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Abstract – Network science has already been fruitful and confirmed effective on the description
of real-world or abstract systems. An increasing number of researches and instances have success-
fully verified, however, that interactions in systems may occur among three, four, or even more
components. The introduction of higher-order perspective brings a revolution on network science,
and refreshes researchers’ understanding of synchronization. Hence, an overview is presented here
in regard of synchronization on higher-order networks. We start from an introduction of how the
higher-order networks are represented using algebraic tools. Then a series of landmark researches
on synchronization is reviewed under circumstances of whether or not the dynamics contains con-
trol. Finally, we summarize our conclusions and propose our outlooks on expectations of future
works.

perspective Copyright c© 2024 EPLA

Introduction. – Researching on the large variety of
complex systems existing in, for example, ecology [1,2],
sociology [3–5] and neuroscience [6–8], necessitates an ac-
curate and visualizable macroscopic-scale description of
the system itself. Under the assumption that networks
only capture pairwise connections, it is quite natural to
abstract subjects of the system as nodes, and interactions
between subjects as edges.

More and more real systems seem to imply, however,
that interactions with pairwise form are not sufficient to
describe the relationship between subjects of particular
systems. Actually, there exist real-world systems whose
interactions do not occur between only two nodes, but
rather in a mesoscopic level with three, four, or even
more nodes [1–8]. Interactions beyond pairwise, together
with nodes as subjects of systems, form a generalized net-
work structure, known as higher-order network. Simplicial
complexes along with hypergraphs are two main mod-
els that are capable of describing higher-order systems.
Similar to traditional networks, higher-order networks
also have matrix (tensor) representation, and can define
its own measures, dynamics, spreading progresses, and
synchronization [9,10].

(a)E-mail: jzhou@whu.edu.cn (corresponding author)

The dynamics of a system is an intelligible model de-
picting the evolution of the system’s components. As
a fundamental dynamical phenomenon occurred in net-
worked systems, synchronization of a system refers to a
state where all nodes adjust their motion onto a com-
mon trajectory [11], or the process gradually reaching this
state. Synchronization is widely discovered in real-world
systems [12,13] as well as mathematical systems [14,15].
On the research of synchronization and its stability, im-
pressive progress has been made concerning the criteria
of local and global bounded synchronization [16], the in-
fluence of network topology on synchronization [17,18],
and synchronization with time-varying delay [19]. Dif-
ferent types of synchronization has also been identified
on networks with special structures, such as remote syn-
chronization [20], chimera states [21] and generalized syn-
chronization [22]. When considering the higher-order case,
dynamics and synchronization phenomenon may exhibit
a far more complicated behavior, including social conta-
gions [23], diffusion [24] and random walks [25].

Due to the complexity and major significance of
synchronization mentioned above, we devote ourselves
to the synchronization of higher-order networks, hence
this review is organized as follows. The next section
describes the definition of matrix (tensor) representation
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of higher-order networks, the third section focuses on
higher-order network synchronization in the absence of
control, the fourth section briefly reviews synchronization
with control, and finally conclusions and outlook are sum-
marized in the last section.

Higher-order network representation. – Basic
concepts of hypergraphs and simplicial complexes will be
briefly introduced.

A hypergraph is expressed as a 2-element tuple H =
(V, E), where V = {v1, . . . , vn} is a finite set implying
nodes of this hypergraph, and E = {ǫ1, . . . , ǫm} is a family
of sets with each set ǫi an arbitrary non-empty subset of
V (usually under the limitation that the cardinality of the
set should be no less than 2). Practically, each element
of E is called hyperedge, which is naturally regarded as an
extension of pairwise connections. If hyperedge ǫi con-
tains ni nodes, i.e., |ǫi| = ni, the order of a hyperedge is
a little counterintuitively defined as ni − 1. In this frame-
work, the set ǫi is unordered, that is, after any permuta-
tion of the elements of ǫi, it refers to the same hyperedge.
Indeed, 1-order hyperedges are traditional edges, 2-order
hyperedges are interactions occurred between 3 nodes, etc.
For convenience, any node itself is designated as a 0-order
hyperedge. The order of a hypergraph is defined as the
maximal order of all hyperedges in the hypergraph.

