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Adaptive Synchronization of Complex Dynamical Networks: Dealing With
Uncertain Impulses

Shuaibing Zhu , Member, IEEE, Jin Zhou , Jinhu Lü , Fellow, IEEE, and Jun-An Lu

Abstract—The synchronization problem of complex dynamical
networks with impulsive effects has been extensively addressed.
However, great challenges arise when applying the existing syn-
chronization criteria to networks with uncertain impulses. In this
article, we investigate the adaptive synchronization problem of
complex networks with uncertain impulses. First, the adaptive
control gain is proved to be bounded for both synchronizing and
desynchronizing impulses. Then, adaptive synchronization criteria
for impulsive networks are derived from the boundedness of the
control gain. Finally, a numerical example is provided to validate
the proposed criteria.

Index Terms—Adaptive feedback control, complex network, im-
pulse, linear feedback control, synchronization.

I. INTRODUCTION

Complex networks are usually used to describe large-scale intercon-
nected systems in the real world, including protein networks, biological
neural networks, dynamical networks, and citation networks. Over
the past decades, there has been a surge of interest in the study of
complex networks, in regard to network structure [1], [2], statistical
mechanics [3], synchronization [4], region of attraction [5], and con-
trollability [6].

As one of the most essential problems in the field of complex dynam-
ical networks, synchronization has been extensively investigated [7],
[8], [9], [10]. Some networks can realize synchronization via the inter-
actions among the nodes, while some can only realize synchronization
by means of external control. Linear feedback control [11], [12], [13]
is one of the most widely-used control schemes for synchronization
as it is easy to implement. However, the design of the linear control
gain heavily depends on network parameters. In other words, the linear
control scheme is generally inapplicable if some network parameters
are uncertain. To address the synchronization problem of networks with
uncertain parameters, adaptive feedback control [14], [15], [16] can be
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adopted, because its control gain can be automatically adapted without
knowing any parameter.

In reality, the states of a network may be subject to a sequence of
abrupt instantaneous changes, also known as impulsive effects [17],
[18], [19]. According to whether or not it is beneficial for synchroniza-
tion, an impulse is classified as synchronizing impulse or desynchro-
nizing impulse. In the literature, there have been a great deal of studies
devoted to the synchronization problem of impulsive networks [18],
[19], [20], [21], [22], [23], [24]. It is worth noting that these studies
adopt the linear control approach, and the designed control gain depends
on the impulsive strength and the impulsive interval. That is, the two
parameters of each impulse should be known in advance, despite the
fact that, in practice, it may not be possible to determine the exact
parameters.

In the synchronization literature, adaptive control is often used to
address uncertain network topology, while little attention has been paid
to uncertain impulses. In [25], [26], [27], and [28], the synchronization
problem of impulsive networks under adaptive control was considered.
In [25], only synchronizing impulses are considered, while desynchro-
nizing impulses that are more troublesome are discounted. Essentially,
the impulsive strength is assumed to be known. Desynchronizing
impulses are addressed in [26], [27], and [28], but the initial value
of the adaptive control gain depends on the impulse parameters. In
consequence, the adaptive control scheme in [26], [27], and [28] is not
practical to apply as the impulse parameters may be uncertain. To the
best of authors’ knowledge, the adaptive synchronization problem of
networks with uncertain impulses has not yet been successfully solved.
The main challenge lies with the fact that desynchronizing impulses
could prevent the Lie derivative of the Lyapunov candidate functions
studied in much of the literature from being negative semidefinite. To
overcome such difficulty, we will derive synchronization criteria by
analyzing the boundedness of the control gain.

Motivated by the above discussions, this article investigates
the adaptive synchronization problem of complex dynamical net-
works with uncertain impulses. The main contributions are as
follows.
1) The boundedness of the adaptive control gain is theoretically

guaranteed, no matter that the impulses are synchronizing or desyn-
chronizing.

2) In contrast to [26], [27], and [28], the initial value of the control gain
is independent of the impulse parameters and thereby the adaptive
control proposed here is more practical.

3) The adaptive synchronization criteria for impulsive networks are
derived by proving the boundedness of the control gain. It should
be highlighted that uncertain impulses are addressed for the first
time via adaptive control in the synchronization problem.

The rest of this article is organized as follows. Section II presents
some preliminaries. Section III derives the adaptive synchronization
criteria for complex dynamical networks with uncertain impulses.
Section IV provides a numerical example to verify the effectiveness
of the proposed criteria. Finally, Section V concludes this article.
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II. PRELIMINARIES

A. Notation and Problem Formulation

Rn and Rn×m denote the n-dimensional Euclidean space and the
set of all the (n×m)-dimensional real matrices, respectively; R+ is
the set of nonnegative real numbers; the superscript � represents the
transpose of a vector or a matrix; ‖ · ‖ denotes the two-norm of a vector
or a matrix; ⊗ represents the Kronecker product; In is the identity
matrix of dimension n. The Dini derivative of a function ψ is defined
as D+ψ(t) := lim suph→0+ [(ψ(t+ h)− ψ(t))/h].

