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H I G H L I G H T S  

• We proposed a new sunshine duration converting method (n_new) based on forecast temperature and weather types. 
• The n_new method produced better estimates than the common converting method using only weather types. 
• The generalized sunshine–based Rs model incorporating the n_new method improved the accuracy for forecasting daily Rs.  
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A B S T R A C T   

Accurate forecasting of daily global solar radiation (Rs) is important for photovoltaic power and other sectors. 
Numerical models coupled with public weather forecasts information is a feasible method to predict short–term 
daily Rs. Here, we propose a novel sunshine duration converting method (n_new) based on forecasted air tem-
perature and weather types data, which we validated using measurements from 86 radiation stations. A widely- 
used, generalized sunshine–based Rs model (Rs_n) was then coupled with the n_new method (Rs_n new) for fore-
casting daily Rs. This was further compared to Rs_n incorporated with the common sunshine duration converting 
method (n_com) using only weather types data (Rs_n com) and a recently developed generalized temperature–based 
model (Rs_T). The results indicated that the n_new method produced better estimates than the n_com method, as 
indicated by increased mean correlation coefficient (R; 13.0%–24.5%) and index of agreement (dIA; 2.9%–9.5%) 
and decreased mean root mean squared error (RMSE; 12.8%–14.8%) for the 1–7 days lead time over 86 sites. The 
Rs_n new model improved the accuracy for 98% of sites when compared to the Rs_n com model, with mean values of 
R and dIA increasing by 7.7%–11.0% and 2.1%–4.8% and that of RMSE decreasing by 9.7%–12.5% for the 1–7 
days lead time. The results suggest that the Rs_n new model is advantageous in short–term forecasts. The Rs_n new 
model ranked first for 52.3%–74.4% of sites for the 1–7 days lead time, followed by the Rs_T model (25.6%– 
47.7%). Moreover, there was generally a better performance for the Rs_n new model to forecast daily Rs at a longer 
lead time. Therefore, the Rs_n new model using weather forecasts information is highly recommended to forecast 
short–term daily Rs.   

1. Introduction 

To achieve carbon neutrality and sustainably support the environ-
ment and human activities, investments in research and adoptions of 
renewable energy from carbon–free sources, such as solar radiation, 

have been extensively carried out [1–4]. Solar radiation (Rs), as one of 
the most promising clean, renewable, and sustainable resources in na-
ture, has been extensively utilized worldwide to improve the global 
energy structure [5–9]. Hence, accurate Rs information is of vital 
importance in application and design of solar energy systems [8,10–12]. 
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In addition, Rs is also the critical variable for terrestrial energy balance, 
meteorological dynamic, hydrological cycle, agricultural management, 
ecosystem stability, epidemiology spread, and industrial development 
[13,14]. Since Rs measurements face challenges, great efforts have been 
carried out to predict Rs based on numerical models using widely 
available meteorological data [8,15]. 

A number of models have been proposed to estimate Rs, and 
empirical models are the most extensively applied as a result of lower 
requirements for computational costs and programming skills and easily 
accessible input variables [8,16,17] compared to other types of models, 
such as machine learning [18,19] and remote sensing methods [20]. The 
empirical models are generally divided into sunshine– [21–24], tem-
perature– [14,25,26], cloudiness–based [27,28], and comprehensive 
models [7,9,11] depending upon availability of data and research ob-
jectives [7,29]. Among them, sunshine– and temperature–based models 
have been extensively implemented because of good correlations be-
tween Rs and sunshine duration / air temperature (Ta, ℃) [12,17]. The 
notable sunshine–based Angstrom–Prescott model [30,31], which was 
constructed on the basis of linear correlation between Rs and the pro-
portion of actual sunshine duration (n, h) to the maximum possible 
sunshine duration (N, h), has been extensively applied to estimate Rs and 
was suggested in FAO56 [21]. Subsequently, quadratic, cubic, trigono-
metric, logarithmic, or exponential relationships between Rs and n/N 
were proposed for sunshine–based models [7,32]. Liu et al. recently 
compared the 32 existing sunshine–based Rs models and revealed that 
the model proposed by Newland [33] provides a compromise between 
model accuracy and complexity [34]. However, n data are not always 
widely available. On the contrast, the temperature data are readily 
measured and recorded worldwide. Hence, the temperature–based 
models are also widely utilized, which are generally developed on the 
basis of different combinations of mathematic modes and various input 
variables of Ta [7,29]. For instance, the notable H–S model considers Rs 
as a function of diurnal temperature range (Td = Tmax–Tmin, ℃) [35]. 
Bristow and Campbell [36] established an exponential relationship be-
tween Rs and Td to improve model accuracy. Fan et al. [16] enhanced Rs 
estimation by introducing the mean air temperature (Tmean, ℃). Qiu 
et al. [8] recently proposed four temperature–based Rs models by 
incorporating maximum air temperature (Tmax, ℃), minimum air tem-
perature (Tmin, ℃), Td, and Tmean after reviewing 78 existing temper-
ature–based models. 