The notions of simplex, along with simplicial complex
(a collection of simplices obeying certain rules), are bor-
rowed from algebraic topology. Given a simplicial complex
with all nodes in a topological space, a k-order simplex
(abbreviated as k-simplex) whose vertices are {v0, . . . , vk}
is denoted as σ = [v0, . . . , vk]. Assuming that simplex σ

is extracted from a particular simplicial complex K, the
square bracket in the definition of simplex σ implies not
only σ is a node set, but has a strong constraint that
any sub-simplex of σ (i.e., any simplex generated by a
non-empty subset of σ) should also be contained in the
simplicial complex K. Similar to the definition of hyper-
edge, the set σ is unordered. Also, any node is designated
as a 0-simplex. Hence, a tuple may represent a simplicial
complex as K = (V,S), where V is the node set and S is
the set of all simplices contained therein.

The full simplex of a simplex σ = [v0, . . . , vk] is defined
as the union of all sub-simplicies, except 0-order ones (i.e.,
vertices), of σ. The full simplex of σ is here denoted as

σ̄◦ or [v0, . . . , vk]
◦

. Full simplex refers to interactions of
all orders among a certain simplex, from every pairwise
edges to the simplex itself as an interaction. Applications
for full simplex appear in pinning control [26], and further
details will be discussed in the fourth section.

For a clearer explanation over simplicial complexes
and hypergraphs, a toy example up to 2-order (fig. 1)
is designed. Given the interaction information of this
higher-order network as {{1, 2}, {2, 3}, {3, 4, 5}, {2, 5, 6}},
the corresponding simplicial complex and hypergraph can
be easily developed. In this toy example, the node sets
of simplicial complex and hypergraph are the same, and

Fig. 1: Comparison between simplicial complex and hyper-
graph.

the difference lies in their interactions. Due to the restric-
tion of simplicial complex, it is required that simplices
[3, 4], [3, 5], [4, 5] and [2, 5], [2, 6], [5, 6] are all contained in
the simplicial complex (fig. 1(a)). In the case of hyper-
graph (fig. 1(b)), however, there is no such limitation. For
example, hyperedge {3, 4, 5} does not necessarily require
the existence of hyperedge {3, 4}.

Simplicial complexes and hypergraphs possess matrix
representations in a similar form. In the following, we
focus our discussion on a D-order higher-order network
with N nodes unless otherwise specified.
In a higher-order system, there should be an incidence

matrix of every order. For any d ∈ {1, 2, . . . , D}, the
d-order incidence matrix is a (0, 1)-matrix, describing
whether every (d− 1)-order edge is contained in a d-order
edge. Take the simplicial complex of our toy model as an
example (fig. 1(a)), there are 2 different incidence matrices
written as

B(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 0
1 1 0 0 0 1 1 0
0 1 1 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 1 1 1 0
0 0 0 0 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

B(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
0 0
1 0
1 0
1 0
0 1
0 1
0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where B(1) says whether 0-order simplices (nodes) are a
vertex of 1-order simplicies (edges), and B(2) whether 1-
order simplices are an edge in 2-order simplicies (trian-
gles).
To describe the adjacency relationship of higher-order

networks, an algebraic structure is introduced, namely
tensor (or hyper-matrix [10]). A k-order tensor A (k � 1)
is here defined as matrix-like structure with k + 1 in-
dices. In analogy with the adjacency matrix of traditional
networks, for any d ∈ {1, 2, . . . , D}, the d-order adjacency
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tensor is denoted as A
(d). Its (i0, . . . , id)-th entry A

(d)
i0...id

equals 1 if and only if {i0, . . . , id} is a d-order edge of
this network, and 0 otherwise. Note that the higher-order
edge regarded as a set is unordered, the adjacency ten-
sor has the property of permutation symmetry, namely

A
(d)
π(i0,...,id)

= A
(d)
i0...id

, where π(i0, . . . , id) is any permuta-

tion of {i0, . . . , id}. Specifically, a 1-order adjacency ten-
sor is an N ×N matrix, a 2-order adjacency tensor is an
N ×N ×N tensor, and so on.
Laplacian matrix of a simple undirected graph provides

abundant algebraic information of the graph itself. Lapla-
cian eigenvalues are all non-negative, and the minimum
eigenvalue of Laplacian is always zero. The second small-
est Laplacian eigenvalue and its corresponding eigenvector
are called Fiedler value and Fiedler vector [27], respec-
tively. The eigenpairs of Laplacian matrix have been
rediscovered for their hidden information on graph struc-
ture [28], cluster synchronization discrimination [29], im-
portant cycle identification [30] and so on.
For every order d ranging from 1 to D, there is a corre-

sponding d-order Laplacian L(d) calculated from the d-
order adjacency tensor A

(d). In refs. [31,32], d-order
Laplacian L(d) is defined as

L
(d)
ij =

{

d!k
(d)
i , i = j,

−(d− 1)!k
(d)
ij , i �= j,

(1)

where d-order generalized degree of node i is k
(d)
i =

1
d!