Consider a controlled complex dynamical network consisting of N
equations of dimension n

ẋi(t) = f(t, xi(t)) + c
N∑

j=1

aijΓxj(t) + ui (1)

where 1 ≤ i ≤ N ; xi ∈ Rn represents the state of the ith node;
f : R+ × Rn → Rn is a continuous nonlinear function; c > 0 is the
coupling strength;A = (aij)N×N denotes the weighted outer coupling
matrix; Γ ∈ Rn×n denotes the inner coupling matrix; ui is the control
input to the ith node. For i �= j, if there exists a connection from node
j to node i, then aij > 0; otherwise, aij = 0; the diagonal entries of
A are defined by aii = −∑N

j=1,j �=i aij .
The target is to synchronize all the nodes to a desired state trajectory

z(t) such that

ż(t) = f(t, z(t)). (2)

The synchronization errors of the ith node and network (1) are, respec-
tively, denoted as ei(t) = xi(t)− z(t) and

e(t) = [e�1 (t), e
�
2 (t), . . . , e

�
N (t)]�. (3)

During signal transmission, the states xi may be subject to sudden
changes at discrete time instants, which can be well described by
differential equations with impulses [23]. To be more practical, the
following impulsive dynamical network is considered:⎧⎨⎩ẋi(t) = f(t, xi(t)) + c

N∑
j=1

aijΓxj(t) + ui, t �= tk

Δxi(tk) = Bikei(t
−
k ), t = tk

(4)

where Δxi(tk) = xi(t
+
k )− xi(t

−
k ) represents the impulse for the ith

node at tk; Bik ∈ Rn×n is a constant matrix; {tk}k≥1 is an impulsive
sequence such that 0 < tk < tk+1 for all k ≥ 1 and limk→+∞ tk =
+∞. Assume that xi(t) is right-hand continuous at t = tk, that is,
xi(tk) = xi(t

+
k ) for all k. Then, one obtains the following error system

from (2) and (4):⎧⎪⎪⎨⎪⎪⎩
ėi(t) = f(t, xi(t))− f(t, z(t))

+ c
∑N

j=1 aijΓej(t) + ui, t �= tk

ei(tk) = (In +Bik)ei(t
−
k ), t = tk.

(5)

The impulses can be classified into two types according to the value
of ‖In +Bik‖. The impulse for the ith node at tk is synchronizing if
‖In +Bik‖ ≤ 1 (as ‖ei(tk)‖ ≤ ‖ei(t−k )‖) or desynchronizing if ‖In +
Bik‖ > 1.

Remark 1: The network model (4) considered here is quite standard
and general, where the coupling matrices A and Γ can be asymmetric.
Although the connections among the nodes are beneficial for achieving
network synchronization, appropriate adaptive control ui for each and
every node is still necessary in the presence of uncertain impulses
(which might be strong desynchronizing impulses).

Remark 2: In most if not all of the existing studies [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], the values ofBik and tk are
assumed to be known in advance. Assuming the advance knowledge

of the impulse times and values over an infinite time horizon is often
impractical. To overcome the uncertainty introduced into the problem
in the absence of such an assumption, it is necessary to replace the
strategy of linear feedback control used by most existing studies with
an adaptive feedback control scheme.

B. Assumptions and Lemmas

Assumption 1 (A1): Suppose that there exists a nonnegative constant
ρ satisfying

‖f(t, x)− f(t, y)‖ ≤ ρ‖x− y‖ (6)

for any x, y ∈ Rn and t ∈ R+.
Assumption 2 (A2): Suppose there are constants μ > 0 and τmin >

0, such that the impulses in (4) satisfy

‖In +Bik‖ ≤ μ (7)

tk+1 − tk ≥ τmin (8)

for all 1 ≤ i ≤ N and k ≥ 1.
Remark 3: Condition (7) imposes a bound on the desynchronizing

effect of the impulses, whereas (8) limits the frequency of the impulses.
It is noteworthy that advance knowledge of μ and τmin is not required
here, only the existence of the bounds is needed.