Short–term forecasting information of daily Rs is important for 
photovoltaic power, solar energy resource management, and other sec-
tors. Mathematic models combined with public weather forecasting in-
formation may be a feasible approach to predict short–term daily Rs 
because public weather forecasts are easily accessible to public world-
wide, providing data of Ta, weather types, and wind speed. The fore-
casting accuracy depends not only on the quality of the models but also 
on the quality of the input data. Generally, sunshine–based Rs models 
produce an extraordinary performance in estimating daily Rs and 
outperform the temperature–based models using measured meteoro-
logical data [17,37,38]. Conversely, public weather forecasts provide 
more accurate Ta information than weather types (can be converted into 
n) [39–41]. Hence, it is unclear which type of models is more appro-
priate for forecasting daily Rs. In addition, the former n converting 
method is based on only data of weather types, suggesting a great un-
certainty. Since weather forecasts can provide reasonable estimates of Ta 
[39–41], and Td can indirectly reflect the cloudiness [25,36], we seek to 
reveal whether the accuracy of converted n can be further improved 
based on forecasted weather types and Ta data, in turn improving Rs 
forecasts. Therefore, the main objectives for this study were to: (1) 
propose a novel n converting method using both forecasted weather 
types and temperature data; (2) evaluate the performance of daily Rs 
forecasted from either temperature–based Rs model or sunshine–based 
Rs model integrated with common and proposed n converting methods, 
with the goal to recommend the best model to be adopted for forecasting 
short–term daily Rs. 

2. Materials and methods 

2.1. Datasets 

Measured daily meteorological data consisting of Rs (MJ m− 2 d–1), 
Tmax and Tmin (℃), and n (h) were collected from 86 radiation stations in 
China during the period 2015–2019. All data applied in this study have 
been strictly controlled for quality by the China Meteorological Data 
Service Centre (https://data.cma.cn). In addition, data for a given day 
were removed when (1) daily Rs higher than corresponding extrater-
restrial radiation (Ra, MJ m− 2 d–1) and (2) n = 0, while Rs > 10 MJ m− 2 

d–1. To successfully operate the applied logarithmic sunshine–based Rs 
model, the data of n equal to 0 were set to 1 × 10–7. 

The public weather forecasts data for these 86 sites were obtained 
from the website of Weather China (https://www.weather.com.cn) for 
1–7 days lead time, and from the website of Historic Weather 
(https://www.tianqihoubao.com) for current–day (i.e. current day 
weather recorded at the end of day). These data included daily Tmax and 
Tmin and weather types during the period 2015–2019. The daily data for 
a given day were removed when (1) any of data of Tmax, Tmin, and 
weather types from weather forecast were missing; (2) Tmax < Tmin; and 
(3) measured Tmax, Tmin, n and Rs from radiation stations were missing. 

