
                          

PERSPECTIVE

Pinning synchronization of a complex network:
Nodes, edges and higher-order edges
To cite this article: QiShu Jiang et al 2024 EPL 147 61001

 

View the article online for updates and enhancements.

You may also like
Emergent Friedmann dynamics with a
quantum bounce from quantum gravity
condensates
Daniele Oriti, Lorenzo Sindoni and Edward
Wilson-Ewing

-

Generation of clusters in complex
dynamical networks via pinning control
Kezan Li, Michael Small and Xinchu Fu

-

Time-varying networks of ERPs in P300-
speller paradigms based on spatially and
semantically congruent audiovisual
bimodality
Zhaohua Lu, Qi Li, Ning Gao et al.

-

This content was downloaded from IP address 222.20.193.137 on 07/10/2024 at 06:24

https://doi.org/10.1209/0295-5075/ad76d6
https://iopscience.iop.org/article/10.1088/0264-9381/33/22/224001
https://iopscience.iop.org/article/10.1088/0264-9381/33/22/224001
https://iopscience.iop.org/article/10.1088/0264-9381/33/22/224001
https://iopscience.iop.org/article/10.1088/1751-8113/41/50/505101
https://iopscience.iop.org/article/10.1088/1751-8113/41/50/505101
https://iopscience.iop.org/article/10.1088/1741-2552/aba07f
https://iopscience.iop.org/article/10.1088/1741-2552/aba07f
https://iopscience.iop.org/article/10.1088/1741-2552/aba07f
https://iopscience.iop.org/article/10.1088/1741-2552/aba07f


September 2024

EPL, 147 (2024) 61001 www.epljournal.org

doi: 10.1209/0295-5075/ad76d6

Perspective

Pinning synchronization of a complex network: Nodes, edges
and higher-order edges

QiShu Jiang
1
, Jin Zhou

1,2(a)
, Bo Li

1
, HaoRan Liu

1 and Jun-an Lu
1

1 School of Mathematics and Statistics, Wuhan University - Wuhan, Hubei 430072, China
2 Hubei Key Laboratory of Computational Science, Wuhan University - Wuhan, Hubei 430072, China

received 7 August 2024; accepted in final form 3 September 2024
published online 30 September 2024

Abstract – In recent years, the interdisciplinary study of complex networks has become increas-
ingly important in fields ranging from biology and physics to sociology and mathematics. This
paper focuses on pinning control, an approach essential for achieving coordinated behavior in
dynamic networks. We explore recent advancements in pinning control strategies, explaining the-
oretical frameworks and simulation techniques. Additionally, we discuss the significance of certain
structures within networks across different orders. Finally, we conclude with a summary of key
insights and propose our outlook on future research.

perspective Copyright c© 2024 EPLA

Introduction. – Complex networks are present across
diverse domains like social interactions, biological systems,
mathematical structures, scientific fields and engineering
applications [1–4]. They have become indispensable to
our everyday existence. Researchers from mathematics,
physics, biology, engineering and social sciences are in-
creasingly interested in understanding and managing the
intricate dynamics exhibited by networks composed of nu-
merous interacting nodes [5–11].

In complex dynamical networks, there is a fascinating
phenomenon where the motion states of nodes in the net-
work can synchronize under certain conditions. If a given
network fails to synchronize, or if the synchronized state is
not the desired state, control becomes necessary to guide
the desired synchronization in the network [12–16]. How-
ever, in practical applications, directly controlling every
part of a dynamic network with numerous nodes or (and)
edges may be impossible and unnecessary. Therefore,
achieving synchronization by directly adding control in-
puts to a fraction of nodes, edges, or higher-order edges in
the network is very important. Many scholars have con-
ducted significant explorations in this area [17–19].

This review is organized as follows: some mathemat-
ical preliminaries are given in the next section. In the
third section, significant pinning control methods on nodes
(0-order edges) are discussed. In the fourth section, ap-
proaches for adding control on traditional edges (1-order

(a)E-mail: jzhou@whu.edu.cn (corresponding author)

edges) are provided. In the fifth section, we introduce ap-
proaches to achieve synchronization by adding control in-
puts to both nodes and edges (0-order and 1-order edges).
Then, exploration from traditional networks to higher-
order networks by controlling 2-order or higher-order edges
is discussed in the sixth section. Finally, conclusions and
outlook are summarized in the last section.

