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A B S T R A C T

Reference evapotranspiration (ETo) is an important variable required in many disciplines and is influenced by 
many factors. However, the bivariate and multivariate relationships between ETo and affecting factors across 
multiple time-frequency domains remain unknown. Here, we identified the primary factors affecting ETo across 
time-frequency domain in 653 meteorological stations of mainland China based on the combination of wavelet 
transform coherence (WTC) and multiwavelet coherence (MWC) methods. The results indicated that ETo and all 
affecting factors (solar radiation, Rs; vapor pressure deficit, VPD; air temperature, Ta; wind speed, u2) during 
1967–2016 exhibited a frequency ranging from 2 days to 211 months, and had a continuous annual (374 d) 
periodicity (except u2) for almost all sites. Results of percentage area of significant coherence (PASC) of WTC 
indicated that VPD or Rs is the dominant single factor driving variations of ETo across time-frequency space in 
majority sites (66.3 % and 32.0 %, respectively), while u2 is only dominant in limited (11) sites. This quite differs 
from the daily scale, where daily ETo was primarily influenced by daily Rs at 361 sites, daily VPD at 286 sites, and 
daily Ta at 6 sites. Results of MWC showed that the explanation for the time-frequency variations of ETo can be 
further improved using two-factors in 40.7 % of all sites as indicated by absolute increased PASC of MWC by 5 %. 
Overall, we found that the variation of ETo across time-frequency domain can be well explained by using only 
one variable (VPD or Rs) in 59.3 % of all sites, while by combinations of VPD-Rs and VPD-u2 in remaining sites. 
This study provides novel insights into understanding the variations of ETo across multiple time-frequency 
spaces.

1. Introduction

The reference evapotranspiration (ETo), representing the atmo-
spheric evaporation demand at a specific location, is a crucial variable 
for computing crop and vegetation evapotranspiration through the two- 
step crop coefficient-ETo method (Allen et al., 1998; Pereira et al., 2015; 
Qiu et al., 2025). Additionally, the ETo is a critical variable for charac-
terizing local climate by defining the aridity index (AI = P / ETo, P is the 
mean annual precipitation) (Hu et al., 2021; Pour et al., 2020; Qiu et al., 
2022; Xiang et al., 2020). Hence, information of ETo is frequently 
needed in agriculture, hydrology, meteorology, climatology, ecology, 
and environmental science, geophysics, among others (Fan et al., 2018; 
Li et al., 2012; Paredes and Pereira, 2019).

The comprehensive FAO56 Penman-Monteith equation is a 

standardized method for calculating ETo, which adopts a set of meteo-
rological data and incorporates the principle of soil-vegetation interac-
tion (Allen et al., 1998). This Penman-Monteith ETo represents the 
evapotranspiration from a specified reference grass/alfalfa surface and 
can be computed using only meteorological data (Allen et al., 1998). The 
Penman-Monteith ETo is widely applied worldwide (Paredes et al., 
2021; Pereira et al., 2015; Qiu et al., 2015, 2022; Rallo et al., 2021), as 
indicated by that FAO 56 has been cited by over 30,000 citations, where 
majority users utilized the Penman-Monteith ETo (Pereira et al., 2021). 
The calculation of the Penman-Monteith ETo needs full meteorological 
data, including solar radiation (Rs), air temperature (Ta), relative hu-
midity (RH) or vapor pressure deficit (VPD, calculated using Ta and RH), 
and wind speed at 2 m height (u2). Therefore, the variability of ETo is 
affected by these aforementioned meteorological factors and differs 
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regionally (Liu et al., 2024; Zhao et al., 2024). For instance, the most 
sensitive meteorological variable to ETo is RH in the Loess Plateau re-
gion, China (Li et al., 2017), and is Rs in the West Liao River basin, China 
(Gao et al., 2017). In peninsular Malaysia, minimum air temperature 
(Tmin) is the most influencing factor of ETo variabilities (Pour et al., 
2020). In the Siberian River Basin of the Arctic, VPD and u2 are the 
primary drivers of ETo variabilities at most stations, while Ta and Rs have 
relatively minor contributions (Tang and Tang, 2021). Other studies 
showed that Rs and VPD were the primary drivers influencing ETo in 
California, USA (Ahmadi et al., 2022), while Ta and RH had the most 
significant impact on ETo at 18 sites in Iran (Valipour et al., 2017). These 
above results showed that there are high variabilities of ETo in response 
to primary meteorological drivers at varying regions. Therefore, a better 
understanding of the regulation and primary drivers of ETo across 
varying regions is critical to explore the evolution of ETo and is indis-
pensable for developing accurate estimation and forecasting methods for 
ETo (Nourani et al., 2019).

It is noteworthy that the nature and importance of ETo shows sig-
nificant differences at different time scales, for instance, understanding 
the immediate water demand of crops at the daily scale (Pereira and 
Pruitt, 2004); developing effective irrigation schedules over several 
days, monthly or seasonal scale (Citakoglu et al., 2014); and assessing 
the impact of climate change on agricultural production at the annual 
scale (Shi et al., 2017). Therefore, an in-depth investigation of the 
properties and roles of ETo at different time scales is important for 
agricultural water management and climate adaptation research (Tie 
et al., 2018). To identify the key meteorological factors influencing 
daily, monthly, or annual ETo, many scholars have employed a variety of 
methods, including multiple linear or stepwise regression analysis (Gao 
et al., 2017; Wang et al., 2017), (partial) correlation analysis (Han et al., 
2018), principal component analysis (Zarei et al., 2021), path analysis 
(Wang et al., 2023) and machine learning algorithms (e.g. K-nearest 
neighbor (Zhao et al., 2022) and random forest (Ahmadi et al., 2022)), 
among others. In addition, some studies developed a comprehensive 
method to determine the contribution of a factor to ETo by multiplying 
the sensitivity coefficient of a single factor by its relative change rate (Li 
et al., 2017; Yang et al., 2019).