2.2. Rs estimation models 

2.2.1. Generalized temperature–based Rs model 
Qiu et al. [8] recently proposed a new temperature–based model, 

after testing 78 existing models, which was used to estimate daily Rs 
(noted as Rs_T) in this study: 

Rs T = a1Tmean +
[
a2 + a3Tmax + a4Tmin + a5(Td)

2
+ a6(Tmax)

2
+ a7(Tmax)

2Td

+ a8Tmax(Td)
2]Ra

(1)  

where a1–a8 are the empirical parameters with generalized values of 
0.4397, –0.0363, 0.0603, –0.0944, –0.0024, 0.0008, 0.0003, and 
–0.0001, respectively [8]; Ra for a given day at any geographic latitude 
(φ, rad) can be calculated as [21]: 

Ra = 37.6dr(ω0sinφsinδ + cosφcosδsinω0) (2)  

dr = 1+ 0.033cos
(

2π
365

J
)

(3)  

ω0 = arccos[ − tan(φ)tan(δ)] (4)  

δ = 0.4093sin
(

2π
365

J − 1.39
)

(5)  

where ω0 and δ are the sunset hour angle and the solar declination (rad), 
respectively; dr is the inverse relative distance between the Sun and the 
Earth; and J is Julian day. 

2.2.2. Generalized sunshine–based Rs model 
Liu et al. [34] recently evaluated 32 sunshine–based models (noted 

as Rs_n) and suggested that the model proposed by Newland [33] pro-
vides a compromise between model accuracy and complexity, which 
was used here: 

Rs n =
[
b1 + b2

n
N
+ b3ln

(n
N

)]
Ra (6)  

N =
24
π ω0 (7)  

where b1–b3 are the empirical parameters, and their generalized values 
reported are 0.2171, 0.5183, and 0.0022, respectively [34]. 
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2.3. Improved method for estimating sunshine duration using public 
weather forecasts 

The common method to estimate n from weather forecasts is con-
verting from the only weather types data (labeled ncom) [42,43], as 
follows: 

ncom = αN (8)  

where α is the coefficient of converting from weather types to n. The 
values of 0.9, 0.7, 0.5, 0.3, and 0.1 for α are recommended corre-
sponding to clear, clear to cloudy, cloudy, overcast, and rainy days 
[42,43]. 

We noted that weather forecasts can provide reasonable accuracy for 
Tmax and Tmin [43], and there is a robust relationship between n and Td 
based on pooled measured data from 86 stations during 2015 and 2019 
(Fig. 1). Hence, we proposed an improved n converting method (noted 
as nnew) incorporating Td, α, and N, which can be easily obtained from 
public weather forecasts: 

nnew = max((c1α + c2Td + c3)N, 0) (9)  

where c1–c3 are empirical coefficients. The nnew was calibrated based on 
pooled current–day weather data (Td and weather types) from all 86 
sites to obtain the generalized c1–c3 (0.4914, 0.0283, and –0.0272, 
respectively). The estimated values of ncom and nnew for the 1–7 days 
lead were then used as inputs for the generalized sunshine–based Rs 
model to predict daily Rs (noted as Rs_n com, and Rs_n new, respectively). 
The flowchart of computational procedure for improving forecasted 
accuracy of sunshine–based Rs model by integrating the nnew converting 
method is shown in Fig. 2. 

2.4. Evaluation indicators 

Four statistical indicators were used to assess the model perfor-
mance, i.e. the regression coefficient (b), the correlation coefficient (R), 
the root mean squared error (RMSE), and the index of agreement (dIA) 
[44,45]: 

b =
∑n

i=1
Mi Pi

/
∑n

i=1
M2

i (10)  

R =

∑n
i=1(Mi − M)(Ei − E)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Mi − M)

2 ∑n

i=1
(Ei − E)2

√ (11)  

RMSE =

[
1
n
∑n

i=1
(Ei − Mi)

2

]0.5

(12)  

dIA = 1 −
∑N

i=1(Mi − Ei)
2

∑N
i=1(|Ei − M| + |Mi − M| )

2 (13)  

where Mi and M are measured values and their averages; and Ei and E are 
the estimated values and their averages. A better performance can be 
generated when b, R, and dIA ≈ 1.0 and RMSE ≈ 0 [8,46]. 

To better compare the performance of different models, we further 
applied global performance indicator (GPI) to rank the model perfor-
mance of more than two models [17,32]: 

GPIi =
∑4

j=1
αj
(
gj − yij

)
(14)  

where j is the number of statistical indicators, αj equals to 1 for RMSE, 
and –1 for b, R, and dIA; gj denotes the median of scaled values of sta-
tistical indicator j; yij denotes the scaled values of the statistical in-
dicators j for model i. Greater GPI value shows better model accuracy. 