Preliminaries. – In general, a traditional complex dy-
namical network consisting of N identical nonlinear oscil-
lators with uncertain inputs is described as

ẋi = f(xi, t) +

N∑
j=1

cijaijg(xj) + ui, 1 ≤ i ≤ N, (1)

whose node set and edge set are, respectively, V and E . Let
cij be the coupling strength and A = (aij)N×N ∈ RN×N

be the coupling configuration matrix. If there is a link
eij from node i to node j (j �= i), then aij = 1; oth-
erwise, aij = 0. Furthermore, in an undirected net-
work, A is symmetric because aij = aji always holds.
xi = (xi1, xi2, . . . , xin)

T ∈ Rn is the n-dimensional state
variable of the i-th node, ẋ = f(x, t) denotes the dynamics
of each isolated (uncoupled) node, ui ∈ Rn are the control
inputs.

Network synchronization: If the coupled nodes satisfy
lim
t→∞

‖xi(t) − xj(t)‖ = 0 for all i, j = 1, . . . , N , then the

network is said to be synchronized.
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In specific studies, researchers often consider a partic-
ular network synchronizing to a desired state s(t) or an
average state x̄(t). Here, we give definitions as well.

Network is said to synchronize all the states of the
nodes in the dynamical network to a desired solution s(t)
if lim

t→∞
‖xi(t) − s(t)‖ = 0 for all i = 1, . . . , N . Network

achieves synchronization upon x̄ if nodes in the network
satisfy lim

t→∞
‖xi(t)− x̄(t)‖ = 0 for all i = 1, . . . , N .

Network synchronizability : The Laplacian matrix [20] is
defined as L = D − A, where A = (aij)N×N . D is a
diagonal matrix with elements representing the sum of the
corresponding rows of A.

For graph G = (V, E), the second smallest Laplacian
eigenvalue is referred to as the Fiedler value [20], also
known as the algebraic connectivity which satisfies

λ2(L) = min
x⊥1,
‖x‖=1

xTLx = min
x⊥1,
‖x‖=1

∑
Emn∈G

(xm − xn)
2, (2)

where 1 is a column vector with all components being 1,
and xm denotes the m-th component of vector x. Syn-
chronizability of a network is mostly measured by the λ2.
The larger the value, the stronger the synchronizability.

Nonlinear restriction: In network pinning control, the
movement state of each isolated node is often restricted,
including but not limited to:

H1 : The function f(·) is said to satisfy f(·) ∈
QUAD(P,Δ), if there exist two positive definite diago-
nal matrices P and Δ, such that (x− y)TP (f(x)− f(y)−
Δx+Δy) ≤ 0 [21].

H2 : The function f(·) is said to satisfy the Lipschitz con-
dition. That is, there exists a positive constant δ satisfy-
ing ‖g(x, t)− g(y, t)‖ ≤ δ‖x− y‖, where δ is the Lipschitz
constant [21].

H3 : Suppose that ‖Df(s)‖ is bounded, where Df(s) is
the Jacobian of f evaluated at x = s. That is, there exists
a non-negative constant α satisfying ‖Df(s)‖ ≤ α [22].

In fact, the three hypotheses give very similar nonlinear
restriction of node dynamics f(·).

0-order edges (nodes). – In complex networks, node
control is a crucial strategy aiming at influencing the dy-
namic behavior of the entire network by altering the state
or inputs of nodes in a given network. In practice, di-
rectly controlling every node in a dynamical network with
a huge number of nodes might be impossible or unneces-
sary. Therefore, pinning control strategy, that is, achiev-
ing the goal of control by directly adding control inputs to
a fraction of nodes selected from the network, is very im-
portant. People may raise such questions: Which kinds of
controllers can be applied to the controlled nodes? Which
nodes should be controlled? In this section, we review
some important findings and provide some answers.

Li et al. [23] defined stable conditions and investigated
both the local and global stabilization of complex dynami-
cal networks via the pinning control strategy. The authors

pinned l nodes ik, k = 1, 2, . . . , l, in the network by intro-
ducing fewer negative feedback controllers

uik = −cikikdikg(xik − x̄). (3)

They found that if f(·) is under certain conditions like
the Lipschitz condition, gradually increasing the coupling
strength c = cikik always leads to synchronization. Sub-
sequently, numerous researchers conducted more refined
and specific studies based on the stability conditions they
provided.

Chen et al. [24] presented sufficient conditions to guar-
antee synchronization by pinning only one node with a
simple linear input. Without any prior knowledge of the
network topology, they found that a single controller can
pin a complex network to a homogenous solution whether
the function g(·) is linear or nonlinear. In light of their
thorough and comprehensive argumentation, people can
always pin a coupled complex network by adding a single
controller if the coupling strength is large enough.