Lemma 1 ([29], Th. 16 and 19]): Let ξ1, ξ2, · · · , ξm ≥ 0. Then, the
following inequalities hold:(

m∑
i=1

ξi

)p

≤ mp−1

m∑
i=1

ξpi ,

(
m∑
i=1

ξi

)q

≤
m∑
i=1

ξqi

where p ≥ 1 and 0 < q ≤ 1.
Lemma 2: Let E ⊂ R+ be an interval in the form of [σ1, σ2) or

(σ1, σ2), where σ1 may be −∞ and σ2 may be +∞. Let g : R+ →
R+ be a right-hand continuous function. If function ϕ : R+ → R+ is
differentiable and satisfies

ϕ̇(t) ≤ αϕ(t) +
√
ϕ(t)g(t), t ∈ E (9)

then

D+ω(t) ≤ α

2
ω(t) +

1

2
g(t), t ∈ E (10)

where α ∈ R and ω(t) =
√
ϕ(t).

For conciseness, the proofs of Lemma 2 and the following lemmas
are presented in the Appendix.

Remark 4: When dealing with network synchronization, an inequal-
ity in the form of (9) may be established to estimate the convergence
speed of the Lyapunov function. Since inequality (9) is generally not
easy to solve, it would be better to simplify (9) into the form of (10).
If ϕ > 0, one can easily derive (10), which even holds for the true
derivative of ω (as ω is differentiable at any t with ϕ(t) > 0). The
proof of Lemma 2 addresses the additional difficulty of bounding the
derivative of ω at points t̂0 where ϕ(t̂0) = 0.

Remark 5: It should be highlighted that g ≥ 0 is a necessary con-
dition in this lemma. If the condition g ≥ 0 does not hold, then there
exists a t̂0 such that g(t̂0) < 0. Taking ϕ ≡ 0 gives

D+ω(t̂0) = 0 >
1

2
g(t̂0) =

α

2
ω(t̂0) +

1

2
g(t̂0)

a contradiction with (10).

Authorized licensed use limited to: Wuhan University. Downloaded on May 31,2024 at 01:29:02 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 6, JUNE 2024 3999

Lemma 3: Suppose that the integral
∫ +∞
t0

gp(t)dt converges, where
g is a nonnegative function, t0 ∈ R+, and p ≥ 1. If W : R+ → R+ is
a piecewise continuous function satisfying

W (t) ≤ c1 exp(−α(t− t0))

+ c2

∫ t

t0

g(θ) exp(−α(t− θ))dθ, t ≥ t0 (11)

with c1, c2, and α being positive constants, then
∫ +∞
t0

W p(t)dt con-
verges.

Lemma 4: Let {t̂k}k≥0 be a sequence satisfying t̂k+1 − t̂k ≥ τ0,
where τ0 > 0 and t̂0 = 0. If ϕ : R+ → R+ is a right-hand continuous
function such that {

D+ϕ(t) ≤ αϕ(t), t �= t̂k
ϕ(t̂k) ≤ μϕ(t̂−k ), t = t̂k

(12)

then ϕ(t) ≤ ϕ(0) exp(c0t), where α ∈ R, k ≥ 1, μ > 0, and c0 =
max{α,α+ lnμ

τ0
}.

Lemma 5: Let A =
[
A11 A12

A21 A22

]
, where A11 and A22 are square

matrices. Then, ‖A11‖ ≤ ‖A‖ and ‖A22‖ ≤ ‖A‖.

III. MAIN RESULTS

The purpose of this section is to establish synchronization criteria
for the impulsive network (4) under the adaptive controller

ui(t) = −di(t)ei(t), 1 ≤ i ≤ N (13)

with adaptation laws

ḋi(t) = ζi‖ei(t)‖p (14)

where ζi > 0, p ≥ 1, and di(0) ≥ 0 are constants.

A. Boundedness of the Control Gain

From the adaptation laws (14), we find that the adaptive control gain
di(t) keeps increasing if ei(t) �= 0. Since controllers cannot provide
infinitely large control gain in reality, di(t) must be designed so as to
remain bounded.

Theorem 1: Let the assumptions (A1) and (A2) hold. If the controlui

of impulsive network (4) is designed as (13) with adaptation laws (14),
then the control gain di(t) is necessarily bounded, where 1 ≤ i ≤ N .

Proof: The proof is divided into two steps.
Step 1:We first prove that di(t) is bounded on the interval [0, T ]

for any T > 0. Consider the Lyapunov function V1(t) = e�(t)e(t) =∑N
i=1 e

�
i (t)ei(t). Differentiating V1(t) along the solution of (5) gives

V̇1(t) = 2
N∑
i=1

e�i (t)[f(t, xi(t))− f(t, z(t))]

+ 2c

N∑
i=1

N∑
j=1

aije
�
i (t)Γej(t)

− 2
N∑
i=1

di(t)‖ei(t)‖2, if t �= tk.