Until now, majority studies concerned the variation of ETo at a 
specific time-scale, such as daily, monthly, or annual scale 
(Khanmohammadi et al., 2017; Liang et al., 2010), aiming to explore the 
patterns and trends of ETo evolution over time and the relation between 
ETo and affecting factors at a specific time scale (Liu et al., 2024). 
However, the ETo and its key affecting factors are varied spanning 
multiple time scales. For instance, on daily scale, Rs is the most impor-
tant meteorological factors affecting ETo in China, followed by Ta (Zhao 
et al., 2022). At the monthly scale, u2 is the most important factor 
affecting ETo in China and Iran, followed by Tmax, Rs, and RH 
(Khanmohammadi et al., 2017; Wang et al., 2017). At the annual scale, 
Ta, RH, and Rs are the major factors in Bangladesh (Jerin et al., 2021). 
However, the variability of ETo and its primary driving force across 
multiple time-frequency domains is seldom explored.

Wavelet transform methods are commonly utilized to detect domi-
nant periodicities (Araghi et al., 2015; Joshi et al., 2016) and multi-scale 
correlations between time series (Chou, 2011; Wu et al., 2019). Among 
them, the widely used continuous wavelet transform method (CWT) can 
not only provide high-resolution analyses within the temporal domain 
and capture the dynamic characteristics of time series across different 
temporal scales, but also elucidate the variability among distinct 
geographic regions (Martínez and Gilabert, 2009; Rhif et al., 2019). At 
the time scale, CWT elucidates the variation and periodic characteristics 
of variables across diverse temporal scales (from seconds to years) (Hu 
and Si, 2021), and decomposes the data into a series of sub-signals with 
varying frequencies for discerning their trends and correlations (Sang, 
2013). At the spatial scale, CWT can be used to evaluate the variability 
in the spatial distribution of variables and their affecting factors, thereby 
determining the degree to which this variability impacts the variables 

(Joshi et al., 2016).
The CWT can also be used to determine wavelet transform coherence 

(WTC), which is a correlation coefficient in the time-frequency domain 
used to quantitively evaluate the degree of linear correlation between 
two nonstationary series in the time-frequency space (Cazelles et al., 
2008). The CWT and WTC have been widely used to investigate the 
spectral characteristics and single primary affecting factor of many 
response variables (Ding et al., 2013; Jerin et al., 2021; Sreedevi et al., 
2022; Sun et al., 2020; Zhou et al., 2022), such as daily streamflow (Tao 
et al., 2024), air pollutant concentration (Kim et al., 2021), groundwater 
level (Wu et al., 2021), crop evapotranspiration (Ding et al., 2013; 
Zhang et al., 2023), and pan evaporation (Ghaemi et al., 2019), but not 
for ETo yet.

Moreover, the variability of many response variables, such as ETo, is 
affected by multiple factors. Therefore, it is necessary to adopt multi-
variate methods to capture the coherence between dependent variables 
and multivariate. Since the traditional multivariate methods cannot 
identify localized information at a specific scale and neglect the corre-
lation between factor variables, these methods may identify redundant 
factor variables, therefore are not the most effective way to explain the 
variation of the dependent variables (Hu et al., 2017). Recently, a 
multiple wavelet coherence method (MWC) has been proposed (Hu and 
Si, 2016), which can capture the multivariate correlations at varying 
time scales, and determine the proportion of the dependent variance 
explained by factor variables at multiple time-frequency space (Hu and 
Si, 2016; Wu et al., 2023). The MWC have been also applied to explore 
the correlation between large rivers of world, soil water content, evap-
oration and their multivariate (Hu et al., 2017; Hu and Si, 2016; Su et al., 
2019), but have not been adopted for ETo yet.

The variability of ETo is affected by various meteorological factors 
and has varying dominant factors at multiple time scales as aforemen-
tioned, and the relationship between ETo and these factors remains 
unknown at multiple time-frequency domains (Mahmoud and Gan, 
2020). ETo and its influencing factors are often time-varying and 
non-stationary (Kang et al., 2022). Simple time- or frequency-domain 
analyses are unable to capture these variations comprehensively, 
whereas time-frequency analyses are able to capture these transient 
features and reveal the hidden patterns and characteristics of these 
complex relationships (Ding et al., 2019), thus providing a more 
comprehensive understanding of the dynamic behaviors and trends of 
ETo.

Compared to a single time scale, time-frequency analysis provides 
information about ETo and its influencing factors in both time and fre-
quency dimensions, and has a comprehensive view to understand the 
ETo changes. In addition, the time-frequency analysis is able to 
decompose the signal and reveal its characteristics at different time 
scales (Feng et al., 2013). This enables researchers to more accurately 
locate and analyze the transient features of ETo, such as mutation point 
(Luo and Xiao, 2014), periodicity (Chong et al., 2019) and trend (Jerin 
et al., 2021).

However, the meteorological factors affecting ETo at multiple time- 
frequency domains have been rare explored at present. In addition, 
majority studies have concerned variability of ETo and its affecting 
factors on a specific time scale at individual site or small regions (Gocić 
et al., 2015; Liang et al., 2010), which constrains a comprehensive un-
derstanding of large temporal-spatial scale processes and their spatial 
heterogeneity.

