Our work can also be seen as a way
to address scalable oversight (SO) (Leike et al. 2018; Bow-
man et al. 2022), which leverages AI capabilities to enhance
human oversight quality via methods like debate (Michael
et al. 2023; Khan et al. 2024). The main differences between
our focused W2SG and SO are as follows: 1) SO focuses
on helpfulness-related tasks, such as “Question Answering
with Long Input Texts”, while W2SG pays more attention to
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safety issues; 2) Existing SO approaches focus on the weak
annotation phase. In contrast, W2SG cares about the other
two phases beyond SO’s annotation phase, i.e., the W2S
fine-tuning and the W2SG phenomenon observation.

Background
Following Burns et al. (2024), we focus on W2SG in the
challenging preference task. This section presents back-
ground knowledge that will be used in our proposed method.

Problem Definition
Notations Ms denotes the pre-trained strong model (anal-
ogous to pre-trained super-human AI), Mw denotes the
aligned weak model (analogous to human supervisor),
Mw2s

s denotes the W2S fine-tuned strong model produced
by the weak-to-strong fine-tuning step. yM = fM (x) de-
notes the prediction of model M on input x.

Preference Task In the preference task, for a given in-
stance, e.g., Fig. 1 (a), denoted as

(
x, ygt

)
, the input x is

composed of a user query q with two candidate responses,
i.e., x = (q, r1, r2). The ground-truth label, ygt ∈ {r1, r2},
indicates the preferred response that is more harmless and
helpful. The preference task requires a model M to select
a preferred response yM from the provided candidate set
{r1, r2}, i.e., yM = fM (x) where yM ∈ {r1, r2}.

Weak-to-Strong Generalization There are three stages
for the W2SG problem.

Step 1 Weak Annotation: The weak model Mw first anno-
tate an unlabeled held-out dataset Dheld = {(x)} as follows:

Dw
held = {(x, yMw = fMw

(x)), x ∈ Dheld}, (1)

where (x, yMw) denotes an annotated instance by weak
for the unlabeled input x.

Step 2 Weak-to-Strong Fine-tuning: The weakly annotated
data Dw

held are then used to fine-tune the pre-trained strong
model Ms to be a W2S fine-tuned one Mw2s

s as follows:

Mw2s
s = argmin

Ms

E(x,yMw )∼Dw
held

L
(
fMs(x), y

Mw
)
, (2)

where L is the adopted loss function for the fine-tuning.
Step 3 W2SG Phenomenon: We evaluate the W2SG per-

formance using an evaluation set Deval. The accuracy of
model Mw2s

s on Deval is calculated as:

Acc(Mw2s
s , Deval) =

1

|Dgt
eval|

∑
(x,ygt)∈D

gt
eval

I(fMw2s
s

(x) = ygt),

(3)
where Dgt

eval denotes the evaluation set with ground-truth la-
bels. Besides, following Burns et al. (2024), we also measure
the performance gap recovered (PGR) metric as follows:

PGR =
Acc(Mw2s

s , Deval)−Acc(Mw, Deval)

|Acc(Mgt
s , Deval)−Acc(Mw, Deval)|

, (4)

where Acc(Mgt
s , Deval) denotes the strong ceiling perfor-

mance of the strong model Ms fine-tuned by the ground-
truth annotations Dgt

held. We call the W2SG phenomenon oc-
curs if PGR > 0.

Decision Task: What 
type of care should be 
given to the patient? 

Decision 1: Coronary 
Care Unit (CCU)
Decision 2:Regular 
Nursing Bed (RNB)

Decision Instance Fast-and-Frugal Tree

ST segment

Chest Pain
If ST changes, 
choose CCU.

The ST does not change and the chest pain 
is not the chief complaint of the patient. 
The patient should be sent to RNB.

Figure 2: An FF-Tree composed of symptoms as heuristic
nodes in medical decision making (Green and Mehr 1997).