Recalling assumption (A1), one has

V̇1(t) ≤ 2ρ
N∑
i=1

‖ei(t)‖2 + 2c
N∑
i=1

N∑
j=1

aije
�
i (t)Γej(t)

− 2

N∑
i=1

di(t)‖ei(t)‖2, if t �= tk. (15)

Since di(t) ≥ di(0) ≥ 0, it follows that:

V̇1(t) ≤ 2ρ‖e(t)‖2 + 2ce�(t)(A⊗ Γ)e(t)

≤ 2(ρ+ c‖A‖‖Γ‖)V1(t), if t �= tk. (16)

When t = tk, it follows from (5) and assumption (A2) that:

V1(tk) ≤ μ2V1(t
−
k ).

According to Lemma 4, there exists a c0 > 0 such that V1(t) ≤
V1(0) exp(2c0t), leading to

‖ei(t)‖ ≤ ‖e(t)‖ =
√
V1(t) ≤ ‖e(0)‖ exp(c0t).

Then, for t ∈ [0, T ], one derives from (14) that

di(t) = di(0) + ζi

∫ t

0

‖ei(θ)‖pdθ

≤ di(0) + ζiT‖e(0)‖p exp(c0pT ), 1 < i ≤ N.

Therefore, di(t) is bounded on [0, T ] for 1 < i ≤ N .
Step 2: We next prove that di(t) is bounded on R.
Let α be a positive constant, and denote

μ0 = max{μ, 1}

d0 = ρ+ c‖A‖‖Γ‖+ lnμ0

τmin

+ α

Λ = {i ∈ {1, . . . , N}| di(t) < d0 ∀t ≥ 0}
where μ is as defined in assumption (A2).

Up to a permutation of the indices,Λ = {1, . . . , �}. Clearly, if � = N
then all the di(t) are bounded. Next consider 0 ≤ � < N , and denote

ê(t) = [e�1 (t), . . . , e
�
� (t)]

�

ẽ(t) = [e��+1(t), . . . , e
�
N (t)]�

A =

[
A11 A12

A21 A22

]
where A11 ∈ R�×� and A22 ∈ R(N−�)×(N−�). In particular, one has
ê = 0, ẽ = e, and A22 = A if � = 0.

Consider another Lyapunov candidate

V2(t) = ẽ�(t)ẽ(t) =
N∑

i=�+1

e�i (t)ei(t).

Similar to (15), one has

V̇2(t) ≤ 2ρ

N∑
i=�+1

‖ei(t)‖2 + 2c

N∑
i=�+1

N∑
j=1

aije
�
i (t)Γej(t)

− 2
N∑

i=�+1

di(t)‖ei(t)‖2

= 2ρ
N∑

i=�+1

‖ei(t)‖2 + 2c
N∑

i=�+1

N∑
j=�+1

aije
�
i (t)Γej(t)

+ 2c
N∑

i=�+1

�∑
j=1

aije
�
i (t)Γej(t)− 2

N∑
i=�+1

di(t)‖ei(t)‖2

= 2ρ‖ẽ(t)‖2 + 2cẽ�(t)(A22 ⊗ Γ)ẽ(t)

+ 2cẽ�(t)(A21 ⊗ Γ)ê(t)− 2
N∑

i=�+1

di(t)‖ei(t)‖2
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≤ 2(ρ+ c‖A22‖‖Γ‖)V2(t) + 2c‖A21‖‖Γ‖
√
V2(t)‖ê(t)‖

− 2

N∑
i=�+1

di(t)‖ei(t)‖2, if t �= tk. (17)

From (14) and the definition of �, it follows that there exists a k0 ≥ 1
such that:

di(t) ≥ d0 ∀t ≥ tk0

for � < i ≤ N . By Lemma 5, one has ‖A22‖ ≤ ‖A‖. Then

V̇2(t) ≤ − 2(d0 − ρ− c‖A‖‖Γ‖)V2(t)

+ 2c‖A21‖‖Γ‖
√
V2(t)‖ê(t)‖

= − 2α0V2(t) + 2
√
V2(t)g(t), if t �= tk, t ≥ tk0

.

where α0 = lnμ0
τmin

+ α and g(t) = c‖A21‖‖Γ‖‖ê(t)‖. Denoting

W (t) =
√
V2(t) = ‖ẽ(t)‖

it follows from Lemma 2 that:

D+W (t) ≤ −α0W (t) + g(t), if t �= tk, t ≥ tk0
.