Therefore, we employed the wavelet transform method to analyze 
the correlations between ETo and varying meteorological factors across 
multiple time-frequency domain from 653 stations across mainland 
China. The objectives of this study were: (1) to detect temporal patterns 
of the ETo and affecting meteorological factors using CWT; (2) to analyze 
the relations between ETo and single meteorological factor across mul-
tiple time-frequency domains in mainland China by using the WTC; (3) 
to determine whether combinations of two factors at each site selected 
based on WTC can further increase the explanation of ETo across 
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multiple time-frequency space by using MWC.

2. Data and methods

2.1. Data collection

In this study, we collected continuously daily meteorological data 
including maximum and minimum temperature (Tmax and Tmin, ◦C), 
mean RH (RHmean, %), sunshine duration (n, h), and wind speed at a 
height of 10 m (u10, m s–1) from the China Meteorological Data Service 
Centre (CMA Meteorological Data Centre, 2019). These strictly qual-
ity–controlled daily data were collected from 653 meteorological sta-
tions across mainland China covering the period 1967–2016. The 
criterion of surface meteorological observation was employed to control 
the quality of all aforementioned measured data. Based on data 
description documents, the accuracy of these collected data after data 
quality control is ~100 %. The missing data was less than 0.5 % for all 
variables, and less than 1.5 % for individual variables for each site (we 
have collected the data from 805 stations, while 653 stations meet this 
criterion). Since the rarity of continuous missing data, all data at a given 
day were excluded if any of the above variables were absent.

We selected VPD, Rs, Ta, and u2 as the key factors for assessing the 
influence of ETo based on the significance of variables on ETo across 
multiple time-frequency space. VPD and Rs are universally acknowl-
edged as primary determinants of ETo. Specifically, VPD, a metric of 

atmospheric aridity, serves as a critical impetus for water evaporation 
(Zhou et al., 2019); Rs, a fundamental component of the surface energy 
balance, exerts a direct influence on both surface temperature and 
evaporation rates (Ahmadi et al., 2022).

Furthermore, Ta influences ETo indirectly by modulating the atmo-
spheric capacity to retain water vapor and the surface energy balance 
(Qiu et al., 2019), and u2 regulates evaporation process by influencing 
airflow dynamics and boundary layer characteristics (Ahmadi et al., 
2022). While they may not always dominate, they often contribute 
additional insights in multivariate modeling frameworks, thereby aug-
menting the explanatory capacity of models. Other factors, such as net 
radiation (Rn), though correlated with ETo, exhibit a strong correlation 
with Rs, potentially giving rise to multicollinearity issues.

The variation of ETo is closely related to climatic regions. To reveal 
the spatial distribution pattern of coherence between ETo and meteo-
rological factors, we divided mainland China into seven climatic zones 
based on the characteristics of the typical vegetation (Yao et al., 2018; 
Zhao et al., 1983 ) (Fig. 1), i.e. mid-temperate arid region (I), 
mid-temperate semi-arid region (II), mid-temperate semi-humid region 
(III), warm temperate semi-humid region (IV), northern subtropical 
humid region (V), marginal tropical humid region (VI), and plateau 
temperate semi-arid region (VII).

Fig. 1. Spatial distribution of significant wavelet transform coherence (WTC) values between the reference evapotranspiration (ETo) and solar radiation (Rs; a), vapor 
pressure deficit (VPD; b), wind speed at 2.0 m height (u2; c), and air temperature (Ta; d) across time-frequency domain. I-VII are mid-temperate arid region, mid- 
temperate semi-arid region, mid-temperate semi-humid region, warm temperate semi-humid region, northern subtropical humid region, marginal tropical humid 
region, and plateau temperate semi-arid region, respectively.
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2.2. The calculation of ETo

The FAO 56 Penman-Monteith equation to determine daily ETo (mm 
d− 1) is as follows (Allen et al., 1998) 

ETo =
0.408ΔRn + γ 900

Ta+273u2VPD
Δ+ γ(1+ 0.34u2)

(1) 

where Ta is the daily mean air temperature (℃; = (Tmax+Tmin)/2); Δ and 
γ are the slope of the vapor pressure curve (kPa ℃− 1) and the psy-
chrometric constant (kPa ℃− 1); u2 is the wind speed at a height of 2 m 
(m s− 1), can be converted from u10; VPD is the daily vapor pressure 
deficit (kPa), which can be calculated from measured Tmax, Tmin, and 
RHmean as follows (Paredes and Pereira, 2019) 

ea =
RHmean

50
/(

0.6108e
17.27Tmax

Tmax+237.3
)
+ 50

/(
0.6108e

17.27Tmin
Tmin+237.3

) (2) 

VPD = es − ea (3) 

where es is the saturated vapor pressure (kPa); ea is the actual vapor 
pressure (kPa). Rn is the daily net radiation (MJ m− 2 d− 1), and can be 
calculated from daily Rs (MJ m− 2 d− 1). The Rs can be calculated based on 
measured n, as (Allen et al., 1998) 

Rs =
(

as+ bs
n
N

)
Ra (4) 

where as (0.25) and bs (0.50) are the regression constants; n is the 
measured sunshine duration (h); N is the maximum possible sunshine 
duration (h); Ra is the extraterrestrial radiation (MJ m− 2 d− 1).

The Rn can be calculated as (Allen et al., 1998) 

Rn = Rns − Rnl (5) 

Rns = (1 − α)Rs (6) 

where Rn is the net radiation (MJ m− 2 d− 1); Rns is the net solar radiation 
(MJ m− 2 d− 1); α is the albedo (0.23 for grass); Rnl is the net longwave 
radiation (MJ m− 2 d− 1), which is obtained from temperature by using 
Stefan-Boltzmann equation. The detailed calculation formulas of N and 
Ra as well as Δ, γ and u2 are described elsewhere (Allen et al., 1998).