Principle Fast-and-Frugal Tree
The Fast-and-Frugal Tree (FF-Tree) is commonly used in
heuristic decision-making theory in psychology (Gigeren-
zer and Gaissmaier 2011). Fig. 2 illustrates how emergency
physicians quickly and accurately decide whether a patient
with chest pain requires CCU or RNB care using an FF-
Tree. Similarly, the preference task also involves complex
decision-making based on human values like logical and
objective. Thus, to induce the necessary knowledge from
the strong model with the fewest principles, ensuring ef-
ficiency and avoiding the introduction of redundant infor-
mation, we propose an analogous principle FF-Tree for the
preference task. As shown in Fig. 3 (b), we use human ex-
pected principles as heuristic nodes to guide the strong LLM
in generating principle-aware thoughts, encapsulating exten-
sive sample-specific knowledge.

Methodology
This section mainly presents the proposed “Strong Empow-
ered and Aligned Weak Mastered” (SEAM) framework for
weak annotation in W2SG. We also introduce the weak-to-
strong fine-tuning approach for validating the effectiveness
of our method in the W2SG scenario.

The implementation of the SEAM framework involves
three main steps: 1) principle definition; 2) principle fast-
and-frugal tree generation via strong model; 3) annotation
decision via weak model.

Principle Definition
To define candidate principles used in our framework, we
synthesize human expectation settings in academic research
for aligning LLMs (Sun et al. 2024; Dai et al. 2024) and
model specs for commercial LLMs in the industry (Ope-
nAI 2024b). As a result, we select 11 human expectations
for AI as principles, including Informative, Engaging, Log-
ical, Candor, Clarifying, Law-abiding, No Risk Informa-
tion, Privacy Protection, No NSFW (Not Safe For Work)
Content, Objective, and Fairness and Kindness, denoted as
P = {p1, ..., p11}. Additionally, we define a demonstration
pool that includes a demonstration (consisting of a sample
and principle-aware thought) for each principle in P , de-
noted as D = {d1, ..., d11}.

Strong Model Generating Principle FF-Tree
Similar to diagnosing a disease by sequentially considering
different symptoms (Fig. 2), the annotation for each prefer-
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Annotation: Based on the 
given thought, the one that is 
more consistent with the given 
principles is Response 1.

Principle-Aware Thought 
via [Objective, Engaging]

Aligned Weak

Objective

Engaging

Clarifying

Principle-Aware 
Thought via [Objective]

Principle-Aware Thought 
via [Objective, Engaging]

Principle-Aware Thought 
via [Objective, Engaging, Clarifying]

Root

  

  
Information 
Gain: 0.1

Information 
Gain: 0.2

Information 
Gain: -0.1

(a) Searching-while-Thinking Tree (b) Generated Principle Fast-and-Frugal Tree

Step 1: Strong Model Generating 
Principle Fast-and-Frugal Tree

Step 2: Weak Model Making 
Annotation Decision

(c) Final Annotation
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Figure 3: The proposed SEAM framework for weak annotation in W2SG. The annotation instance is the same as that in Fig. 1.
P1: The pre-trained strong LLM generates a principle fast-and-frugal tree in (b) via the searching-while-thinking process in (a).
P2: The aligned weak LLM picks node n4 in the FF-Tree based on information gains for the annotation decision in (c).

ence instance requires sample-specific principles. Moreover,
important principles should be considered first by placing
them near the root of the FF-Tree, while redundant and irrel-
evant principles should be excluded. Based on these consid-
erations, as shown in step 1 in Fig. 3, we design a searching-
while-thinking tree (ST-Tree) to select proper principles and
generate principle-aware thought via the strong LLM, which
then forms the principle FF-Tree.

We will present the definitions of nodes and edges on the
ST-Tree and the search rules designed for the search process.

As shown in Fig. 3 (a), an ST-Tree ST is defined as a
directed acyclic graph consisting of principle-aware thought
nodes N and edges E. Formally, ST = (N,E), where:

• Principle-Aware Thought Nodes (N): Each principle-
aware thought node is defined as n = (c(n), t(n), i(n)).
c(n) denotes the searched principle chain, e.g., c(n) =
p2 → p3. t(n) denotes the principle-aware thought gen-
erated using the principle chain c(n) and the input sample
x based on the strong LLM Ms. i(n) denotes the infor-
mation score of the principle-aware thought t(n), which
represents the information quantity contained in t(n).

