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 A B S T R A C T

Dynamics resilience – the ability of a network to maintain stable collective dynamics under 
topology disturbance – is governed by the invariance of its Fiedler value. In this paper, we 
study dynamics resilience of complex networks under edge-additions. It is proved that networks 
with higher Fiedler multiplicity 𝑟 ≥ 2 exhibit remarkable dynamics resilience – adding up to 
𝑟 − 1 edges will not bring about dynamics changes, as theoretically and empirically validated. 
To enable systematic design, we construct several network models that inherently exhibit high 
dynamics resilience under certain conditions.

1. Introduction

Network dynamics is one of the most pivotal areas in the field of nonlinear dynamics. In complex networks, nodes represent 
physical objects, with mutual physical interactions abstracted into edges between nodes. The network topology dynamically interacts 
with synchronization dynamics, indicating that edge-additions can substantially alter the network’s nonlinear dynamical behavior. 
Of particular significance is Fiedler value 𝜆2, the second smallest eigenvalue of the Laplacian matrix associated with the network 
graph. Here, we refer to its algebraic multiplicity 𝑟 as the Fiedler multiplicity. The Fiedler value serves as a key metric quantifying 
both synchronizability and diffusion efficiency [1–5]. And the greater a network’s Fiedler value, the more rapidly it achieves 
consensus convergence [6–12]. In this work, dynamics resilience is defined as the invariance of the Fiedler value after edge-addition. 
Consequently, investigating the relationship between edge-addition strategies and Fiedler value’s variations can uncover network’s 
dynamics resilience – a perspective that proves vital for defending against edge-targeted attacks on network dynamics.

Based on the above definition, we aim to precisely quantify the variation in the Fiedler value after edge-additions. Existing 
research has focused on networks where the Fiedler value possesses a simple root [13–16]. For cases where the multiplicity of the 
Fiedler value exceeds 1, current literature only establishes an interlacing relationship for 𝜆2 after single edge-addition [17–19], while 
failing to provide exact quantitative bounds on its variation – thus leaving their dynamics resilience unverified. Moreover, previous 
studies have mentioned that network with multiple connected components, symmetric structures, or redundant topological motifs 
frequently exhibits multiple Fiedler value [20–24]. Although these findings highlight the critical need to investigate edge-addition 
effects in such multiple cases, they do not provide explicit characterization of the underlying network structures.

In light of the current research landscape, we demonstrate that networks with Fiedler multiplicity 𝑟 ≥ 2 inherently possess 
dynamics resilience. To be specific, we provide comprehensive proof that the network exhibits dynamics resilience provided that 
the Fiedler multiplicity 𝑟 is at least one more than the number of added edges 𝑛. Furthermore, we extend the estimation of Fiedler 
value’s variation when adding more than 𝑟−1 edges, which signifies a shift in network’s dynamics. Additionally, we explore network 
models with high dynamics resilience under certain conditions.
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2. Preliminaries

We consider an undirected, unweighted, and connected network of 𝑁 diffusively coupled nonlinear oscillators, with dynamics 
governed by

𝜉̇𝑖 = 𝑓
(

𝜉𝑖
)

− 𝑐
𝑁
∑

𝑗=1
𝐿𝑖𝑗 (𝐺)𝐻

(

𝜉𝑗
)

, 𝑖 = 1, 2,… , 𝑁,

where 𝜉𝑖 ∈ R𝑚 is the state of node 𝑖. The intrinsic dynamics of an isolated node is described by a continuous nonlinear function 
𝑓 ∈ (R𝑚,R𝑚), while 𝐻 ∶ R𝑚 → R𝑚 represents the coupling function and 𝑐 quantifies coupling strength. The network topology 
is characterized by its Laplacian matrix 𝐿 (𝐺). It lists the 𝑁 eigenvalues of 𝐿 (𝐺) as 𝜆1 (𝐺) ≤ ⋯ ≤ 𝜆𝑁 (𝐺) in ascending order 
with counting multiplicity. Of these, 𝜆2 (𝐺) is the Fiedler value mentioned above, and the dynamics resilience is quantified by 
the invariance of the Fiedler value against edge-additions.