2.3. Wavelet method

In this study, we first revealed the temporal patterns of ETo as well as 
meteorological factors (Rs, Ta, VPD, and u2) by using continuous wavelet 
transform (CWT) method. Next, the bivariate coherence and multiple- 
wavelet coherence among ETo and affecting factors were calculated by 
using WTC and MWC.

2.3.1. CWT
The CWT utilizes wavelet functions that are well-localized in both 

time and frequency (Gedalof et al., 2004). This dual localization enables 
the CWT to offer detailed insights into the characteristics of signal 
within the time-frequency domain (Grinsted et al., 2004). For a wavelet 
function Φ(t), after selecting a center frequency, transforming it using 
the scale factor s can then obtained a large set of center frequencies. 
Additionally, a series of basis functions with varying intervals can be 
obtained through the translation factor u by translating on a temporal 
scale. The inner product operation is performed with a segment of the 
original signal (the signal of time series for the ETo) respectively, 
obtaining the extreme value which corresponds to the frequency con-
tained in this interval of the original signal.

Therefore, for the time series xi (i = 1, 2,…, n) with sample length n 
and equal sample intervals Δt, the inner product of the original time- 
domain signal and the wavelet function reflects the component size of 
the signal in the direction of the wavelet function. When the wavelet 

functions are in the time-frequency translation, expansion, and 
contraction, the wavelet functions can be gained with varying center 
frequencies and positions. The CWT can be considerate as the convo-
lution process of the time-domain signal with a specific wavelet function 

Φ
(

t− u
s

)
as the convolution window, as (Maraun and Kurths, 2004) 

Wu
X(s) =

∑n

i=1
xiΦ∗0

(ti − u
s

)
(7) 

Φ
(ti − u

s

)
= N(s)Φ0

(ti − u
s

)
(8) 

where Wu
X(s)is the value of CWT with a translation factor of u = jΔt and 

a scale factor of s; N(s) =
̅̅̅̅
Δt
s

√

is the normalization factor that makes the 
wavelet energy unitary, and detailed calculation is shown elsewhere 
(Grinsted et al., 2004); * indicate complex conjugation.

In this study, we chosen the zero-mean Morlet-wavelet, which is easy 
to obtain information of the instantaneous frequency and phase of the 
signal because its real part is 90◦ phase-shifted from the imaginary part 
and has good resolution in the time-frequency domain (Grinsted et al., 
2004; Torrence and Compo, 1998) and can be calculated as (Grinsted 
et al., 2004) 

Ψ0(t) = π− 1/4eiω0 te− t2/2 (9) 

where ω0 is dimensionless frequency and t is dimensionless time.

2.3.2. Wavelet Transform Coherence (WTC)
The WTC is a method used to quantitatively analyze the degree of 

association between two nonstationary time series in a time-frequency 
space, i.e. it is similar to correlation coefficient in time-frequency 
space (Cazelles et al., 2008). The WTC is particularly useful for identi-
fying periods and locations where two-time series are correlated and the 
degree of this correlation. The expected performance for WTC depends 
on the cost of reducing the magnitude of localized time-frequency 
domain (Grinsted et al., 2004). For time series X and Y, after using 
wavelet transforms WX

u (s) and WY
u (s), wavelet coherence, R2

u [0,1], can 
be defined as (Torrence and Compo, 1998) 

R2
u(s) =

⃒
⃒S
(
s− 1Wu

XY(s)
)⃒
⃒2

S
(

s− 1
⃒
⃒Wu

X(s)
⃒
⃒2
)

S
(

s− 1
⃒
⃒Wu

Y(s)
⃒
⃒2
) (10) 

where S is the smoothing operator defined by the type of wavelet used; u 
is the position time index and: 

S(W) = Sscale(Stime(Wu(s))) (11) 

Wu
XY(s) ≡Wu

X(s)Wu
Y∗(s) (12) 

where Sscale and Stime are corresponding smoothing along the wavelet 
scale axis and in time, which are designed to have a similar footprint as 
the adopted wavelet (Torrence and Compo, 1998). More detailed 
description and computation of WTC are shown elsewhere (Grinsted 
et al., 2004).

In addition, the wavelet phase between Y and an independent vari-
able (X1) can be calculated as 

φ
(

s, u
)

= tan− 1
(

Im(wY,X1 (s, u))
RewY,X1 (s, u)

)

(13) 

where Im and Re are the corresponding imaginary and real parts of 
wY,X1 (s, u). It is noteworthy that wavelet phase between Y and X1 are 
unavailable by using MWC. The results of the phase angle calculations 
help to further understand the relative relationship between ETo and 
primary affecting meteorological factors in terms of temporal variations. 
The phase angle greater (or lower) than zero shows that the variation of 
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ETo is lagging behind (or ahead) of a meteorological factor on a certain 
period.

The frequencies between the ETo and four individual factors are 
analyzed by WTC, which represent the frequency bands where the 
coherence between ETo and these factors is significant (i.e., at the 95 % 
confidence level) across multiple time-frequency space. The frequencies 
are calculated based on time series data by decomposing the time series 
into different time scales and frequencies using wavelet transform. 
Subsequently, the coherence is calculated to identify which frequency 
bands exhibit significant coherence relationships.