3. Results and discussion 

3.1. Performance of Rs estimated with generalized Rs_T and Rs_n models 
using measurements 

The performance of generalized Rs_T and Rs_n models was firstly 
evaluated using measured data from each radiation station, as shown in 
Fig. 3. Both types of models can reasonably estimate daily Rs over all 
stations. The mean values of b, R, RMSE, and dIA over the 86 radiation 
stations were 0.987, 0.841, 4.315 MJ m− 2 d–1, and 0.893, respectively, 
for the generalized Rs_T model. Likewise, they were 1.025, 0.939, 2.740 
MJ m− 2 d–1, and 0.956, respectively, for the generalized Rs_n model. The 
above statistical indicators and Fig. 3 also revealed that better perfor-
mance was generally observed for the generalized Rs_n model than the 
Rs_T model for majority stations (98% of all stations), which is in line 
with previous studies [17,37,38]. Trnka et al. [47] reported that the Rs_T 
models outperformed the cloud–, rainfall–, and temperature–based 
models in lowlands of the Czech Republic and Austria. Feng et al. [38] 
also showed that Rs_n models have better performance than Rs_T models 
in China. Overall, the results suggest that better model performance can 
be generated from generalized sunshine–based Rs model than temper-
ature–based model when using measured data. Hence, the predicting 
accuracy of daily Rs is highly depended on forecasted Ta and weather 
types, as described in the following sections. 

3.2. Comparison of Tmax and Tmin between the weather forecasts and 
measurements 

Forecasting accuracy for daily Tmax and Tmin is critical when pre-
dicting daily Rs. Hence, Tmax and Tmin for 1–7 days lead time provided 
from the weather forecasting system were evaluated with measurements 
from the radiation stations, as shown in Fig. 4 and Table 1. Results 
indicated that the weather forecasts can well predict the daily Tmax and 
Tmin for 1–7 days lead time for the 86 sites (Fig. 4), although there was a 
decreasing trend of accuracy as lead time increased (Fig. 4, Table 1). For 
Tmax forecasts, values of b, R, RMSE, and dIA varied from 0.898 to 1.044, 
0.875–0.994, 1.275–4.303 ◦C d–1, and 0.933–0.997, respectively, for a 
1–day lead time to 0.841–1.021, 0.788–0.974, 2.201–5.290 ◦C d–1, and 
0.871–0.986, respectively, for a 7–day lead time in the 86 sites (Fig. 4). 

Fig. 1. Correlation between sunshine duration and diurnal temperature range 
based on pooled data from 86 radiation stations in China during 2015 
and 2019. 
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For Tmin estimation, they were varied from 0.862 to 1.056, 0.856–0.991, 
1.173–5.314 ◦C, and 0.917–0.995, respectively, for the 1–day lead time 
to 0.850–1.070, 0.833–0.973, 1.778–5.755 ◦C, and 0.900–0.986, 
respectively, for the 7–day lead time in the 86 sites (Fig. 4). 

The results here supported the finding that the weather forecasting 
system can accurately forecast both daily Tmax and Tmin, which is in line 
with previous studies [8,40,48,49]. For instance, Yang et al. [40] re-
ported that the values of RMSE and R ranged 2.52–5.03 ◦C and 
0.88–0.97 for Tmax and 1.24–4.76 ◦C and 0.95–0.99 for Tmin for the lead 
times of 1–7 days at eight cities during 2012–2014. The forecasting 
accuracy of Tmax and Tmin was also reasonable for the 1–7 days lead time 

during 2012–2016 in an assessment of forecasting performance for 61 
cities distributed in varying climate zones of China [40]. These studies 
show that Tmax and Tmin with an 1–7 days lead time can be widely well 
forecasted, which will benefit forecasting daily Rs for both temperature– 
and sunshine–based models. 