When t = tk, it follows from (5) and assumption (A2) that

W (tk) ≤ μW (t−k ). (18)

For any k ≥ k0, consider the following comparison system:{
U̇(t) = −α0U(t) + g(t) + ε, t ∈ (tk, tk+1)
U(t) =W (t), t = tk

where ε > 0. According to the comparison principle, one has

W (t) < U(t) = exp(−α0(t− tk))U(tk)

+

∫ t

tk

[g(θ) + ε] exp(−α0(t− θ))dθ

for t ∈ (tk, tk+1). Letting ε→ 0+ gives

W (t) ≤ exp(−α0(t− tk))W (tk) + ĝk(t, α0) (19)

where

ĝk(t, s) =

∫ t

tk

g(θ) exp(−s(t− θ))dθ

with t ∈ (tk, tk+1) and s > 0. From (18), one has

W (tk+1) ≤ μ exp(−α0(tk+1 − tk))W (tk) + μĝk(tk+1, α0).

Since tk+1 − tk ≥ τmin and μ0 ≥ μ, it is derived that

α0(tk+1 − tk) =
lnμ0

τmin

(tk+1 − tk) + α(tk+1 − tk)

≥ lnμ+ α(tk+1 − tk). (20)

Combining α0 ≥ α and inequality (20) yields

W (tk+1) ≤ exp(−α(tk+1 − tk))W (tk) + μĝk(tk+1, α). (21)

Denoting Ŵk =W (tk) exp(αtk), (21) can be rewritten in the follow-
ing compact form:

Ŵk+1 ≤ Ŵk + μ

∫ tk+1

tk

g(θ) exp(αθ)dθ

which further gives

Ŵk ≤ Ŵk0
+ μ

∫ tk

tk0

g(θ) exp(αθ)dθ, k ≥ k0. (22)

Since α0 ≥ α, it follows from (19) that:

W (t) ≤ exp(−α(t− tk))W (tk) + ĝk(t, α), t ∈ [tk, tk+1).

For any t ≥ tk0
, there exists a k ≥ k0 such that t ∈ [tk, tk+1). Then,

considering μ0 ≥ 1 and μ0 ≥ μ, one has

W (t) exp(αt) ≤ Ŵk +

∫ t

tk

g(θ) exp(αθ)dθ

≤ Ŵk0
+ μ0

∫ t

tk0

g(θ) exp(αθ)dθ. (23)

We now verify the convergence of
∫ +∞
0

gp(t)dt. If � = 0, one has

g = 0, so
∫ +∞
0

gp(t)dt converges. Otherwise, one has � > 0 and

di(+∞) < d0, 1 ≤ i ≤ �.

Then, it follows from (14) that
∫ +∞
0

‖ei(t)‖pdt converges for 1 ≤ i ≤
�. Applying Lemma 1 gives

gp = cp0

(
�∑

i=1

‖ei‖2
) p

2

≤ cp0 max{1, � p
2−1}

�∑
i=1

‖ei‖p (24)

where c0 = c‖A21‖‖Γ‖. Hence,
∫ +∞
0

gp(t)dt also converges for
� > 0.

Combining the convergence of
∫ +∞
0

gp(t)dt and inequality (23),

it follows from Lemma 3 that
∫ +∞
tk0

W p(t)dt converges. It has been

proved in Step 1 that di(tk0
) is finite. Then

di(t) = di(tk0
) + ζi

∫ t

tk0

‖ei(θ)‖pdθ

≤ di(tk0
) + ζi

∫ t

tk0

W p(θ)dθ, t ≥ tk0

where � < i ≤ N . This accounts for the boundedness of di(t) for � <
i ≤ N . This completes the proof. �

Remark 6: According to Theorem 1, the boundedness of the control
gain di(t) can be theoretically guaranteed, no matter that the impulses
are synchronizing or desynchronizing. In fact, desynchronizing im-
pulses could enlarge the synchronization error and make di(t) increase
more rapidly. In this sense, desynchronizing impulses are more difficult
to address than synchronizing impulses.

B. Adaptive Synchronization Criteria

After analyzing the boundedness of the control gain di(t), we are
now in position to establish the adaptive synchronization criteria for
impulsive network (4).

Theorem 2: If the assumptions (A1) and (A2) hold, then impulsive
network (4) under the adaptive control (13) with adaptation laws (14)
synchronizes asymptotically to the desired signal z(t).
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Proof: The boundedness of di implies that
∫ +∞
0

‖ei(t)‖pdt con-
verges for 1 ≤ i ≤ N . Applying Lemma 1 gives

‖e‖p =

(
N∑
i=1

‖ei‖2
) p

2

≤ max{1, N p
2−1}

N∑
i=1

‖ei‖p

which implies the convergence of
∫ +∞
0

‖e(t)‖pdt.
It has been proved in (16) that V̇1(t) ≤ 2βV1(t), where t �= tk and

β = ρ+ c‖A‖‖Γ‖. Denoting W (t) =
√
V1(t) = ‖e(t)‖, it follows

from Lemma 2 that

D+W (t) ≤ βW (t), if t �= tk. (25)

When t = tk, one has W (tk) ≤ μW (t−k ).
Suppose that the synchronization error e(t) does not converge

to zero. Then, there exists a positive constant ε and a sequence
{ωm} in strictly increasing order such that limm→+∞ ωm = +∞ and
W (ωm) ≥ μ0ε for m ≥ 1.