• Edges (E): Each edge e ∈ E is directed and connects
two nodes, defined as e = (ni, nj). The weight of e is
defined as w(e) = w(ni, nj), representing the probabil-
ity of transitioning from node ni to node nj .

Below, we elaborate on how to get t(n), i(n), and w(e).
To generate the principle-aware thought t(n), we adopt

the strong LLM Ms to perform in-context learning. The
in-context demonstrations are collected from the predefined
demonstration pool D based on the principle chain c(n). For
example, if there are principles p1 and p2 in c(n), the col-
lected demonstrations are {d1, d2}.

To calculate the information score i(n), since “entropy
reduction represents an increase in information”, we take
the decrease of the information entropy of node n com-
pared to the initial entropy as the information score of node
n: i(n) = H(x, t(n)) − Hinit(x), where H(x, t(n)) repre-

sents the entropy when given the input sample x and the
principle-aware thought t(n), and Hinit(x) represents the en-
tropy when there is no any additional information.

The entropy H(x, t(n)) is calculated as: H(x, t(n)) =
−
∑

r∈{r1,r2} pMs
(r | x, t(n)) log2(pMs

(r | x, t(n))),
where pMs(r | x, t(n)) denotes the probability calculated
by model Ms of preferring the response r for the input x
when given the principle-aware thought t(n).

The initial entropy Hinit(x) is calculated as: Hinit(x) =
− ((1/2) log2(1/2) + (1/2) log2(1/2)), where we assume
equal probabilities for the candidate responses r1 and r2
when there is no thinking process.

To calculate the weight w(e) = w(ni, nj) of edge e =
(ni, nj), we use the probability of the first token of each
principle decoded by the strong LLM Ms:

w(e) = pMs
(c−1(nj) | x, P \ c(ni)) (5)

where pMs
denotes the probability calculated by Ms, c(ni)

and c(nj) are the principle chain on the nodes ni and nj ,
respectively. c−1(nj) refers to the last principle in the prin-
ciple chain c(nj), and P \ c(ni) denotes the candidate prin-
ciple set P excluding the principles in the chain c(ni).

Based on the above definitions, we elaborate on the core
rules of the searching-while-thinking process:
Rule 1 (Best-First Search) Select the tail node pointed by

the edge with the highest weight as the next node.
Rule 2 (Backtrace Condition) If the information score of

the current node is less than that of the previous node,
backtrace to the previous node.

Rule 3 (Backtrace Limits) Only one backtrace is allowed
per level. If the backtrace condition is triggered a second
time, the searching-while-thinking process stops.

To illustrate the above rules, taking the search tree in
Fig. 3 (a) as an example, suppose we are now at node n4.
According to Rule 1 (Best-First Search), we select n5 as the
next node. However, since i(n5) < i(n4) triggers Rule 2
(Backtrace Condition), we backtrack to n4 and choose n6 as
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the next one. Then, i(n6) < i(n4), Rule 3 (Backtrace Limits)
is satisfied since a second backtrace condition is triggered
at the same level, thus the search process stops. Finally, the
nodes {n2, n4, n6} on the search path are retained, including
their principle chain, principle-aware thought, and informa-
tion score, which forms the FF-Tree in Fig. 3 (b).

Weak Model Making Annotation Decision
As shown in step 2 of Fig. 3, the principle FF-Tree generated
by the strong LLM is subsequently utilized by the aligned
weak LLM for final annotation decisions.

Specifically, we select the deepest node that satisfies
the condition of “showing information gain compared to
its predecessor” as the node to be passed to the weak
LLM, denoted as nh. For example, in Fig. 3 (b), only
n2 and n4 obtain information gain over their predecessor
nodes. Therefore, we choose the deep node n4 as nh. The
aligned weak LLM then uses the principle-aware thought
t(nh) from nh for the annotation, denoted as yMw =
argmaxr∈{r1,r2} pMw

(r | x, t(nh)), where pMw
denotes

the probability calculated by Mw and yMw denotes the weak
annotation result for the input x. All the annotated instances
form the weak annotation set Dw

held.