In addition to linear feedback controllers [23–27], many
other control strategies are introduced for pinning control,
including adaptive control [28,29], intermittent control [30,
31], impulsive control [32–34], finite-time control [35–37]
and time-delay control [38]. Here we give several typical
examples.

In refs. [22,39] the authors considered a complex dynam-
ical network with linear diffusion coupling. They supposed
‖Df(s)‖ ≤ α, g(xj) = Γ(xj), where Γ is a irreducible dif-
fusive matrix with ‖Γ‖ = γ and λ1 ≥ λ2 ≥ . . . ≥ λN are

the eigenvalues of the matrix B̂+B̂T

2 , where B̂ is a mod-
ified matrix of B = (bij)N×N = (cij · aij)N×N . If there
exists a natural number 1 ≤ l < N such that λl+1 < −α

γ ,

then the synchronous solution S(t) of controlled network
(1) is asymptotically stable under the pinning adaptive
controllers

{
uik = −pikeik , ṗik = qik‖eik‖2, 1 ≤ k ≤ l,
ui = 0, otherwise,

(4)

where qi are positive constants and eik = xik −s is defined
as error vector. Further, letting cij = c(i �= j), B̄ = B

c
be symmetric and λ̄l+1 < − α

cγ , the network can realize
synchronization. On the one hand, for networks with
fixed topological structure and coupling strength, based
on λ̄l+1 < − α

cγ , the nodes which should be controlled are
determined. On the other, after selecting the controlled
nodes, from c > − α

λ̄l+1γ
, one can choose appropriate cou-

pling strength to achieve network synchronization.

In ref. [38], authors discussed pinning synchronization
of delayed neural networks. Due to the prevalent circum-
stance, neurons often receive delayed evolutionary infor-
mation from their neighbors, the controlled network is a
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little bit different from (1). That is,

ẋi(t) = f(xi, t) +
N∑
j=1

cijaijg(xj)

+

N∑
j=1

bijh(xj(t− τ(t))) + ui, 1 ≤ i ≤ N, (5)

ui are the adaptive controllers given by⎧⎨⎩
uik(t) = −αik(t)(xik(t)− s(t)), 1 ≤ k ≤ l,
α̇ik(t) = βik‖xik(t)− s(t)‖2, 1 ≤ k ≤ l,
uik(t) = 0, otherwise,

(6)

they proposed that by employing the adaptive controller
above when the growth rates of τ(·), h(·) and g(·) are
constrained, the network can achieve synchronization if
A = (aij)N×N and B = (bij)N×N are under certain
conditions.
In many works, external controls are needed all the time,

which may be non-economic. Liu and Chen [31] consid-
ered the linearly coupled network model with aperiodically
intermittent control. For any time span [ti, ti+1), [ti, si] is
the work time (control time), and si − ti is called the i-th
control width (control duration); while (si, ti+1) is the rest
time, and ti+1−si is called the i-th rest width. Suppose all
the rest widths ti+1 − si, i = 0, 1, 2, . . . , are bounded and
function f(·) ∈ QUAD(P,Δ) then the coupled network
with single linear pinning control{

u1(t) = b · g(s(t)− x1(t)), t ∈ [ti, si],
ui(t) = 0, otherwise,

(7)

can realize global synchronization when the weight b is
sufficiently large.
Zhou et al. [39] used ControlRank index to select the

pinned nodes. Here a possible sequencing for node im-
portance can be determined in descending order of λq(L

s)
(1 ≤ q ≤ N), where λq(L

s) is the minimum eigenvalue of

the minor matrix of L+LT

2 obtained by removing the q-th
row and column pair. The larger the λq(L

s), the more
effective the pinning control. They gave an example of a
network coupled with 11 Chua circuits. The topology of
the network is a bi-star depicted by fig. 1. They calculated
the ControlRank index of each node as λ1(L

s) = 0.17 >
λ2(L

s) = λ7(L
s) = 0.09 > λ3(L

s) = λ4(L
s) = λ5(L

s) =
λ5(L

s) = λ8(L
s) = λ9(L

s) = λ10(L
s) = λ11(L

s) = 0.05.
λq(L

s) represents the minimum eigenvalue of the minor
matrix by removing the q-th row-column pair of Laplacian
matrix. They came out with the result that node 1 is the
most efficient for control. However, in terms of degree cen-
trality [40], nodes 2 and 7 emerge as the most significant.
Node 1 acts as a pivotal “bridge” connecting two promi-
nent clusters, facilitating extensive information exchange.
Following nodes 2 and 7, which hold equal importance in
the network, the remaining nodes also contribute signifi-
cantly, maintaining network coherence. To verify their re-
sults, they controlled the 1st, the 2nd, the 7th and the 3rd

Fig. 1: Topology of the bi-star network. Source: ref. [39].