The number of impulses occurring in the interval (ωm − τmin, ωm]
does not exceed 1. If the interval (ωm − τmin, ωm] contains no im-
pulses, then applying the comparison principle, one deduces from
(25) that W (t) ≥ μ0ε exp(−β(ωm − t)) for t ∈ (ωm − τmin, ωm].
Recalling μ0 = max{μ, 1}, one has

W (t) ≥ ε exp(−β(ωm − t)) � h(t). (26)

On the other hand, if the interval contains a single impulse, then there
exists a tk1

∈ (ωm − τmin, ωm]. Then

W (t) ≥ μ0h(t), t ∈ [tk1
, ωm] (27)

which yields W (t−k1
) ≥ 1

μ
W (tk1

) ≥ h(tk1
). Applying the compari-

son principle again gives

W (t) ≥W (t−k1
) exp(−β(tk1

− t))

≥ h(t), t ∈ (ωm − τmin, tk1
). (28)

Combining (26)–(28), one gets

‖e(t)‖ =W (t) ≥ h(t), t ∈ (ωm − τmin, ωm] (29)

which further gives∫ ωm

ωm−τmin

‖e‖p(t)dt ≥
∫ ωm

ωm−τmin

hp(t)dt

= εp exp(−pβτmin)
exp(pβτmin)− 1

pβ

≥ τminε
p exp(−pβτmin) � κ0

where κ0 > 0 is a constant that does not depend on m. This contra-
dicts the convergence of

∫ +∞
0

‖e(t)‖pdt. Hence, one has limt→+∞
e(t) = 0. �

Remark 7: At this point, it may be useful to compare the methods
of the preceding proof with standard methods in the literature, where
a widely used technique for proving asymptotic synchronization in the
adaptive setting (see, e.g., [30], [31], and [32]) is to study a Lyapunov
function candidate of the form

Ṽ =
N∑
i=1

e�i (t)ei(t) +
N∑
i=1

(di(t)− d∗)2

ζi

where d∗ is a constant. This technique works well for synchroniz-
ing impulses. In the presence of desynchronizing impulses, however,∑N

i=1 e
�
i (t)ei(t) could increase abruptly at the impulsive instant,

causing the standard technique to fail. This difficulty motivated the

TABLE I
Tsync AND d∗ FOR DIFFERENT VALUES OF p

more global approach in this article, considering explicitly the possible
interactions between these abrupt jumps and the adaptive control gain.

IV. NUMERICAL SIMULATIONS

A. Example

The well-known Lorenz system [33] is described by

ż(t) = f(z(t)) =

⎡⎣c1(z2(t)− z1(t))
c3z1(t)− z2(t)− z1(t)z3(t)
−c2z3(t) + z1(t)z2(t)

⎤⎦ (30)

where c1 = 10, c2 = 8/3, and c3 = 28. Then, the assumption (A1)
holds due to the boundedness of the Lorenz system [34].

Example 1: Consider impulsive network (4) consisting of N = 5
Lorenz systems, where the controllers are as given in Theorem 1. In
this network, set c = 1, Bik = (μ− 1)In, tk = 0.1 k, Γ = I3, p = 2,
ζi = 1, and

A =

⎡⎢⎢⎢⎢⎣
−4 1 1 1 1
1 −5 2 0 2
2 0 −3 1 0
0 1 1 −4 2
3 2 0 2 −7

⎤⎥⎥⎥⎥⎦
where 1 ≤ i ≤ 5, k ≥ 1, and μ > 0 is a parameter to be discussed.

Let the initial values be di(0) = 1, z(0) = [0, 2,−3]�, and xi(0) =
3i+ [−5,−10,−15]�, where 1 ≤ i ≤ 5. The synchronization error
eij(t) and the control gain d(t) of this impulsive network are presented
in Figs. 1 and 2 when the impulsive strengthμ = 0.5 and 2, respectively.
It is found that the synchronization is realized no matter the impulses
are synchronizing or desynchronizing, which verifies the theoretical
results.

B. Further Discussion

Revisiting Example 1, we find that the adaptive control gain is large
when μ = 2. Next, we discuss how the parameter p affect the control
gain di(t) when μ = 2. The other parameters (except p) and initial
conditions keep the same.