3.3. Performance of common and novel sunshine duration converting 
methods 

Performance of sunshine–based Rs models highly depends on the 
accuracy of converted n from weather forecasts. Fig. 5 and Table 2 show 

Fig. 2. Flowchart of computational procedure for improving forecasted accuracy of sunshine-based Rs model in this study. Rs is global solar radiation, n is the 
sunshine duration, N is the maximum possible sunshine duration, α is the coefficient of converting from weather types to n. Td is diurnal temperature range, Tmax and 
Tmin is the maximum and minimum temperature. b1 ~ b3 (0.2171, 0.5183, and 0.0022, respectively) and c1 ~ c3 (0.4914, 0.0283, and –0.0272, respectively) are 
empirical coefficients. 

Fig. 3. Performance of solar radiation estimated by the generalized temperature– (Rs_T) and sunshine–based models (Rs_n), respectively, driving by measured data 
from 86 radiation stations in China during the period 2015–2019. b is the slope of the regression function; R is the correlation coefficient; RMSE is the root mean 
squared error; and dIA is the index of agreement. 
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the comparison between the ncom and nnew methods for the 86 sites. 
Overall, the ncom method underestimates n by 20%–34% (Table 2), and 
the mean values of R, RMSE, and dIA for the ncom method were within the 
ranges of 0.326–0.609, 3.256–4.204 h d–1, and 0.514–0.732, respec-
tively, for the 1–7 days lead time over 86 sites (Table 2). In addition, the 
predicted accuracy was decreased as lead time increased. Generally, the 
nnew method provided an acceptable performance and improved the 
accuracy relative to the ncom method for the 1–7 days lead as indicated 
by b closer to 1.00, higher R and dIA, and lower RMSE (Table 2, Fig. 5). 
Overall, the nnew method increased mean R and dIA by 13.0%–24.5% and 
2.9%–9.5%, and decreased mean RMSE by 12.8%–14.8%, for the 1–7 
days lead time compared to the ncom model for the 1–7 days lead time 
(Table 2). 

The nnew method improves the n prediction mainly by introducing Td 
into the calculation, which consists with the pre–analyzed close rela-
tionship between daily n and Td based on measurement from the 86 
stations during 2015 and 2019 (Fig. 1). This is because Td is directly 
correlated with atmospheric transmittance [36] and can serve as an 
indicator of cloudiness by assuming that the clear skies will increase 
Tmax due to higher shortwave radiation while decrease Tmin due to 
higher transmissivity [25,50]. Therefore, Td is also commonly intro-
duced in many temperature–based Rs models. For instance, Qiu et al. [8] 

Fig. 4. Statistical indicators for forecasting performance of maximum (left) and minimum (right) temperatures for 1–7 days lead time during the period 2015–2019 
for 86 sites in China. b is the slope of the regression function; R is the correlation coefficient; RMSE is the root mean squared error; and dIA is the index of agreement. 

Table 1 
The overall goodness of fit statistical indicators when comparing the daily values of maximum (Tmax) and minimum (Tmin) air temperatures from weather forecasts and 
radiation stations measurements for 1–7 days lead time during the period 2015–2019. Values are the means ± SD (n = 86). b is the slope of the regression function; R is 
the correlation coefficient; RMSE is the root mean squared error; dIA is the index of agreement.   

Indicator Lead days (day) 

1 2 3 4 5 6 7 

Tmax b 0.981 ± 0.020 0.978 ± 0.023 0.978 ± 0.022 0.975 ± 0.025 0.972 ± 0.028 0.968 ± 0.029 0.964 ± 0.029 
R 0.974 ± 0.024 0.968 ± 0.027 0.963 ± 0.030 0.954 ± 0.035 0.946 ± 0.041 0.938 ± 0.043 0.928 ± 0.046 
RMSE 
(◦C d–1) 

1.978 ± 0.542 2.215 ± 0.498 2.386 ± 0.488 2.675 ± 0.482 2.886 ± 0.523 3.164 ± 0.572 3.424 ± 0.578 

dIA 0.986 ± 0.013 0.982 ± 0.015 0.980 ± 0.017 0.975 ± 0.020 0.971 ± 0.024 0.966 ± 0.025 0.960 ± 0.028 
Tmin b 0.969 ± 0.030 0.965 ± 0.036 0.965 ± 0.040 0.963 ± 0.042 0.961 ± 0.044 0.958 ± 0.045 0.945 ± 0.043 