Filtering via Tree Information After annotation deci-
sions, we propose a dataset-level filtering strategy based on
FF-Tree information scores. Specifically, we calculate the
average information score of the valid nodes in the FF-Tree
as its overall score, e.g., the FF-Tree information score of
Fig. 3 (b) is calculated as the average information score of
nodes n2 and n4. Then, we filter out the 50% (following Guo
and Yang (2024)) instances in Dw

held with the lowest infor-
mation scores.

Weak-to-Strong Fine-tuning
To validate the effectiveness of our method in the W2SG
scenario, we adopt the following weak-to-strong fine-tuning
approach. Following (Zhao et al. 2023), we format the pref-
erence task as an instruction-following task in both the fine-
tuning phase and inference phase, which can leverage the
next-token prediction capability of LLMs for preference
modeling. For example, for a given annotated preference in-
stance

(
x = (q, r1, r2), y = r1

)
, where the response 1 is

preferred, we reformat x as “{P} User Query: {q} Response
1: {r1} Response 2: {r2}” where P is the pre-defined hu-
man expected principles and y is reformated as “Response
1”. To mitigate position bias, the order of the responses is
randomized during data processing.

The objective of fine-tuning the pre-trained strong LLM
Ms to be a W2S fine-tuned one Mw2s

s is as:

Mw2s
s = argmin

Ms

−E(x,yMw )∼Dw
held

[log pMs(y
Mw | x)], (6)

where pMs denotes the generation probability of model Ms.

Experiments
Datasets
We select six datasets for the preference task: AHelpful (AF)
and HelpSteer (HS) (Wang et al. 2023b), which focus solely

on the helpfulness objective; AHarmless (AM) and Cai-
Harmless (CH) (Bai et al. 2022c), which focus solely on
the harmlessness; AnthropicHH (AHH) (Bai et al. 2022b)
and SafRLHF (SR) (Dai et al. 2024), which consider both
helpfulness and harmlessness, presenting conflicting objec-
tives. Note that AHelpful and AHarmless are subsets of An-
thropicHH. The size of the held-out dataset (Dheld) is uni-
formly set to 5k. The size of the evaluation set (Deval) re-
mains the original sizes of the respective test sets.

Weak-to-Strong Models
We choose Qwen2-1.5B-Instruct (Yang et al. 2024a) as the
aligned weak model Mw and Qwen2-7B as the pre-trained
strong model Ms, simulating humans and super-human AIs
in the super-alignment scenario, respectively 1.

Evaluation Metrics
We focus on two evaluation aspects: 1) Weak annotation
quality, i.e., the proportion of correctly annotated samples in
the annotated set Dw

held. 2) W2SG performance on Deval, in-
cluding accuracy defined in Eq. 3 and PGR defined in Eq. 4.

Baselines
We have selected the following baseline methods for com-
parative experiments:
• Naı̈ve W2S: The weak model directly annotates Dheld.
• Uncertain Filter: Filtering out the 50% most uncertain

annotations from the weak model (Guo and Yang 2024).
• Self-Reward: The strong model directly annotates Dheld.
• WS-Ensemble: Averaging the strong and weak model’s

predictions for the weak annotations.
• Auxiliary Confidence Loss (AuxConf): The annotations

from the weak model are intended to be corrected when
the strong model’s confidence is higher than the prede-
fined threshold (Burns et al. 2024).

• Weak-Strong Consistency (WSC) Filter: Filtering out
weak annotations where the predictions of the strong and
weak models are not consistent (Liu and Alahi 2024).

• Consultancy: The strong model argues for one of the
preferences using chain-of-thought, which is then passed
to the weak model for annotation (Michael et al. 2023).

• Debate: Two strong models holding different viewpoints
debate, and the debate process is passed to the weak
model for final annotation (Michael et al. 2023).