∑N

j1,...,jd=1 A
(d)
ij1...jd

, namely the number of d-hyperedges

containing node i, and k
(d)
ij = 1

(d−1)!

∑N

k2,...,kd=1 A
(d)
ijk2...kd

means the total number of hyperedges containing the node
pair (i, j). It can be easily verified that L(d) is symmetric
and of zero row-sum, while in ref. [33] L(d) is defined as

L
(d)
ij = dk

(d)
i δij − k

(d)
ij , (2)

where δij is the Kronecker delta. In fact, the Laplacian
defined by (1) should be that of (2) multiplied by (d−1)!,

if one notices that A
(d)
ijk2...kd

= 0 when i = j, therefore

k
(d)
ij = 0.
Using subscripts “SC” and “H” to distinguish the sim-

plicial complex and the hypergraph, we give the 2-order
Laplacian of our toy example as

L
(2)
SC = L

(2)
H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
0 2 0 0 −1 −1
0 0 2 −1 −1 0
0 0 −1 2 −1 0
0 −1 −1 −1 4 −1
0 −1 0 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Synchronization in the absence of control. – Ku-
ramoto, a pioneer on the description of oscillator synchro-
nization, has thoroughly researched the synchronization
of a finite number of fully coupled oscillators [34,35]. In
this section, we will firstly review the Kuramoto model
and its higher-order extensions, then general higher-order
network collective dynamics is to be reported.

Fig. 2: Kuramoto model abrupt synchronization. In our sym-
bols, Kc is the coupling threshold K

∗

1 , r is the coherence pa-
rameter R1, and r∞ is the limit of r when t → +∞. Source:
ref. [36].

Higher-order Kuramoto model. Kuramoto has pro-
posed his well-known N -oscillator model [35] as follows:

θ̇i = ωi +
K1

N

N
∑

j=1

sin(θj − θi), (3)

where θi is the phase of the i-th oscillator valued in the
interval [0, 2π), ωi is its natural frequency, and K1 > 0
is the coupling constant of pairwise connections. In the
absence of coupling terms, the phase of every oscillator
i evolves linearly with the rate ωi. When coupled with
other nodes, the coupling drives the phase of node i to-
wards synchronization. As a result, there exists a coupling
threshold K∗

1 . When the coupling strength K1 is over K∗

1 ,
the phases of this system can reach a state where all pairs
of nodes’ phases tend to differ by a constant value, which
is called the phase locking state in physics. In order to
better observe the relationship between synchronization
process and coupling strength, a macroscopic parameter
Z1(t) = R1(t)e

iΦ1(t) = 1
N

∑N

j=1 e
iθj is defined, where i is

the imaginary unit. The modulus of Z1(t) is R1(t) ∈ [0, 1],
which measures the degree of coherence; and Φ1(t) is the
average phase of all nodes, ranging in [0, 2π). Then the
system in eq. (3) is rewritten in a mean-field manner as

θ̇i = ωi +K1R1 sin(Φ1 − θi). (4)

A remarkable discovery of the Kuramoto model is the
abrupt synchronization phenomenon. When the coupling
strength K1 < K∗

1 , the coherence parameter R1 ≈ 0 for
all t, while in the K1 > K∗

1 case, R1 abruptly increases to
O(1), see fig. 2 for intuitions of this phenomenon. A nat-
ural idea to extend the Kuramoto model is that nodes
can be designed to couple each other in the form of a
graph, instead of all-to-all coupling in the original Ku-
ramoto model [37]:

θ̇i = ωi +
K1

N

N
∑

j=1

aij sin(θj − θi), (5)

where aij is the (i, j)-th entry of the adjacency matrix of
the graph representing the connections of nodes.
For a further extension in the higher-order context, the

first mode is to extend the “state” of a node from phase
(a real number) to an arbitrarily dimensional real vector.
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Fig. 3: D-dimensional Kuramoto model phase transition
graphs. (a) When D is even, phase transition appear in a
continuous form, and (b) when D is odd, K∗ = 0 becomes the
common threshold for abrupt coherence. Source: ref. [38].