2.3.3. Multiple wavelet coherence (MWC)
The WTC can only assess correlation coefficient in time-frequency 

domain between two time-series. However, MWC method can extend 
from two variables to multiple (> 2), providing an effective method to 
explore the synergistic effect of multiple driving factors. For a dependent 
variable Y and multiple factor variables X (≥ 2), the MWC at scale s and 
position u, ρ2

m(s, u), can be determined as (Hu and Si, 2016; Su et al., 
2019) 

ρ2
m

(

s, u

)

= W
̅̅→←̅̅ Y,X(

s, u
) W
̅̅→←̅̅ X,X− 1(

s, u
)

W
̅̅→←̅̅ Y,X

(s, u)∗

W
̅̅→←̅̅ Y,Y(

s, u
) (14) 

where W
̅̅→←̅̅ Y,X

(s, u) is the smoothed cross-wavelet power spectrum ma-

trix between the Y and X; W
̅̅→←̅̅ X,X

(s, u) is the smoothed self-wavelet and 

cross-wavelet power spectrum matrix among X; W
̅̅→←̅̅ Y,Y

(s, u) is the 
smoothed wavelet power spectrum of Y; * is the complex conjugate (Hu 
and Si, 2016; Su et al., 2019).

2.3.4. Data analysis
For WTC and MWC, we adopted Monte Carlo method to calculate the 

wavelet coherence at the 95 % confidence level for each scale (Grinsted 
et al., 2004; Hu and Si, 2016). We calculated percentage area of sig-
nificant coherence (PASC) within the entire wavelet time-frequency 
domain (Hu and Si, 2016), and mean values of significant WTC and 
MWC across varying time-frequency domains (WTCsig and MWCsig). The 
maximum PASC is the highest value of the percentage of the region 
where the coherence is significant (i.e. where ETo and one or more 
variables are most closely linked) across multiple time-frequency space. 
This value indicates the extent to which the coherence between ETo and 
one or more variables is strongest within a particular frequency band. 
The sub-maximum PASC value is the second-highest localized PASC 
value, trailing only the maximum value among all regions of significant 
coherence. It also demonstrates strong coherence between ETo and the 
variable within a specific frequency band, albeit slightly less intense 
than the band corresponding to the maximum value. Calculating the 
maximum PASC assists in identifying which variables are most crucial in 
ETo changes over time and understanding the strength of their coher-
ence with ETo, thereby facilitating further analysis of their influence 
mechanisms on ETo changes. Additionally, calculating the 
sub-maximum PASC holds non-negligible value. In the MWC, if there are 
significant regions of coherence between ETo and multiple variables, the 
maximum and sub-maximum PASC values may correspond to different 
variable combinations. This insight helps us identify which combina-
tions of variables predominantly influence the variation of ETo across 
multiple time-frequency spaces in subsequent studies.

A greater value of WTCsig (or MWCsig) combined with a larger value 
of PASC show more variation of ETo explained by this or multiple 
meteorological variables. Generally, the WTCsig (or MWCsig) increases as 
the numbers of predictor variables increased, but this is not true for all 
the cases for PASC (Hu and Si, 2016). An increased PASC shows a sig-
nificant increment in the ETo variations explained by these predictor 

variables at the 95 % confidence level.

3. Results

3.1. Temporal patterns of ETo

The CWT showed that ETo and all meteorological variables (Rs, Ta, 
VPD, and u2), except for u2, exhibited similar fluctuation patterns across 
various temporal scales for almost all sites. Hence, here we presented 
power spectra of CWT for ETo and Rs, Ta, VPD, and u2 for one site as an 
example, as shown in Fig. 2. The power spectra for ETo as well as all 
affecting factors exhibited frequency ranging from 2 days to 211 
months, and a distinct spectral peak (excluding u2) of ~374 days (1 
year). This suggests a clearly annual scale in the ETo variations and the 
associated meteorological factors, except for u2. For u2, 37.8 % of all 
stations showed an annual scale (~374 days), whereas remaining 375 
stations showed main scale beyond the decade, and annual sub-scale.

3.2. Individual factor controlling the variability of ETo

The relationships between ETo and individual meteorological factors 
across multiple time-frequency domains at 653 meteorological stations 
in China using the WTC are shown in Figs. 1, 3, 4. Fig. 4a shows spatial 
distribution of the factor with the highest WTCsig at each site, and values 
of WTCsig between ETo and each factor are shown in Fig. 1. Results 
showed that the WTCsig for each site ranged from 0.78 to 0.95, and the 
highest WTCsig among the four factors at each site exceeded 0.87. These 
results showed that there was a great co-variability between ETo and the 
individual meteorological factor at each site. In addition, the dominant 
factor influencing ETo across multiple time-frequency domains was Rs in 
48.5 % of all sites (mainly in V and VI zones), followed by VPD in 47.6 % 
of all sites (mainly in II-IV zones), while was Ta (20 sites) and u2 (5 sites) 
for limited stations (Fig. 4a). This is quite different from the daily scale, 
where daily ETo was primary driven by daily Rn in 361 site, daily VPD in 
286 sites and daily Ta in 6 sites based on Pearson-correlation analysis.

The spatial distribution of maximum and sub-maximum PASC values 
for meteorological factors is shown in Fig. 4b-c, and detailed spatial 
distribution of PASC values for each factor is shown in Fig. 3. The 
maximum values of PASC at each site ranged from 45.8 % to 97.8 % 
(mean = 78.9 %), and sub-maximum PASC was 27.8 %-91.9 % (mean =
62.6 %). The maximum and sub-maximum values of PASC were 
observed in 66.3 % (mainly in I-IV and VII zones) and 33.7 % of all sites, 
respectively, for VPD, and in 32.0 % (mainly in V and VI zones) and 

Fig. 2. Morlet wavelet power spectra of reference evapotranspiration (ETo), 
solar radiation (Rs), vapor pressure deficit (VPD), air temperature (Ta), and 
wind speed at 2.0 m height (u2) at Mohe, China (ID 50136).
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58.2 % of all sites, respectively, for Rs. Differently, these maximum and 
sub-maximum values were only observed in 11 (mainly in I zone) and 28 
sites, respectively, for u2 and in 0 and 25 sites, respectively, for Ta. These 
results suggest that on a national scale, VPD or Rs is the primary single 
factor driving variations in ETo across time-frequency domain in ma-
jority sites, while u2 is dominant in only a few sites.