We now lay down the mathematical preliminaries that will underpin our analysis throughout the paper. 

Lemma 1 (Eigenvalue Interlacing Theorem [17]).  If 𝐺1 is obtained by adding an edge to the graph 𝐺, then the eigenvalue
𝜆𝑘

(

𝐺1) (1 ≤ 𝑘 ≤ 𝑁 − 1) of 𝐿 (

𝐺1) and the eigenvalue 𝜆𝑘 (𝐺) of 𝐿 (𝐺) satisfy
𝜆𝑘 (𝐺) ≤ 𝜆𝑘

(

𝐺1) ≤ 𝜆𝑘+1 (𝐺) ≤ 𝜆𝑘+1
(

𝐺1) .

Lemma 2 (Cauchy’s Interlace Theorem [25]).  Consider a Hermitian matrix 𝐴 of order 𝑚 and its principal submatrix 𝐵 of order 𝑚−1. Let 
the eigenvalues of 𝐴 be ordered as 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑚−1 ≤ 𝜆𝑚, and the eigenvalues of 𝐵 be ordered as 𝜇1 ≤ 𝜇2 ≤ ⋯ ≤ 𝜇𝑚−1, then

𝜆1 ≤ 𝜇1 ≤ 𝜆2 ≤ 𝜇2 ≤ ⋯ ≤ 𝜆𝑚−1 ≤ 𝜇𝑚−1 ≤ 𝜆𝑚.

3. Theoretical framework

This section establishes a theoretical framework to demonstrate that networks exhibiting multiple Fiedler values possess dynamics 
resilience. First, we construct a mathematical framework to prove that the Fiedler value with multiplicity 𝑟 (𝑟 ≥ 2), remains 
unchanged after the network adds no more than 𝑟 − 1 edges, which reflects the dynamics resilience. Second, when the number 
of added edges 𝑛 exceeds 𝑟− 1, the network’s dynamics resilience is compromised. And if the number of edges of the network 𝑀 is 
large, we can estimate the variation in the Fiedler values, thereby quantifying changes in network’s dynamics.

3.1. Dynamics resilience in networks with high Fiedler multiplicity under edge-additions

Theorem 1.  If the multiplicity of Laplacian eigenvalue 𝜆𝑘 (𝐺) is 𝑟 (𝑟 ≥ 2), then adding 𝑛 (𝑛 ≤ 𝑟 − 1) edges arbitrarily gives graph 𝐺𝑛, 
𝜆𝑘 (𝐺) = 𝜆𝑘 (𝐺𝑛). 

Proof.  Since the multiplicity of 𝜆𝑘 (𝐺) is 𝑟, which means
𝜆1 (𝐺) ≤ ⋯ ≤ 𝜆𝑘 (𝐺) = ⋯ = 𝜆𝑘+𝑟−1 (𝐺) ≤ ⋯ ≤ 𝜆𝑁 (𝐺) .

According to Lemma  1, adding an arbitrary edge to 𝐺, we have 𝜆𝑘 (𝐺) ≤ 𝜆𝑘
(

𝐺1) ≤ ⋯ ≤ 𝜆𝑘+𝑟−2
(

𝐺1) ≤ 𝜆𝑘+𝑟−1 (𝐺). Therefore, we 
can refer that 

𝜆𝑘 (𝐺) = 𝜆𝑘
(

𝐺1) = 𝜆𝑘+1
(

𝐺1) = ⋯ = 𝜆𝑘+𝑟−2
(

𝐺1) . (1)

If we add one more edge to 𝐺1, the interlacing relationships between eigenvalues are formulated by 𝜆𝑘
(