Reference [38] provides a generalized Kuramoto model
with the state of every node a D-dimensional vector. The
traditional Kuramoto model in eq. (3) is rewritten in a 2D
unit vector form as

σ̇i = Wiσi +
K

N

N
∑

j=1

[σj − (σj · σi)σi], (6)

where σi = (cos θi, sin θi)
T can be regarded as the co-

ordinates of node i on unit circle, Wi =
(

0 ωi

−ωi 0

)

is a

anti-symmetric matrix indicating a rotating motion. In
this way, a D-dimensional Kuramoto model is acquired as
the same form of eq. (6), where σi here is a D-dimensional
vector, and Wi is a D ×D anti-symmetric matrix. Anal-
ogously to the traditional Kuramoto model, the authors
defined a global order parameter ρ = N−1

∑N

j=1 σj , and
|ρ| = 1 implies complete synchronization of this system.
The phenomenon observed is also surprising (see fig. 3).
Using a similar analytical framework of the traditional Ku-
ramoto model, the authors obtained a good theoretical ex-
pression of |ρ| with regard to K, which approximates the
numerical results quite well in the case of large N . A suc-
cesive work is carried out by Dai et al. [39], introducing a
“positive feedback” factor into the coupling term:

σ̇i = Wiσi +
K

N
|ρ|

N
∑

j=1

[σj − (σj · σi)σi], (7)

where the modulus of order parameter ρ is multiplied
by the coupling strength compared to eq. (6). When
the dimension D is odd, an elusive phase oscillation phe-
nomenon is discovered in this model.
The second mode, also a mode better fitting the higher-

order context, is to extend the Kuramoto model onto
a higher-order graph, and develop a coupling form on
higher-order interactions.
Skardal et al. [40] gave a multilayer system:

θ̇i = ωi +
K2

N2

N
∑

j,k=1

sin(θj + θk − 2θi), (8)

φ̇i = νi +
κ

N

N
∑

j=1

sin(φj − φi) + d sin(θi − φi), (9)

which was abstracted from equations of power grids.
Equation (8) focused on the situation that oscillators are
coupled with pure 2-simplices, and considered a symmetric
phase coupling mode. The authors also proposed general-
ized order parameters zq(t) = 1

N

∑N

j=1 e
qiθj = Rqe

iΦq ,
q = 1, 2. This system’s dynamics appears an abrupt
desynchronization transition when the 2-order coupling
strength K2 is decreasing, and a global multi-stability for
3-body interactions.
In their subsequent work [41], the authors considered a

more general system containing simplices up to 3-order:

θ̇i = ωi +
K1

〈

k(1)
〉

N
∑

j=1

Aij sin(θj − θi)

+
K2

2!
〈

k(2)
〉

N
∑

j,l=1

Bijl sin(2θj − θl − θi)

+
K3

3!
〈

k(3)
〉

N
∑

j,l,m=1

Cijlm sin(θj + θl − θm − θi), (10)

where 〈k(1)〉, 〈k(2)〉, 〈k(3)〉 are the average q-order gener-
alized degree among all nodes. The nodes of this system
are coupled in a 3-order simplicial complex, whose ad-
jacency tensors of all orders are respectively denoted as
Aij , Bijl, and Cijlm. It should be noted that the phase
coupling adopts a non-symmetric mode in terms of order
2 and order 3, which can be treated using the dimensional
reduction technique, as reported by the authors.
Lucas et al. [33] proposed a generalized Kuramoto model

with all nodes coupled in an arbitrary order simplicial
complex:

θ̇i = ωi +
K1

〈

k(1)
〉

N
∑

j=1

Aij sin(θj − θi)

+
K2

2!
〈

k(2)
〉

N
∑

j,k=1

Bijk sin(θj + θk − 2θi)

+ · · ·

+
KD

D!
〈

k(D)
〉

N
∑

j1,...,jD=1

Mij1...jD sin

(

N
∑

m=1

θjm − θi

)

,

(11)

and developed an analytical paradigm for the Lyapunov
stability of this generalized system. Using the definition
of Laplacian matrices of ref. [33], the linearized system of
equations (11) is rearranged as

δθ̇i = −
D
∑

d=1

Kd
〈

k(D)
〉

N
∑

j=1

L
(d)
ij δθj = −

N
∑

j=1

L
(mul)
ij δθj , (12)

where the multi-order Laplacian matrix is defined as
L(mul) =

∑D

d=1
Kd

〈k(D)〉
L(d). Then the system’s smallest

non-zero Lyapunov exponent Λ2 should be the opposite of
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the second smallest eigenvalue of multi-order Laplacian,

i.e., Λ2 = −λ
(mul)
2 . In particular, the more positive the

λ
(mul)
2 , the more stable the synchronized state.