The single meteorological factor that best explains variations of ETo 
(i.e. highest PASC) in varying time-frequency domains are different. 
Therefore, we randomly chosen three stations to represent for each 
single meteorological factor with the highest PASC, as shown in Fig. 5. 
There was significant annual co-variance throughout the entire temporal 
period, consistent with the results of CWT analysis. The phase angles at 
an annual scale also showed that ETo led VPD and Ta (negative phase 
angles) in most regions of China except in Yunnan and Tibet, while 
lagged behind Rs (positive phase angles) in most regions of China 
(Fig. 6). The regions where ETo changes precede VPD and Ta the most 
located in the southern part of the Middle and Lower Yangtze River 
Basin (phase angle of ~160◦; ~5.5 months) and Yunnan (phase angle of 
~60◦; ~2 months), respectively. Conversely, the regions where ETo 
changes lag Rs the most located in the lower reaches of the Lancang 
River (phase angle of ~45◦; ~1.5 months).

3.3. Two factors controlling the variability of ETo

Exploring the impact of individual factors on ETo can enhance 
identification of the primary factors. However, the variability of ETo 
across time-frequency domain are affected by multiple factors. Hence, 

two factors having maximum and sub-maximum PASC were combined 
to evaluate whether they can further enhance the interpretation of ETo 
variations across the multiple time-frequency domain. Among all two- 
factor combinations, the dominant is the VPD and Rs combination 
(90.2 % of all sites), encompassing all regions of China, except for most 
of Northwest China and a small portion of North China, which is 
dominant by combinations of VPD and u2, as well as VPD and Ta 
(Fig. 7b). The MWCsig of two-factor combinations in 653 sites ranged 
from 0.94 to 0.98 (mean = 0.96), which are greater than the corre-
sponding highest WTCsig among four factors by 3.3 %-10.6 % (mean =
0.90) (Fig. 7a). However, the PASC for two predictor variables 
(PASCMWC) are not always greater than the highest PASC for one vari-
able (PASCWTC) (Fig. 7c), which will be detailed explained in the dis-
cussion part. Compared to PASCWTC, the absolute values of PASCMWC 
increased in 78.4 % of all sites (specifically by 5 % in 40.7 % of all sites 
mainly distributed in I, IV, V, and VI zones), whereas decreased in 141 
sites (primarily in II and III zones), indicating that considering more 
than one variable did not contribute to the explanation of ETo variations 
across the time-frequency domains in these 141 sites (Fig. 7c).

Among all two-factor combinations (ETo-VPD-Rs, ETo-VPD-u2, ETo- 
VPD-Ta), when combinations including u2 (mainly in VII zone), the 
absolute increment of PASCMWC over PASCWTC was at least 17 % and can 
reach up to 40 %. In contrast, the values of PASCMWC of ETo-VPD-Ta 
(mainly in I and II zones) reduced compared to PASCWTC of ETo-VPD for 
almost all sites (except for two sites on the Tibetan Plateau), suggesting a 
declined explanation of the ETo series across the multiple time- 
frequency domains. Similarly, reduced values of PASCMWC for ETo- 

Fig. 3. Spatial distribution of percentage area of significant coherence (PASC) values between the reference evapotranspiration (ETo) and solar radiation (Rs; a), 
vapor pressure deficit (VPD; b), wind speed at 2.0 m height (u2; c), and air temperature (Ta; d) across time-frequency domain. I-VII regions are the same as in Fig. 1.

S. Zhao et al.                                                                                                                                                                                                                                    Agricultural Water Management 310 (2025) 109367 

6 



VPD-Rs or ETo-Rs-VPD were also observed in some sites (mainly in I-III 
zones).

4. Discussion

4.1. Temporal patterns and dominant factors

Traditional time-series-based feature importance analysis methods, 
such as SHAP values (Li et al., 2024) and machine learning algorithms 
(Hao et al., 2015), provide a quantitative assessment of the overall 
contribution of individual variables. However, they are limited in 
capturing the dynamic coupling mechanisms of driving factors across 
the time-frequency domain (Guo et al., 2022). To more accurately assess 
the variation characteristics of ETo and its impact on agricultural water 
management, it is essential to analyze its key meteorological drivers 
across multiple time-frequency scales (Yao et al., 2020). This approach 
not only captures the periodic variations of meteorological factors but 
also reveals their dynamic influences on ETo across different temporal 
scales. Such an analysis enhances our understanding of the mechanisms 
underlying ETo variability and provides a robust foundation for devel-
oping more accurate predictive models.

In this study, we employed wavelet coherence analysis to reveal the 
multi-scale, time-varying characteristics of meteorological drivers of 
ETo across China and found that variability of ETo, Rs, Ta, and VPD 
showed continuous annual periodicity for almost all sites using CWT. 

Similar patterns were also observed in the streamflow of many large 
rivers (Su et al., 2019) and PM2.5 concentration (Chen et al., 2020). This 
is not surprising since Rs, Ta, and VPD are evidently influenced by annual 
cycles, as observed in many regions (Chang et al., 2017), such as in the 
Horqin Sandy Land of China (Li et al., 2022). However, the primary time 
scale of u2 extends beyond a decade at 375 stations, since u2 spectrum is 
more complex than that of other factors (Chang et al., 2017). This 
complexity is mainly because u2 is comprehensively affected by topog-
raphy, underlying surface, atmospheric circulation (Cai et al., 2023), 
local climate conditions (Esau et al., 2012), and atmosphere pressure 
gradient (Wu et al., 2018). Therefore, in areas near the ocean or conti-
nental boundaries, u2 is easily affected by local wind fields, resulting in 
pronounced interdecadal oscillations. In contrast, at inland stations far 
from the ocean, the annual oscillation of u2 may be more pronounced 
due to local terrestrial effects or topographic factors (Shen et al., 2021).