𝐺1) ≤ 𝜆𝑘
(

𝐺2) ≤ ⋯ ≤
𝜆𝑘+𝑟−3

(

𝐺2) ≤ 𝜆𝑘+𝑟−2
(

𝐺1), we can also conclude that 

𝜆𝑘
(

𝐺1) = 𝜆𝑘
(

𝐺2) = 𝜆𝑘+1
(

𝐺2) = ⋯ = 𝜆𝑘+𝑟−3
(

𝐺2) . (2)

Similarly, when adding to 𝑛 (𝑛 ≤ 𝑟 − 1) edges, we have 
𝜆𝑘

(

𝐺𝑛−1) = 𝜆𝑘 (𝐺𝑛) = ⋯ = 𝜆𝑘+𝑟−(𝑛+1) (𝐺𝑛) . (3)

According to Eqs. (1), (2) and (3), we get
𝜆𝑘 (𝐺) = 𝜆𝑘

(

𝐺1) = 𝜆𝑘
(

𝐺2) = ⋯ = 𝜆𝑘 (𝐺𝑛) ,

for each 1 ≤ 𝑛 ≤ 𝑟 − 1. The proof is thus established.  ■

According to Theorem  1, we deduce that the Fiedler value 𝜆2 (𝐺𝑛) of the network graph 𝐺𝑛, which is formed by adding any 
𝑛 ≤ 𝑟 − 1 edges, remains invariant compared with the original Fiedler value 𝜆2 (𝐺). This invariance demonstrates the invariance 
of network’s dynamics, thereby confirming the network’s dynamics resilience. This implies that 𝑟 − 1 serves as a critical threshold 
for networks with multiple Fiedler values: when the number of added edges is less than or equal to this threshold, the network 
demonstrates dynamics resilience. While exceeding this threshold may cause the collapse of the network’s dynamics resilience.
2 
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Fig. 1. (a) shows the initial network with 𝜆2 = 1 with multiplicity 3. (b) illustrates an example of edge-additions. (c) evaluates the average and 
maximum Fiedler value’s variations for all cases with 𝑛 added edges, and the Fiedler value does not change until 𝑛 = 3.

Fig. 2. Cycle network becomes a chain by deleting an edge.

We utilize a 5-node star network to validate Theorem  1. As depicted in Fig.  1(a), the Fiedler value of this star network is 1 
with multiplicity 3. Fig.  1(b) illustrates a process of adding 3 edges. Observations confirm that the network maintains dynamics 
resilience with the successive additions of edges 𝑒23 and 𝑒34. However, upon the subsequent addition of edge 𝑒45, a significant 
alteration occurs in the Fiedler value, which indicates the breakdown of dynamics resilience. Moreover, we calculate the average 
and maximum variations of Fiedler value of all possible cases for each 𝑛(𝑛 ≤ 3) in Fig.  1(c), the results further substantiate the 
validity of Theorem  1. It demonstrates that dynamics resilience is maintained against any 𝑛 ≤ 2 added edges but collapses with a 
third.

Notably, our analysis of dynamics resilience applies specifically to edge-addition operations and cannot be directly applied to 
edge-deletion cases. For instance, for a cycle network with 𝑁 nodes, the eigenvalues of 𝐿 (𝐺) are 𝜆𝑘 = 2 − 2 cos

(

2𝜋(𝑘−1)
𝑁

)

 for every 
1 ≤ 𝑘 ≤ 𝑁 . And if we delete an edge, the cycle network turns into a chain, as shown in Fig.  2 and the eigenvalue spectrum is 
𝜆′𝑘 = 4 sin2

(

𝑘𝜋−𝜋
2𝑁

)

, for each 1 ≤ 𝑘 ≤ 𝑁 . Setting 𝑁 = 5, 𝜆2 = 2 − 2 cos
(

2𝜋
5

)

 with multiplicity 2, while 𝜆′2 = 4 sin2
(

𝜋
10

)

 with 
multiplicity 1. It is clear that 𝜆2 is not equal to 𝜆′2. Consequently, for networks where the Fiedler multiplicity exceeds one, the 
dynamics resilience does not hold under edge-deletions.