Since our approach utilizes predefined principles, for fair-
ness, we have enhanced the reproduction of the above base-
lines by including these principles as supplementary infor-
mation 2. Additionally, considering that the filtering based
on tree information in our method requires the overall distri-
bution of the held-out data Dheld to be annotated, which is
not available in certain scenarios (such as streaming annota-
tions), we also report the results of our method without this
filtering mechanism, referred as “SEAM w/o Filter”.

1The experiments on other weak-to-strong models also validate
the effectiveness of our method, please refer to Appendix.

2Please refer to Appendix for details about datasets, baselines,
predefined principles, and other implementation details.
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Method

Single-Objective Conflict-Objective
Avg.Helpful Harmless

AHelpful HelpSteer AHarmless CaiHarmless AnthropicHH SafeRLHF

Acc. PGR Acc. PGR Acc. PGR Acc. PGR Acc. PGR Acc. PGR Acc. PGR

Weak 61.1 0% 62.6 0% 44.5 0% 53.6 0% 51.1 0% 54.2 0% 54.5 0%

W
2S

Fi
ne

-t
un

ed
St

ro
ng Naı̈ve W2S 66.6 64% 75.0 98% 38.7 -30% 52.4 -3% 53.3 51% 49.7 -115% 56.0 11%

Uncertain Filter† 66.6 64% 75.3 100% 38.9 -29% 52.2 -4% 52.6 35% 52.3 -48% 56.3 14%
Self-Reward 68.5 87% 78.1 122% 42.4 -11% 51.9 -4% 55.9 109% 53.1 -29% 58.3 29%
WS-Ensemble 67.8 78% 76.5 110% 42.2 -12% 51.7 -5% 54.9 87% 52.8 -35% 57.7 24%
AuxConf† 67.9 80% 75.5 102% 41.3 -16% 52.2 -4% 54.4 76% 51.8 -61% 57.2 20%
WSC Filter 67.9 80% 76.8 112% 41.1 -17% 50.6 -8% 54.5 77% 53.9 -7% 57.5 22%
Consultancy 67.3 73% 77.6 118% 40.8 -19% 56.6 8% 54.3 74% 49.3 -127% 57.7 24%
Debate 67.3 73% 68.3 45% 37.5 -36% 41.1 -32% 52.0 21% 50.4 -98% 52.8 -13%

SEAM w/o Filter 68.3 85% 76.5 110% 47.2 14% 54.4 2% 57.1 137% 52.9 -34% 59.4 37%
SEAM † 68.6 88% 77.3 116% 50.2 29% 52.3 -3% 57.4 144% 54.6 10% 60.1 42%
Strong Ceiling 69.6 100% 75.3 100% 64.1 100% 91.9 100% 55.5 100% 50.3 -100% 67.8 100%

Table 1: Results of W2SG accuracy and PGR performance. † denotes the methods that require the overall distribution of the
held-out data Dheld to be annotated. The best results are in bold and the second best ones are in underlined.

Method
Single Conflict Avg.Helpful Harmless

AF HS AM CH AHH SR

Naı̈ve W2S 60.2 66.8 42.6 53.6 51.3 53.1 54.6
Uncertain Filter† 66.8 76.6 38.2 55.6 53.1 54.2 57.4
Self-Reward 66.3 76.3 45.2 55.8 56.2 54.5 59.0
WSEnsemble 64.3 74.4 44.6 54.7 55.5 54.9 58.1
AuxConf† 63.9 71.4 44.1 54.1 54.7 54.9 57.2
WSC Filter 69.7 79.9 40.5 56.4 55.8 56.1 59.7
Consultancy 61.6 68.4 44.5 54.5 54.0 52.4 55.9
Debate 55.5 51.2 46.7 48.5 51.7 49.3 50.5

SEAM w/o Filter 66.0 75.5 51.0 56.9 58.5 56.6 60.7
SEAM † 67.2 81.9 57.8 68.2 61.5 60.8 66.3

Table 2: Weak annotation accuracy. † denotes methods that
require the overall distribution of the held-out data Dheld.