Interestingly, VPD is the primary single factor controlling variations 
in ETo across the time-frequency space in 66.3 % of all sites in China, 
followed by Rs (32.0 %) as indicated by highest PASC (Fig. 4b). How-
ever, this dominance varies with specific time scales. For example, at the 
seasonal scale, the contribution of Rs to ETo changes is only 19.7 % in 
China, while RH contributes 14.3 % (Wang et al., 2017). At the annual 
scale, Rs is the most important variable influencing ETo changes in China 
(Gao et al., 2017; She et al., 2017) and California (Ahmadi et al., 2022). 
This nonstationary characteristic suggests that attribution analyses 
conducted at a single temporal resolution may underestimate the 

Fig. 4. Spatial distribution of maximum mean values of significant wavelet coherence across varying time-frequency domains (a), and maximum (b) and sub- 
maximum (c) percentage area of significant coherence (PASC) between reference evapotranspiration (ETo) and solar radiation (Rs), vapor pressure deficit (VPD), 
air temperature (Ta), and wind speed at 2.0 m height (u2). I-VII regions are the same as in Fig. 1.
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influence of key factors during specific periods (Kavetski et al., 2011). 
Annual-scale data are often sparse, which may result in insufficient 
statistical power to accurately assess the influence of individual features 
in feature importance analysis (Huang et al., 2018). At the seasonal 
scale, certain features may be closely linked to seasonal factors, making 
it more challenging to disentangle their effects (Noskov et al., 2024). 
Daily-scale data typically offer higher resolution and larger sample sizes, 
but this increased data volume also necessitates handling extensive 
computational tasks (Oubeidillah et al., 2014), thereby adding 
complexity and elevating computational costs in the analysis. In 
contrast, time-frequency domain approaches, by capturing multi-scale 
interactions, offer a more refined and physically interpretable perspec-
tive for understanding the dynamics of ETo (Koirala et al., 2010).

It is noteworthy that u2 is dominant factor influencing ETo changes 
across the time-frequency domain in 11 sites. Wang et al. (2017) showed 
that u2 is the primary factor at the seasonal scale in China. Gao et al. 
(2017) emphasized the importance of u2 to ETo changes, indicating that 
u2 is the sub-dominant factor affecting seasonal ETo changes. Valipour 
and Sefidkouhi (2018) highlighted that the threefold increase of u2 after 
2000 made it the most important variable influencing annual ETo 
changes in Iran. Collectively, these studies have elucidated the signifi-
cant role of u2 in driving ETo changes.

4.2. Regional disparities and causal analysis

From a regional perspective, the maximum PASC for Rs (yellow dots 
in Fig. 4b) showed a relatively dense distribution in V and VI zones, 
indicting that Rs is the primary influencing factor in these areas. This is 
mainly because these zones are located in the hot and humid regions of 
southern China, where the significant variability of Rs results in its 
contribution being higher than that of other factors (Ahmadi et al., 
2022). Other studies have pointed out that in the humid subtropical and 
tropical regions of China, Rs is the most important controlling factor for 
ETo (Fan and Thomas, 2013; Liu et al., 2024; Yin et al., 2010). Similar 
results have been confirmed in the Poyang Lake (Ye et al., 2014) and the 
Sichuan Basin (Feng et al., 2014) where Rs has been observed to 
significantly influence ETo.

The maximum PASC for VPD (green dots in Fig. 4b) are mainly 
distributed in III, IV, V zones, and the central part of VII zone, suggesting 
that VPD is the main influencing factor for ETo in these areas. These 
climatic zones are widely distributed and mainly concentrated in North 
and South China, with some regions concentrated in Northeast China 
and the central Tibetan Plateau. Dong et al. (2024) indicated that VPD 
shows a significant upward trend in the temperate regions of northern 
China. Additionally, due to the influence of Asian continental humidity 

Fig. 5. The WTC results for the reference evapotranspiration (ETo) and single meteorological factor (solar radiation (Rs; a-c), vapor pressure deficit (VPD; d-f), and 
wind speed at 2.0 m height (u2; g-i)) that best explains (i.e. having highest PASC) variations of ETo in varying time-frequency domains in random selected sites. The 
climate zone for each station are as follows: 54836 (IV), 58343 (V), 59316 (VI), 50136 (III), 58806 (V), 54660 (IV), 51639 (I), 51756 (I), 51855 (I). I-VII regions are 
the same as in Fig. 1.
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(Li et al., 2022), dry soil conditions (Deng et al., 2019), and freeze-thaw 
cycles (Chang et al., 2024), the variation of VPD in these regions is 
significant, making VPD more influential on ETo compared to other 
factors. This may also be related to terrain, as the sensitivity of VPD to 
ETo is higher in plains and mountainous areas than in coastal regions 
(Zhao et al., 2014).

The increase of VPD in tropical and temperate climates are more 
likely to result in positive ETo changes than northern climates 
(Massmann et al., 2019). Li et al. (2021) indicated that the contribution 
of VPD to ETo is significantly enhanced when temperature exceeds 15℃. 
These studies all confirm the strong coherence between VPD and ETo in 
V zone (South China). Notably, this result does not contradict the high 
coherence of Rs and ETo in different sites within V zone. Because 
different regions, even under the same climate conditions, may have 
different dominant factors, and the effects of climate change on ETo can 
sometimes be contradictory (Pour et al., 2020).