R 0.969 ± 0.018 0.962 ± 0.020 0.960 ± 0.021 0.955 ± 0.023 0.954 ± 0.023 0.951 ± 0.024 0.947 ± 0.024 
RMSE 
(◦C d–1) 

2.423 ± 0.799 2.641 ± 0.784 2.687 ± 0.792 2.842 ± 0.802 2.879 ± 0.779 2.962 ± 0.809 3.049 ± 0.768 

dIA 0.983 ± 0.010 0.979 ± 0.011 0.979 ± 0.012 0.976 ± 0.013 0.975 ± 0.013 0.973 ± 0.014 0.971 ± 0.014  

Fig. 5. Forecasting performance of converted sunshine duration from weather 
forecasts based on common (left) and improved sunshine duration models 
(right), respectively, for 1–7 days lead time during the period 2015–2019 for 
the 86 sites in China. b is the slope of the regression function; R is the corre-
lation coefficient; RMSE is the root mean squared error; and dIA is the index 
of agreement. 
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found that 63% of collected temperature–based Rs models (totally 78) 
employed Td as an input variable. Almorox et al. [25] indicated that the 
temperature–based Rs models including only Tmax, Tmin, or Tmean as 
single input variable of temperature generated greater deviation than 
those using Td. Besides, another convincing reason to incorporate Td into 
forecasting n is that Ta is generally accurately forecasted in the weather 
forecast systems, as shown in this study (Fig. 3) and elsewhere 
[8,41,48]. Thus, the potential advantage of sunshine–based Rs model 
using newly developed n estimation method involving Td was 
demonstrated. 

3.4. Comparison of Rs forecasted from generalized temperature– and 
sunshine–based models using public weather forecasts 

Performance of daily Rs forecasted from Rs_T, Rs_n com, and Rs_n new 
was evaluated using measurements from the 86 radiation stations, as 
shown in Table 3 and Fig. 6. The Rs_n com model overestimated daily Rs 
by 9.0%–13.5%, and mean values of R, RMSE, and dIA were within the 
ranges of 0.588–0.741, 5.264–6.572 MJ m− 2 d–1, and 0.705–0.798, 
respectively, for the 1–7 days lead time over the 86 sites (Table 3). 
Compared to the Rs_n com model, the Rs_n new model improved the ac-
curacy for 98% of the stations for 1–7 days lead time and produced an 
acceptable accuracy for forecasting daily Rs with an overestimation of 
only 3.3%–4.5% (Table 3, Fig. 6). Overall, the Rs_n new model increased 
mean R and dIA by 7.7%–11.0% and 2.1%–4.8%, respectively, and 
decreased mean RMSE by 9.7%–12.5%, for 1–7 days lead time compared 
to the Rs_n com model (Table 3). The Rs_T model slightly underestimated 
daily Rs by 2.1%–4.3% (Table 3), and mean values of R, RMSE, and dIA 

were 0.613–0.790, 4.744–6.086 MJ m− 2 d–1, and 0.752–0.855, respec-
tively, for the 1–7 days lead time over the 86 sites. The overall accuracy 
of the Rs_T model was superior to that of the Rs_n com model, as indicated 
by b closer to 1.00, higher R and dIA, and lower RMSE. However, the Rs_T 
model produced higher mean RMSE and lower mean R, but higher mean 
dIA and closer b relative to the Rs_n new model. In addition, similar to 
forecasted Tmax, Tmin, and converted n by the ncom and nnew models, the 
forecasted accuracy of daily Rs from all the three models decreased 
gradually as forecasting lead time increased in all sites (Fig. 6, Table 3). 
For instance, mean values of R and dIA for the Rs_n new model decreased 
from 0.520 to 0.918 and 0.565–0.949, in a 1–day lead time to 
0.364–0.830, and 0.458–0.895, respectively, in a 7–day lead time, while 
RMSE increased from 3.250 to 7.863 to 4.294–7.820 MJ m− 2 d–1 