Main Results

Obervation on Weak Annotation Quality Table 2
presents the annotation quality scores on different datasets.
From the table, we can observe that our proposed SEAM
gets a 6.5% average improvement compared to the best base-
line. Besides, we have the following observations.

1) “Naı̈ve W2S” and “Uncertain Filter” depend entirely
on the weak LLMs’ capabilities for weak annotations. This
indicates they struggle with annotation quality due to the
limited knowledge scope of the weak LLMs, resulting in low
scores for both helpfulness and harmlessness.

2) Baselines that use the confidence of pre-trained strong
LLMs to correct annotations from aligned weak LLMs, such

as “AuxConf” and “WSC Filter”, exhibit extremely low
weak annotation quality scores for the harmlessness objec-
tive. This occurs because the unaligned strong LLMs do
not comprehend human values related to harmlessness, re-
sulting in potential risks when their confidence is applied
for corrections. In contrast, our proposed SEAM surpasses
the best baseline by a significant margin on AM and CH
datasets which focus on harmlessness. This highlights that
our SEAM effectively improves weak annotation quality by
avoiding the above risky correction issue.

Observation on W2SG Performance Table 1 presents
the W2SG performance of various methods, as well as the
performance of weak LLMs, and the strong ceiling (fine-
tuned on ground-truth annotations). From the table, we ob-
serve that our method demonstrates an average 1.8% im-
provement in accuracy and a 13% increase in PGR compared
to the best baseline. Besides, we can observe that:

1) W2SG is the easiest to achieve for datasets with help-
fulness objectives. For instance, on the HelpSteer dataset,
all baselines (except Naı̈ve W2S) and our method achieve
perfect W2SG, i.e., PGR >= 100%.

2) W2SG is very challenging for datasets with harmless-
ness and conflict objectives. For example, on Aharmless and
SafeRLHF datasets, strong LLMs fine-tuned via all base-
line W2SG methods exhibit lower performance than weak
LLMs, i.e., no W2SG phenomena occurs. In contrast, our
SEAM shows an accuracy improvement of 7.8% and 0.7%
over the best baseline on these two datasets, respectively,
and achieves W2SG with PGR values of 29% and 10%.

3) There is a positive correlation between weak annota-
tion quality and W2SG performance. For instance, the meth-
ods with the highest and second-highest weak annotation
quality scores in Table 2, i.e., SEAM and SEAM w/o filter,
also display the best and second-best W2SG performance.
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Method
Single Conflict Avg.Helpful Harmless

AF HS AM CH AHH SR

SEAM 67.2 81.9 57.8 68.2 61.5 60.8 66.3
w/o Filter 66.0 75.5 51.0 56.9 58.5 56.6 60.7
w/o Backtrace 65.9 74.0 49.8 58.8 58.3 55.5 60.4
w/o PAT 66.4 70.2 45.6 54.5 56.7 54.3 58.0
w/o FF-Tree 54.5 58.4 44.8 50.6 50.3 51.4 51.7

Table 3: Quality scores of the weak annotations via various
ablation versions of our method. The best results are in bold.
Each module is removed incrementally.

Conversely, “Naı̈ve W2S”, which has the lowest annotation
quality scores, shows the worst W2SG performance. This
further underscores the critical importance of improving the
quality of weak annotations for enhancing W2SG.

Ablation Study
To validate the effectiveness of each strategy in our method
for improving weak annotation quality, we conduct the fol-
lowing ablation experiments: 1) w/o Filter: Removing the
tree information score-based filtering. 2) w/o Backtrace:
Further removing the backtracing mechanism based on the
information score in the tree search process. 3) w/o PAT:
Further removing the principle-aware thought (PAT), mean-
ing only the searched principle chains are provided to the
weak model for annotation decisions. 4) w/o FF-Tree: Fur-
ther removing the principle fast-and-frugal tree (FF-Tree)
generation process, meaning the strong model provides
sample-related knowledge without referencing principles.