For simplicity, the synchronization is considered to be realized
numerically at

Tsync � inf{t0| ‖e(t)‖ ≤ ε ∀t ≥ t0}
where ε = 10−4. The ultimate control gain d∗ of the entire network is
defined as

d∗ = max
1≤i≤5

di(Tsync).

The values of Tsync and d∗ for several different values of p are given
in Table I. It is shown that the control gain d∗ needed decreases when
p decreases from 2 to 1. Therefore, we can choose a small p so that d∗

does not exceed the maximum control gain that controllers can provide.
On the other hand, the synchronization speed reduces when p becomes
small.
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Fig. 1. Synchronization error eij(t) and control gain di(t) of the im-
pulsive network in Example 1, where the impulsive strength µ = 0.5,
1 ≤ i ≤ 5, and 1 ≤ j ≤ 3.

The synchronization can be realized when p ≥ 1 according to Theo-
rem 1, while simulation results in Table I give that the synchronization
may be realized even when p ∈ (0, 1). When reducing p from 1 to 0.6,
the control gain needed continues to decrease; when further reducing
p from 0.6 to 0.2, the change of d∗ has no evident tendency. The
reason may be that the minimum control gain needed is around 10.14
(corresponding to p = 0.6).

V. CONCLUSION

In this article, the adaptive synchronization problem of impulsive
dynamical networks has been studied. Since conventional techniques
for implementing adaptive control do not work well in the presence of
desynchronizing impulses, boundedness analysis of the adaptive con-
trol gain has been conducted, based on which sufficient conditions for
synchronization in networks with uncertain impulses have been estab-
lished. In addition, the boundedness analysis here is also fundamental
to guarantee the practicality of adaptive synchronization. Compared
with the existing studies, the criteria derived here are independent of
the impulse parameters and thereby are more practical.

Another notable benefit derived from the methods developed in this
article is the flexibility provided by the parameter p ≥ 1 for tuning the
upper bound on the control gains. While prior studies have routinely
taken p = 2, both our theory (Theorem 1) and the simulation results

Fig. 2. Synchronization error eij(t) and control gain di(t) of the im-
pulsive network in Example 1, where the impulsive strength µ = 2,
1 ≤ i ≤ 5, and 1 ≤ j ≤ 3.

in Section IV indicate that p could be tuned to ensure that saturation
bounds of actual controllers are not exceeded. Moreover, the simula-
tions indicate that synchronization with p ∈ (0, 1) is still possible, and
a topic for further study.

APPENDIX

Proof of Lemma 2: Let t̂0 be any constant in E. If ϕ(t̂0) �= 0, then
ω is differentiable and

D+ω(t̂0) = ω̇(t̂0) =
ϕ̇(t̂0)

2
√
ϕ(t̂0)

≤ α

2
ω(t̂0) +

1

2
g(t̂0). (31)

Hence, inequality (10) holds for ϕ(t̂0) �= 0.

Next consider the case of ϕ(t̂0) = 0. Since ω(t̂0) =
√
ϕ(t̂0) = 0,

one obtains

D+ω(t̂0) = limh→0+
ω(t̂0 + h)

h
.

Let ε be any positive number. Considering thatϕ is continuous onE and
g is right-hand continuous, there exists a positive number h0 satisfying

|αω(t)| < ε, |g(t)− g(t̂0)| < ε (32)

for any t ∈ [t̂0, t̂0 + h0] ⊂ E. For h ∈ (0, h0], define

t̂1 = t̂1(h) = sup{t ∈ [t̂0, t̂0 + h] | ϕ(t) = 0}.
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The continuity ofϕ givesϕ(t̂1) = 0, which further leads to ω(t̂1) = 0.
If t̂1 = t̂0 + h, then

ω(t̂0 + h)

h
=
ω(t̂1)

h
= 0 ≤ 1

2
g(t̂0). (33)

If t̂1 < t̂0 + h, then one has ϕ(t) �= 0 for any t ∈ (t̂1, t̂0 + h]. It
follows that ω is differentiable on (t̂1, t̂0 + h]. Then, there exists
ξ ∈ (t̂1, t̂0 + h) such that

ω(t̂0 + h)

h
=
ω(t̂0 + h)− ω(t̂1)

h
= ω̇(ξ). (34)

Since ξ ∈ (t̂1, t̂0+h) ⊂ [t̂0, t̂0+h0], inequality (32) yields |αω(ξ)|<
ε and g(ξ) < g(t̂0) + ε. Recalling (31) and (34), it is derived that

ω(t̂0 + h)

h
≤ α

2
ω(ξ) +

1

2
g(ξ) ≤ 1

2
g(t̂0) + ε. (35)

Then, it follows from (33) and (35) that D+ω(t̂0) ≤ 1
2
g(t̂0) + ε.