(Fig. 6). 
The GPI was further employed to rank the model performance for 

forecasting daily Rs. Overall, the Rs_n new model was advantageous and 
outperformed the other two models in a short–term forecast for as many 
as 52.3%–74.4% of the stations for the 1–7 days lead time. The Rs_T 
model ranked second in terms of dominance, ranking top for 25.6%– 
47.7% of all stations for the 1–7 days lead time. Only in few cases the Rs_n 

com model outperformed the other two models (Fig. 7). In addition, the 
percentage of stations ranking first generally showed an increased trend 
as lead time increased for the Rs_n new model but a decreased trend for the 
Rs_T model, indicating a better performance for the Rs_n new model to 
forecast Rs at a longer lead time. Although the Rs_n new model is not 
superior to the other two models for all the sites reported here, the 
potential of sunshine–based Rs model pronounced in the context of 
continuous improvement of weather forecasting accuracy and n 

Table 2 
Overall forecasting performance for sunshine duration based on the common (ncom) and improved (nnew) methods for 1–7 days lead time during the period 2015–2019. 
Values are the means ± SD (n = 86). b is the slope of the regression function; R is the correlation coefficient; RMSE is the root mean squared error; dIA is the index of 
agreement.  

Models Indicator Lead days (day) 

1 2 3 4 5 6 7 

ncom b 0.798 ± 0.103 0.783 ± 0.105 0.773 ± 0.108 0.763 ± 0.119 0.749 ± 0.122 0.738 ± 0.124 0.664 ± 0.127 
R 0.609 ± 0.094 0.572 ± 0.092 0.546 ± 0.088 0.488 ± 0.084 0.446 ± 0.086 0.400 ± 0.081 0.326 ± 0.085 
RMSE 
(h d–1) 

3.256 ± 0.401 3.383 ± 0.381 3.470 ± 0.364 3.660 ± 0.359 3.789 ± 0.351 3.927 ± 0.341 4.204 ± 0.410 

dIA 0.732 ± 0.104 0.707 ± 0.106 0.689 ± 0.108 0.651 ± 0.112 0.623 ± 0.114 0.594 ± 0.108 0.514 ± 0.141 
nnew b 0.823 ± 0.096 0.807 ± 0.096 0.797 ± 0.099 0.781 ± 0.103 0.770 ± 0.103 0.760 ± 0.107 0.726 ± 0.108 

R 0.688 ± 0.093 0.647 ± 0.087 0.617 ± 0.087 0.557 ± 0.087 0.516 ± 0.091 0.470 ± 0.091 0.406 ± 0.091 
RMSE 
(h d–1) 

2.811 ± 0.295 2.940 ± 0.276 3.025 ± 0.268 3.185 ± 0.271 3.288 ± 0.276 3.405 ± 0.285 3.581 ± 0.312 

dIA 0.759 ± 0.068 0.730 ± 0.070 0.709 ± 0.071 0.670 ± 0.073 0.642 ± 0.076 0.613 ± 0.073 0.563 ± 0.084  

Table 3 
Overall performance of forecasted solar radiation by using generalized sunshine–based model coupled with common (Rs_n com) and improved sunshine duration 
converted methods (Rs_n new) and generalized temperature–based model (Rs_T), respectively, for 1–7 days lead time during the period 2015–2019 for 86 sites in China. 
Values are the means ± SD (n = 86). b is the slope of the regression function; R is the correlation coefficient; RMSE is the root mean squared error; and dIA is the index of 
agreement.  

Model Indicators Lead time (day) 

1 2 3 4 5 6 7 

Rs_n com b 1.099 ± 0.137 1.103 ± 0.140 1.101 ± 0.140 1.096 ± 0.146 1.095 ± 0.147 1.090 ± 0.148 1.135 ± 0.156 
R 0.741 ± 0.119 0.720 ± 0.122 0.705 ± 0.125 0.677 ± 0.127 0.651 ± 0.129 0.627 ± 0.130 0.588 ± 0.130 
RMSE 
(MJ m− 2 d–1) 