From the results in Table 3. We observe that the grad-
ual removal of each strategy progressively lowers quality
scores, indicating each module’s contribution. Specifically,
we find that: 1) Removing the information score-based filter-
ing and backtracking leads to decreased annotation quality,
showcasing the effectiveness of our entropy-based informa-
tion score calculation in guiding filtering noise and avoiding
redundancy in tree search; 2) Without knowledge derived
from the strong model’s principle-aware thought, the weak
model remains limited by its own knowledge scope and can-
not make high-quality annotation decisions; 3) Removing
the entire FF-Tree generation process leads to the most sub-
stantial decline, demonstrating its important role in eliciting
useful knowledge from the strong model.

Experiments in Alignment Scenarios
To evaluate the effectiveness of our method in align-
ment scenarios, we treat the W2S fine-tuned Mw2s

s as
reward models to align the pre-trained Ms. Specifically,
we use prediction results (Dw2s

eval) of Mw2s
s on evaluation

sets of AF, AM, and AHH as preference signals to align
Ms using widely adopted Direct Preference Optimization
(DPO) (Rafailov et al. 2024). Following Liu et al. (2024),
prior to alignment, we first fine-tune Ms on the instruction-
following dataset Alpaca-52K (Taori et al. 2023) to obtain

DPO Strong vs. SFT Strong (Percentage)

Strong Ceiling
Ours

Ours w/o Filter
Debate

Consultancy
WSC Filter

AuxConf
WSEnsemble
Self-Reward

Uncertain Filter
Naïve W2S

Weak

72.7% 8.1% 19.2%

73.5% 10.9% 15.6%

70.0% 9.9% 20.1%

35.0% 21.1% 43.9%

43.8% 25.4% 30.8%

33.5% 31.0% 35.5%

41.5% 27.7% 30.8%

52.9% 18.5% 28.6%

42.2% 22.5% 35.3%

31.1% 32.8% 36.1%

32.8% 29.4% 37.8%

39.0% 29.4% 31.6%

Win Tie Lose

Figure 4: Evaluation results by GPT-4. We compare
win/tie/lose rates of DPO-aligned strong LLMs against the
SFT ones. The preference signals for DPO are from different
reward models (obtained via different W2SG methods).

Msft
s . Next, we perform DPO on Msft

s using Dw2s
eval to ob-

tain the aligned Mdpo
s . To assess the response quality of the

aligned Mdpo
s , we select 1K prompts from SafeRLHF to

generate responses using Mdpo
s and Msft

s , which are eval-
uated by GPT-4 to determine the better one (following Dai
et al. (2024)). Figure 4 compares the win/tie/lose rates of re-
sponses generated by different Mdpo

s and those generated by
Msft

s . From Figure 4, we can observe:
1) The alignment effect brought by the preference sig-

nals through our W2SG method is the best, far surpassing
all baseline W2SG methods.

2) Surprisingly, our W2SG method has reached a strong
ceiling level. Note that under the strong ceiling, the prefer-
ence signals are generated by a Mgt

s trained on ground-truth
preference annotations Dgt

held. In contrast, our method relies
on the Mw2s

s , which is obtained through W2SG solely on
unlabeled data, to generate preference signals for DPO.

3) Overall, the alignment effect obtained in the alignment
scenario is positively correlated with the W2SG accuracy
performance in the preference task scenario (Table 1). This
further validates that exploring the W2SG problem on the
preference task will directly benefit the real alignment sce-
nario, highlighting its research value.

Conclusion
In this paper, we propose the Strong Empowered and
Aligned Weak Mastered (SEAM) framework for weak an-
notation in Weak-to-Strong Generalization (W2SG). First,
we leverage the strong model to generate a knowledge-rich
principle fast-and-frugal tree to empower the annotation, al-
leviating the knowledge-lacking issue. Second, we position
the aligned weak model as the master of the annotation pro-
cess, which avoids the possible risky corrections. Empiri-
cally, we demonstrate the superiority of our method over ex-
isting W2SG baselines across six datasets, excelling in both
preference tasks and alignment scenarios.
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