Fig. 2: Norm of error ‖ej‖2 (j = 1, 2, . . . , 11) vs. time t.
Controlling node j1 (j1 ∈ 1, 2, 7, 3). Source: ref. [39].

nodes, respectively. It is shown in fig. 2 that the time se-
quence of achieving synchronization is in agreement with
the sequence of node importance. Similarly, the impor-
tance sequencing of l nodes in a network is determined in
descending order of λq(L

s) (1 ≤ q ≤ Cl
N ), where λq(L

s)

is the minimum eigenvalue of the minor matrix of L+LT

2
by removing the corresponding l row-column pairs. Their
study thoroughly considers the network structure, making
significant advancements.

Based on the properties of λq(L
s), Liu et al. [41] found

and proved an amazing phenomenon. It is better to
pin the nodes with large degrees when the proportion of
pinned nodes is relatively small, while it is better to pin
nodes with small degrees when the proportion of pinned
nodes is large.

Besides, researches on multi-layer networks [42–44]
and large-scale [45] networks synchronization are con-
stantly advancing. In addition, the optimization ap-
proaches [46,47] related to pinning control are also con-
tinuously developing.

1-order edges (edges). – In the theory of complex
networks, edge control [48–51] refers to the manipulation
of specific edge structures or weights within a network to
influence the overall behavior or properties of the network.
Specifically, edge pinning control can be understood as
controlling the inner coupling matrix in the network.

In ref. [50] authors studied distributed adaptive con-
trol of synchronization in complex networks. An effective
distributed adaptive strategy to tune a small fraction of
coupling weights of a network was designed based on lo-
cal information of node dynamics. Here the authors used
Laplacian matrix and proposed an adaptive strategy to
control edges in a subgraph G̃ ⊆ G with a set of l selected
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undirected Ẽ ⊆ E ,

L̇ij(t) = L̇ji(t) = −αij(xi−xj)
T g(xi−xj), (i, j) ∈ Ẽ , (8)

where αij = αji are positive constants.
In terms of assessing the importance of edges, researches

in this area are not yet fully sufficient. The existing indica-
tors almost just rank the importance of the present edges
in a network. Zhou et al. [52] noted that the edge cen-
trality in a network includes two aspects, namely, the im-
portance of the edges (abbreviation for the present edges)
and that of the absent edges. A new edge centrality mea-
sure was proposed based on the effect of an edge on the
network algebraic connectivity, which connects the topol-
ogy and the dynamical properties. They denoted the
variation of the second smallest Laplacian eigenvalues as
Δλ−

ij = λ2(L
−) − λ2(L) and Δλ+

ij = λ2(L
+) − λ2(L), re-

spectively, where Δλ−
ij (Δλ+

ij) represents the decrease (in-
crease) of the second smallest Laplacian eigenvalue caused
by deleting (adding) edge eij in the network. They de-
fined connectivity rank index (CRI) and proposed that
the closer the absolute value of the CRI of an edge (ab-
sent edge) is to 1, the more important it is.
CRI of an edge: For any eij ∈ G, the CRI of edge eij is

I−ij =
Δλ−

ij

|minemn∈G Δλ−
mn|

,

where I−ij = 0 if minemn∈G Δλ−
mn = 0.

CRI of an absent edge: For any eij /∈ G, the CRI of
absent edge eij is

I+ij =
Δλ+

ij

|maxemn /∈G Δλ+
mn|

,

where I+ij = 0 if minemn /∈G Δλ+
mn = 0.

In directed network, Jiang et al. [53] found that the
dynamical contribution value of directed edge eij from
node i to node j can be determined by Fiedler vectors:
Ideij = Re[yj(xj − xi)], where xp and yp are the p-th com-

ponents of x and y, x is the right eigenvector and yT is
the left eigenvector, respectively. The right Fiedler vector
provides information about the starting and ending nodes,
whereas the left Fiedler vector only provides information
about the end node. Consequently, comprehensive infor-
mation about the edge’s contribution can be provided by
the combination of the left and right Fiedler vectors in a
network.