General higher-order network collective dynamics.

Based on recent progress made on Kuramoto model, gen-
eral higher-order collective dynamical models have been
proposed and researched in the last few years. Refer-
ence [32] gave a dynamics of undirected simplicial com-
plexes and investigated the synchrozation stability of the
proposed system, while ref. [31] gave a dynamics of di-
rected hypergraphs and studied the impact of directional-
ity on synchronization. In this section, the main results
of [31,32] will be reviewed.
Gambuzza et al. [32] proposed their dynamics on sim-

plicial complex as follows:

ẋi = f(xi) + σ1

N
∑

j1=1

a
(1)
ij1

g(1)(xi, xj1)

+ σ2

N
∑

j1,j2=1

a
(2)
ij1j2

g(2)(xi, xj1 , xj2) + · · ·

+ σD

N
∑

j1,...,jD=1

a
(D)
ij1...jD

g(D)(xi, xj1 , . . . , xjD ), (13)

where xi is the m-dimensional state vector of node
i, {σi}

D
i=1 are coupling strengths, and for every or-

der d ∈ {1, . . . , D}, a
(d)
ij1...jd

is the (i, j1, . . . , jd)-th en-
try of d-order adjacency tensor. The coupling functions
g(d): R(d+1)×m → R

m(d = 1, . . . , D) are non-invasive, i.e.,
g(d)(x, x, . . . , x) ≡ 0, ∀d, ∀x ∈ R

m. Compared to the tar-
get trajectory xs satisfying d

dtx
s(t) = f(xs(t)), the vari-

ation (δxi = xi − xs) of the above system in eq. (13) is
organized as

˙δx =

[

IN ⊗ JF −

D
∑

d=1

σdL
(d) ⊗ JG(d)

]

δx, (14)

where δx = [δxT
1 , . . . , δx

T
N ]T is the variation of all nodes’

states. JF, JG(1), . . . , JG(D) are the notations of Jaco-
bian matrices at xs. In order to separate the transverse
system out of this coupling one, the authors chose a ref-
erence vector basis as the eigenvectors v1, . . . , vn of the
classic Laplacian L(1) (V = [v1, . . . , vN ]) and introduced
new variables as η = (V −1 ⊗ Im)δx. Then one gets

η̇=(V −1 ⊗ Im)[IN ⊗ JF−

D
∑

d=1

σdL
(d) ⊗ JG(d)](V ⊗ Im)η

= [IN ⊗ JF − σ1Λ
(1) ⊗ JG(1) −

D
∑

d=2

σdL̃
(d) ⊗ JG(d)]η,

(15)

where Λ(1) is a diagonal eigenvalue matrix of L(1),
and L̃(d) = V −1L(d)V, ∀d, are also zero-row-sum matri-
ces. The authors also proposed the natural coupling as-

sumption, namely d-order coupling function g(d)(xi, xj1 ,

. . . , xjd) can be separated as g(d)(xi, xj1 , . . . , xjd) =

h(d)(xj1 , . . . , xjD ) − h(d)(xi, . . . , xi), where functions
h(d): R

md → R
m satisfy h(1)(x) = h(2)(x, x) = · · · =

h(D)(x, x, . . . , x), for all x ∈ R
m. If we further assume

that the coupling function satisfied the natural coupling
condition, the system (14) can be simplified into an even
more compact form:

˙δx = [IN ⊗ JF − L(mul) ⊗ Im]δx, (16)

where L(mul) =
∑D

d=1 σdL
(d) represents the multi-order

Laplacian in this case. Then the classical MSF method
can be imposed to analyze the proposed system.
Gallo et al. [31] proposed a dynamics on directed hy-

pergraphs of arbitrary order which had a similar form as
eq. (13). The difference between the proposed system and
eq. (13) lies in the adjacency tensor. Reference [31] de-
fined an m-directed d-hyperedge, which means that in this
hyperedge, prechosen m nodes {i1, . . . , im} are pointed
by the remaining s = d + 1 − m nodes {j1, . . . , js}, and
the adjacency tensor has a locally permutation symmetry
property:

A
(d)
π(i1,...,im)π′(j1,...,js)