Regions where u2 has a significant effect on ETo are mainly located in 
I and VII zones (Northwest Plateau region). Numerous studies have 
confirmed the strong influence of u2 on ETo changes in these areas (Ge 
et al., 2021; Li et al., 2014; Zheng and Wang, 2014). This is because the 
surface roughness of arid underlying surface is increased by irrigated 
agriculture, leading to a significant decrease in u2 (Fu et al., 2022; Liu 
et al., 2024). The decreases of u2 offset the upward effect caused by 
elevated Ta, which significantly contributes to the decline in ETo (Wang 
et al., 2013). However, overall, the variability of ETo is rarely dominated 
by u2. This can be attributed to the fact that u2 primarily affects water 

vapour transport and the controlling of the boundary layer conductance 
(McVicar et al., 2012; Tong et al., 2022).

Another result pointed out that the phase angles of VPD and Ta with 
ETo are greater than 0 at the majority of sites, indicating that ETo 
changes lag behind those of VPD and Ta. This is likely because when ETo 
is fully decoupled from environmental factors, it reaches equilibrium 
with environmental conditions and becomes synchronized with changes 
in Rs, no longer being controlled by VPD. Therefore, when aerodynamic 
conductance is greater than 0, the lag between Rs and VPD results in a 
corresponding lag between ETo and VPD (Zhang et al., 2014).

4.3. Synergistic efficacy of two factor combinations

Increasing the number of factor variables increased the MWCsig, but 
not for PASCMWC, due to the simultaneous increase in the statistical 
significance threshold (Hu and Si, 2016; Ng and Chan, 2012). This 
reduction in PASCMWC mainly occurred when there was strong collin-
earity between the additional and the existing variables (Hu et al., 2017; 
Vásquez et al., 2022). Such collinearity reduces the explanation of var-
iations for response variables since the effect of additional factors in any 
specific time-frequency domain may have been included by the existing 
factors (Hu and Si, 2016).

In this study, greater (17 %-40 %) increment of PASCMWC over 
PASCWTC when combinations including u2 was mainly contributed to 
less collinearity between u2 and other factors, such as VPD. Additionally, 
u2 is easily affected by complex terrain structures (Wang et al., 2022a), 

Fig. 6. Spatial distribution of phase angle between reference evapotranspiration (ETo) and vapor pressure deficit (VPD; a), solar radiation (Rs; b), air temperature (Ta; 
c), and wind speed at 2.0 m height (u2; d) at period of 374 d. I-VII regions are the same as in Fig. 1.
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which may significantly influence wind flow and distribution by altering 
the wind speed profile, resulting in significantly local changes in u2 
(Wang et al., 2022b), thus greatly affects ETo. McVicar et al. (2012)
reviewed the recent slowdown in global near-surface winds and 
emphasized that one of its obvious effects is to partially offset any 
evaporation increase at high altitudes. Their study showed that land 
static force is a universal global phenomenon, emphasizing the contri-
bution of u2 to ETo.

By the contrast, there are strong correlations between Ta and VPD, as 
VPD is a composite factor of Ta and RH, leading to a reduced PASCMWC 
for ETo-VPD-Ta. In addition, relative strong collinearity between Rs and 
VPD in some sites leads to either a reduction or a small increment (<
5 %) in PASCMWC for ETo-VPD-Rs (Fig. 7c). For practice, an additional 
significant factor in MWC should result in a PASCMWC increment greater 
than 5 % (Hu et al., 2017). This indicates that in 59.3 % of all sites, one 
variable (VPD or Rs) is sufficient to explain the variation of ETo across 
time-frequency domains (Fig. 7c).

5. Conclusions

Using wavelet analysis at 653 meteorological stations in China, we 
identified temporal patterns between ETo and each factor with CWT and 
analyzed the coherence of single and two factors with ETo. The study 
showed that the ETo, Ta, Rs, and VPD all exhibited annual periodicity, 
with a significant spectral peak at 1 year, reflecting the dominant in-
fluence of seasonal climate variability on these variables. In contrast, 

only 37.8 % of all sites showed an annual periodicity for u2, while 
62.2 % exhibited periodicities exceeding ten years. This highlights the 
complexity and regional variability of u2 dynamics. Additionally, we 
found significant disparities in the coherence between ETo and meteo-
rological factors across China. The PASC results revealed that VPD had 
the highest PASC value in 433 sites (66.3 %), while Rs dominated at 209 
stations (32 %). But u2 was the dominant factor at only 11 stations 
(1.7 %). This suggests that VPD and Rs are the primary drivers of ETo 
changes. Phase angle analyses indicated that, in most regions of China 
(excluding Yunnan and Tibet), the ETo changes lag behind VPD and Ta, 
but led Rs across the multiple time-frequency domain. This suggests that 
the influence of different climatic factors on ETo varies temporally across 
regions, revealing the dynamic relationship between ETo and meteoro-
logical drivers. The MWC results showed that the response of ETo 
changes varies across different sites. At 59.3 % of all sites, ETo changes 
are more easily influenced by a single factor, which is sufficient to 
explain ETo changes. However, at 40.7 % of all sites, the combination of 
two factors (VPD-Rs and VPD-u2) significantly enhance the coherence 
with ETo. This indicates that interactions between factors can amplify or 
attenuate their effects on ETo variability, showing the diversity and 
complexity of ETo driving mechanisms across different regions. This 
study provides novel insights into understanding the variations of ETo 
across multiple time-frequency domains.

Fig. 7. Spatial distribution of maximum mean values of significant two-factor multiple wavelet coherence (MWC) across varying time-frequency domains (a), 
percentage area of significant coherence (PASC) values of MWC (b), and differences between PASC of MWC and maximum PASC of WTC (PASC(MWC-WTC)) (c). I-VII 
regions are the same as in Fig. 1.
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