0-order and 1-order edges (nodes and edges). –
To achieve network synchronization, people can apply
controllers to regulate both nodes and edges within the
network simultaneously.
Liu et al. [31] considered synchronization with adaptive

intermittent control on both nodes and edges. Adaptive
intermittent control expressions below{

ui(t) = cij · c · g(s(t)− xi(t)), i = 1,

ċij(t) = h
∑N

j=1 ‖xj(t)− s(t)‖2, h > 0,
(9)

are simple and put on single node and every edge only in
work time.
Su et al. [54] partitioned the entire network into differ-

ent clusters [G1, . . . , Gd] and thereby defined cluster syn-
chronization and global synchronization. They applied the
same adaptive controller to at least one node xi and ap-
plied adaptive controllers to edges within the same cluster,⎧⎨⎩

ui(t) = hici(t)(x̄i(t)− xi(t)),
ċi(t) = hiki(xi(t)− x̄i(t))

TP (xi(t)− x̄i(t)),
ċij(t) = hijaijkij(xi(t)− xj(t))

TP (xi(t)− xj(t)),
(10)

where x̄l(t) is the desired state of the l-th cluster Gl and
P = diag{p1, . . . , pn} is a positive-definite diagonal ma-
trix. The positive constants kij = kji and ki are the
weights of the adaptive laws for parameters cij(t) and
ci(t), respectively. If node i is selected to be pinned, then
hi = 1; otherwise, hi = 0. If nodes i and j are in the
same cluster, then hij = 1; otherwise, hij = 0. Then, all
clusters asymptotically synchronize to their given states,
namely

lim
t→∞

d∑
l=1

∑
i∈Gl

‖xi(t)− x̄l(t)‖ = 0, (11)

their approach is to use a decentralized method, i.e., each
node only needs the state information of its neighbors and
only selects those few nodes that have the information of
their desired states.

Exploration from lower order to higher. – Re-
searchers have continuously studied the pinning control of
higher-order edges in networks, excluding 0-order and 1-
order edges. In this section, by introducing cycles we will
discuss higher-order edges, such as simplexes.
A simplex of order (k − 1) is formed by the interac-

tion of k nodes i1, i2, . . . , ik, denoted as [i1, i2, . . . , ik]. A
simplicial complex is formed by a collection of simplexes.
For example, the set of n simplexes ξ1, ξ2, . . . , ξn forms
a simplicial complex K. The highest order of these sim-
plices ξ1, ξ2, . . . , ξn is defined as the order of the simplicial
complex.
A cycle in a network is simply defined as a closed (non-

repeating) path with the same starting and ending node.
It is necessary to form higher-order edges. Studying the
important ranking of cycles will not only have a signifi-
cant impact on the control of edges, but also benefits the
study of controlling higher-order edges. Therefore, it is an
important “bridge” that we explore from lower to higher
orders.
To study the impact of cycles on λ2 in an undirected

network, Jiang et al. [55] introduced the edge adding oper-
ation Ge = G+e and node hanging operation Gev = G+ev,
which can be abbreviated as the adding and hanging op-
erations, respectively. An edge is included in an adding
operation, whereas the hanging operation adds a node and
connects it to an existing one. By studying the impact of
adding operation and hanging operation on algebraic con-
nectivity they found that the hanging operation decreases

61001-p4



Pinning synchronization of a complex network: Nodes, edges and higher-order edges

Fig. 3: A sample network with 6 cycles. Cycles are identified
as c1, c2, . . . , c6 which are depicted by distinct colors. Source:
ref. [55].

the λ2, while adding operation increases the λ2. Every
time an edge is added in a connected graph, at least one
cycle is introduced into the graph. So they proposed that
the more edges are added, the more cycles appear in a
network, and the larger the λ2.
Also, they searched for the key cycles in a complex net-

work. Let C = {ci | i = 1, 2, . . . , k} be the set of all cycles
in a network, where k is the number of cycles and ci repre-
sents one of the cycles. They proposed a new cycle ranking
index Ici =

∑
(p,q)∈Ei

(xp−xq)
2 to measure the importance

of a cycle, where Ei is the set of all edges of cycle ci, xp is
the p-th component of x in eq. (2). The larger the Ici is,
the more key the cycle is. They gave an example consider-
ing a network coupled with Chua’s circuits in fig. 3. They
found Ic1 = 0.3741 > Ic2 = 0.3490 > Ic3 = 0.1917 > Ic4 =
0.1824 > Ic5 = 0.1573 > Ic6 = 0.0251, satisfying the ex-
perimental results: controlling c1 achieves synchronization
the fastest.
To study the pinning control of simplex in an undi-

rected, weighted and connected network, Zhou et al. [56]
considered a simplicial complex of order d, Gh = (V, E),
where the vertex set and simplex set are denoted as V and
E respectively, and the dynamics of the i-th node in this
higher-order network is described as