= 1,

where π(i1, . . . , im) and π′(j1, . . . , js) are any permutation
of {i1, . . . , im} and {j1, . . . , js}, respectively. Adopting the
same analytical framework and assumptions of ref. [32],
the authors finally obtained a master stability eq. (MSE)
with complex parameter:

η̇ = [JF (xs)− (α+ iβ)JH(xs)]η. (17)

Because of the asymmetry property of the multi-order
Laplacian, its eigenvalues may be complex number. There-
fore, the maximum Lyapunov exponent of the original
system should be regarded as a function over the real
part α and the imaginary part β. Moreover, the au-
thors discovered that the directionality largely influences
(de)synchronization, by developing a parameter p moving
from 0 to 1 indicating the strength of direction of every
hyperedge.

Synchronization with pinning control. – How to
drive the system state towards a target trajectory (some-
times in a limited time) has always been a fundamental
question in the research of complex systems. Control the-
ory has developed algebraic and analytical tools on linear
systems [42,43] and non-linear systems [44–46], as well as
a wide range of control schemes [46–49]. Among them
is pinning control, a type of control scheme which needs
only to control a small fraction of prechosen nodes (of-
ten called pinner) to accomplish a global control target.
Basic theories of pinning control have been established in
the last twenty years [50–53]. The general methodology of
pinning control is to exert a signal to every pinner [54,55],
and it also fits a time-delayed dynamical system [56]. Be-
sides controllers located on nodes, Yu et al. developed an
adaptive pinning scheme on edges using Lyapunov method
to discriminate stability [57]. Node importance based on
pinning control has also been developed [58]. Recent works
on pinning control of higher-order networks [26,59,60] have
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mainly focused on the extension of traditional pinning con-
trol laws.
Li et al. discussed in ref. [26] the importance of the sec-

ond smallest eigenvalue λ2 of multi-order Laplacian, and
how to choose pinning simplices based on λ2 in order to
achieve better control effects. The authors considered a
dynamical system on simplicial complex with time-varying
weights on each simplex, and assumed that the coupling
function has a linear form, i.e., g(d)(xi, xj1 , . . . , xjd) =
1
d
(xj1 + · · ·+xjd −dxi), ∀d. For simplification, the authors

gave the error dynamics (compared to the average state

of nodes s = 1
N

∑N

j=1 xj) and described adaptive control
laws on 2-order undirected simplicial complex. Controllers
were put on full simplices of a small fraction of 2-order sim-
plices. The authors proposed a pinner selection method,
relying on the improvement of λ2 when adding a small
weight on particular full simplex. The bigger the improve-
ment is, the better the full simplex should perform in pin-
ning control.
De Lellis et al. [60] provided a different perspective of

pinning control, by decomposing a directed hypergraph
into a signed graph. The authors also proposed two al-
gorithms, respectively computing if the system can be
asymptotically controlled onto the target trajectory, and
how to add pinners in a sequence. Numerical simulation
on Chua’s circuits showed that the proposed adding-pinner
method is far more effective than randomly choosing
pinners.

Conclusions and outlook. – In this review, we have
gone through the matrix (tensor) representation of higher-
order systems in the second section, discussed the Ku-
ramoto model and its variants in higher-order framework,
then given general higher-order collective dynamical mod-
els in the third section, and finally mentioned some works
of synchronization with pinning control in the fourth sec-
tion. Due to the limited space, not all impressive re-
searches on synchronization of higher-order networks have
been reviewed, but one will gain an intuition of how the
higher-order perspective revolutionarily changes the tra-
ditional network science.
However, as a very recently developed research field,

there are still many blanks waiting to be filled in, and
many open problems to be more deeply investigated.

– Simplicial complex itself is a topology concept. Cur-
rent representations and dynamics with regard of sim-
plicial complexes cannot, however, express the essence
of its related topology structures.

– Current dynamics depicting higher-order systems are
mostly the evolutionary equations of the states of
nodes. Does there exist an even more general dynam-
ics of higher-order edges, such as traditional edges or
3-body interactions?

– Research tools and methods on control of higher-order
systems are mainly limited on the extension of tra-
ditional control theory. Is there any novel methods

exclusively for higher-order analysis that can reveal
deeper facts of higher-order structures?

Despite incompleteness in current researches, the field
of higher-order systems is already fruitful and successful
when combined with real-world engineering and biology
problems. We are looking forward to the breakthrough of
the pursuit of truth on higher-order systems.
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