5.264 ± 0.997 5.442 ± 0.965 5.565 ± 0.950 5.788 ± 0.922 5.966 ± 0.899 6.157 ± 0.871 6.572 ± 0.857 

dIA 0.812 ± 0.100 0.798 ± 0.103 0.789 ± 0.104 0.773 ± 0.107 0.758 ± 0.110 0.744 ± 0.109 0.705 ± 0.110 
Rs_n new b 1.035 ± 0.098 1.038 ± 0.100 1.038 ± 0.099 1.035 ± 0.102 1.035 ± 0.103 1.033 ± 0.103 1.045 ± 0.105 

R 0.801 ± 0.086 0.779 ± 0.087 0.762 ± 0.093 0.729 ± 0.100 0.708 ± 0.105 0.684 ± 0.109 0.653 ± 0.114 
RMSE 
(MJ m− 2 d–1) 

4.700 ± 0.776 4.878 ± 0.754 4.998 ± 0.741 5.228 ± 0.732 5.373 ± 0.722 5.529 ± 0.710 5.753 ± 0.700 

dIA 0.835 ± 0.080 0.820 ± 0.084 0.809 ± 0.087 0.789 ± 0.094 0.775 ± 0.098 0.762 ± 0.100 0.739 ± 0.104 
Rs_T b 0.979 ± 0.112 0.979 ± 0.115 0.979 ± 0.115 0.977 ± 0.118 0.975 ± 0.120 0.973 ± 0.122 0.957 ± 0.116 

R 0.790 ± 0.086 0.762 ± 0.085 0.741 ± 0.092 0.695 ± 0.105 0.673 ± 0.112 0.646 ± 0.118 0.613 ± 0.127 
RMSE 
(MJ m− 2 d–1) 

4.744 ± 0.804 4.995 ± 0.778 5.149 ± 0.760 5.509 ± 0.806 5.664 ± 0.821 5.849 ± 0.841 6.086 ± 0.874 

dIA 0.855 ± 0.072 0.837 ± 0.074 0.824 ± 0.078 0.798 ± 0.085 0.784 ± 0.089 0.768 ± 0.093 0.752 ± 0.095  
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converting method. 
The results indicated that facilitating sunshine–based model with the 

proposed nnew method that involves Td can improve Rs forecast due to 
the close relationship between n and Td (Fig. 1), which has also been 
demonstrated in previous studies [11,16,51], since Td can greatly affect 
the estimation of daily n and Rs [6]. Overall, the improved model can be 
implemented in the majority of the locations in China, which can pro-
vide reliable information on solar energy–related industries. To make 
accurate Rs information easily accessible to the public, this study can be 
potentially applied to provide valuable information to display forecast 
daily Rs in public weather forecasting system on both websites and 
smartphone apps. 

4. Conclusions 

The forecasted daily Rs can offer important information for sectors of 
energy industry, agriculture production, ecology stability, and climate 
change. To make reasonable Rs information easily accessible to the 
public, we used the strength of sunshine–based Rs model and dedicate to 

solve the weakness of the common n converting method. We developed a 
novel n converting method by combining weather types and Td that are 
easily available from weather forecasts, and then integrated this method 
into the generalized sunshine–based Rs model. Here, we verified that the 
proposed novel n converting method was able to improve forecasting 
accuracy of n compared to the common converting method. Moreover, 
the generalized Rs_n model integrating the nnew converting method 
outperformed the model coupled with the ncom converting method and 
the generalized Rs_T model. Hence the Rs_n new model is recommended for 
predicting daily Rs using weather types, Tmax, and Tmin data from 
weather forecast systems. 
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Fig. 6. Forecasting performance of solar radiation by using the generalized sunshine–based model coupled with common (left) and improved sunshine duration 
converted methods (middle), and generalized temperature–based model (right), respectively, for 1–7 days lead time during the period 2015–2019 for 86 sites in 
China. b is the slope of the regression function; R is the correlation coefficient; RMSE is the root mean squared error; and dIA is the index of agreement. 

Fig. 7. The percentage of GPI values ranking first for the 86 sites in China per 
model for 1–7 days lead time during the period 2015–2019. Rs_n com and Rs_n new 
are the generalized sunshine–based model coupled with common and improved 
sunshine duration converting methods. Rs_T is the generalized temper-
ature–based model. 
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