Letting ε→ 0+, one has

D+ω(t̂0) ≤ 1

2
g(t̂0) =

α

2
ω(t̂0) +

1

2
g(t̂0).

This completes the proof. �
Proof of Lemma 3: Define g̃(t) =

∫ t

t0
g(θ) exp(−α(t− θ))dθ.

Then, applying Lemma 1 to inequality (11) gives

W p(t) ≤ 2p−1cp1 exp(−αp(t− t0)) + 2p−1cp2 g̃
p(t) (36)

where t ≥ t0. It is easy to verify that
∫ +∞
t0

exp(−αp(t− t0))dt con-
verges. Since W is piecewise continuous, it follows from (36) that∫ +∞
t0

W p(t)dt converges if
∫ +∞
t0

g̃p(t)dt converges.

It needs to be shown that
∫ +∞
t0

g̃p(t)dt converges for p = 1 and
p > 1, respectively.

Case I: If p = 1, one has∫ T

t0

g̃(t)dt =

∫ T

t0

g(θ) exp(αθ)dθ

∫ T

θ

exp(−αt)dt

=
1

α

∫ T

t0

g(θ)[1− exp(α(θ − T ))]dθ

≤ 1

α

∫ T

t0

g(θ)dθ. (37)

Since
∫ +∞
t0

g(t)dt converges, the convergence of
∫ +∞
t0

g̃p(t)dt for p =
1 is derived.

Case II: If p > 1, there exists a unique constant q > 1 such that
1
p
+ 1

q
= 1. Applying the Hölder inequality [29, Th. 189], one has

g̃(t) =

∫ t

t0

g(θ) exp

(
−α(t− θ)

p

)
exp

(
−α(t− θ)

q

)
dθ

≤
[∫ t

t0

gp(θ) exp (−α(t− θ)) dθ

] 1
p

×
[∫ t

t0

exp (−α(t− θ)) dθ

] 1
q

≤
(
1

α

) 1
q
[∫ t

t0

gp(θ) exp (−α(t− θ)) dθ

] 1
p

.

It then follows that:∫ T

t0

g̃p(t)dt ≤
(
1

α

) p
q
∫ T

t0

dt

∫ t

t0

gp(θ) exp (−α(t− θ)) dθ.

Similar to (37), it can be proved that∫ T

t0

dt

∫ t

t0

gp(θ) exp (−α(t− θ)) dθ ≤ 1

α

∫ T

t0

gp(θ)dθ

which further leads to∫ T

t0

g̃p(t)dt ≤
(
1

α

)p ∫ T

t0

gp(θ)dθ.

Since
∫ +∞
t0

gp(t)dt converges, the integral
∫ +∞
t0

g̃p(t)dt also converges
for p > 1. �

Proof of Lemma 4: According to the comparison principle, fork ≥ 1
and t ∈ [t̂k, t̂k+1), one has

ϕ(t) ≤ ϕ(t̂k) exp(α(t− t̂k)) ≤ μϕ(t̂−k ) exp(α(t− t̂k))

leading toϕ(t̂−k+1) ≤ μϕ(t̂−k ) exp(α(t̂k+1 − t̂k)). It then follows that:

ϕ(t̂−k ) ≤ μk−1ϕ(t̂−1 ) exp(α(t̂k − t̂1))

≤ μk−1 × ϕ(t̂0) exp(α(t̂1 − t̂0))× exp(α(t̂k − t̂1))

= μk−1ϕ(0) exp(αt̂k).

Therefore, ϕ(t) ≤ μkϕ(0) exp(αt) for t ∈ [t̂k, t̂k+1). Since t̂k+1 −
t̂k ≥ τ0, one has t ≥ t̂k ≥ kτ0. If μ ≥ 1, then

ϕ(t) ≤ μt/τ0ϕ(0) exp(αt) ≤ ϕ(0) exp(c0t).

Otherwise, ϕ(t) ≤ ϕ(0) exp(αt) ≤ ϕ(0) exp(c0t). �
Proof of Lemma 5: Suppose A11 ∈ Rk×k, where k is a positive

integer. Taking u ∈ Rk, one has

‖A11u‖ ≤
√

‖A11u‖2 + ‖A21u‖2

=

∥∥∥∥[A11u
A21u

]∥∥∥∥ =

∥∥∥∥A [u0
]∥∥∥∥ .

It then follows that:

max
‖u‖=1

‖A11u‖ ≤ max
‖u‖=1

∥∥∥∥A [u0
]∥∥∥∥ ≤ max

‖w‖=1
‖Aw‖

which indicates ‖A11‖ ≤ ‖A‖. Similarly, it can be concluded that
‖A22‖ ≤ ‖A‖. �
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