ẋi = f(xi) + c1

N∑
j1=1

σ
(1)
ij1

(t)A
(1)
ij1

h(1)(xi, xj1)

+ c2

N∑
j1=1

N∑
j2=1

σ
(2)
ij1j2

(t)A
(2)
ij1j2

h(2)(xi, xj1 , xj2)

...

+ cD

N∑
j1=1

· · ·
N∑

jD=1

σ
(D)
ij1...jD

(t)A
(D)
ij1...jD

h(D)(xi, . . . , xjD )

i = 1, . . . , N, (12)

where f(·) represents the dynamics of a single node, cd
represents the d-th order coupling strength of a higher-
order network and h(d)(xi, xj1 , . . . , xjd) : R(d+1)×n →
Rn represents the d-th order inner-coupling function.
h(d)(xi, xj1 , . . . , xjd) usually satisfies the natural coupling
condition h(d)(x, x, . . . , x) = · · · = h(2)(x, x) = h(1)(x),

d = 1, . . . , D. σ
(d)
ij1···jd(t) represents the weight of the

d-order interaction constituted by the nodes i, j1, . . . , jd
at time t. If nodes i and j interact, then A

(1)
ij = 1 in

the tensor matrix; otherwise, A
(1)
ij = 0. Similarly, if the

nodes i, j1, . . . , jd form a higher-order interaction, then

A
(d)
ij1···jd = 1 in the tensor matrix; otherwise, A

(d)
ij1···jd = 0.

Let G̃h = (Ṽ(d), Ẽ(d)) be a subgraph of Gh, where Ṽ(d) is

the set of nodes corresponding to Ẽ(d), with d = 1, 2. They
proposed if ‖Df(s)‖ is bounded, the 2nd-order simplicial
complex corresponding to D = 2 in model (12) synchro-
nizes under the adaptive control law⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ̇
(1)
ij (t) = −αij(xi − xj)

T (xi − xj), [i
2∗, j2∗] ∈ Ẽ(1),

σ̇
(2)
ijk(t) = −[βij(xi − xj)

T (xi − xj)

+βik(xi − xk)
T (xi − xk) + βkj(xk − xj)

T (xk − xj)],

[i2∗, j2∗, k2∗] ∈ Ẽ(2).
(13)

Also, they studied a method to rank the simplicial
importance in networks. They considered a d-order
simplicial complex Gh = (V, E) which is completely
determined by ld simplexes of order d [id1

1 , . . . , id1

d+1],

[id2
1 , . . . , id2

d+1], . . . , [i
dld
1 , . . . , i

dld

d+1]. The (d + 1)-tuple

[i
dj

1 , . . . , i
dj

d+1] is a simple form of Gh of order d with

label dj , where d = 1, . . . , D, i
dj

1 , . . . , i
dj

d+1 ∈ V and

j = 1, . . . , ld. The set of a d-order simplex [i
dp

1 , . . . , i
dp

d+1]

is denoted with label dp in Gh and all its correspond-
ing non-zero lower-order simplices are denoted with Ddp .
They increased the coupling strength of Ddp by ε and
denoted the modified simplices by Gh

dε
p
. The variation

of the second smallest eigenvalue of the original net-
work is denoted by Δs

dε
p

= λ2(G
h
dε
p
) − λ2. They pro-

vided an approximate expression for Δs
dε
p
. Regarding

the problem of how to choose appropriate simplex pin-
ning control to facilitate faster adaptive synchronization
in higher-order networks, they proposed an approach. If
the coupling strength of the Ddp is increased by ε, the
greater the influence on Δs

dε
p
is, the more the Ddp should

be controlled.

Conclusions. – In this review, we introduce various
methods for integrating controllers into the nodes, edges,
and higher-order edges of a complex network. In gen-
eral, when considering node (0-order edge)-pinning syn-
chronization, the minimum eigenvalue of the minor matrix

of L+LT

2 by removing the corresponding row-column pairs
is considered. In the case of edge-pinning or higher-order
edge-pinning synchronization, the second smallest Lapla-
cian eigenvalue is investigated. Additionally, the study
of higher-order networks is an emerging field, promising
further breakthroughs.
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