3.2. Estimation of variation in dynamics beyond 𝑟 − 1 edge-additions

For networks with dynamics resilience and when the number of added edges exceeds 𝑟−1, if the number of added edges 𝑛 is much 
smaller than the total number of edges 𝑀 in the network, the introduction of new edges can be treated as a small perturbation. Based 
on perturbation theory, we provide an estimation of the variation in the network’s dynamics under such conditions by quantifying 
the variation in the Fiedler value.

Let the Laplacian matrix of the added edges be 𝐸. To be specific, 𝐸 is formed by the Laplacian matrix of 𝑛 edges separately, 
which is formulated as 𝐸 = 𝐸1+𝐸2+⋯+𝐸𝑛. For example, we consider adding edges 𝑒13 and 𝑒23 to a 4-node network, the Laplacian 
matrix 𝐸 is

𝐸 = 𝐸1 + 𝐸2 =

⎛

⎜

⎜

⎜

⎜

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

+

⎛

⎜

⎜

⎜

⎜

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

.

⎝ ⎠ ⎝ ⎠

3 
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Theorem 2.  When adding a set of 𝑛 edges  (𝐺) with 𝑛 ≪ 𝑀 to 𝐺, the variation in network’s dynamics is formulated by 

𝛥𝜆2 = 𝜆2 (𝐺𝑛) − 𝜆2 (𝐺) ≈ min
𝑘=1,2,…,𝑟

∑

𝑒𝑖𝑗∈(𝐺)

(

𝑣𝑘𝑖 − 𝑣𝑘𝑗
)2, (4)

where 𝑣𝑘𝑖 and 𝑣𝑘𝑗 denote the 𝑖th and 𝑗th components of the eigenvector 𝑣𝑘, and 𝑉 = (𝑣1, 𝑣2,… , 𝑣𝑟) consists of unit orthonormal eigenvectors 
corresponding to the Fiedler value 𝜆2(𝐺).

Proof.  Let 𝜑𝑘 be an eigenvector of 𝐿(𝐺𝑛) perturbed from 𝑣𝑘, with its corresponding eigenvalue adjusted to 𝜉𝑘, 𝑘 = 1, 2,… , 𝑟. These 
quantities can be expressed as 

𝜉𝑘 = 𝜆2 (𝐺) + 1
𝑀

𝜉′𝑘, (5)

and 

𝜑𝑘 = 𝑣𝑘 +
1
𝑀

𝑣′𝑘. (6)

Substituting Eq. (5) and (6) into 𝜉𝑘𝜑𝑘 = 𝐿 (𝐺𝑛)𝜑𝑘, and multiplying 𝑣𝑇𝑘  on the left hand side, we obtain 
1
𝑀

𝑣𝑇𝑘 𝜉
′
𝑘𝑣𝑘 +

1
𝑀2

𝑣𝑇𝑘 𝑣
′
𝑘𝜉

′
𝑘 = 1

𝑀
𝑣𝑇𝑘 𝑃𝑣𝑘 +

1
𝑀2

𝑣𝑇𝑘 𝑃𝑣
′
𝑘, (7)

where 𝑃  is represented by 𝑃 = 𝑀𝐸.
Ignoring 𝑂

(

1
𝑀2

)

 terms in Eq. (7), one gets 

𝜉′𝑘 =
𝑣𝑇𝑘 𝑃𝑣𝑘
𝑣𝑇𝑘 𝑣𝑘

. (8)

Since 𝑣𝑘 is a unit vector, Eq. (8) is rewritten as

𝜉′𝑘 = 𝑀𝑣𝑇𝑘
(

𝐸1 +⋯ + 𝐸𝑛
)

𝑣𝑘

= 𝑀
∑

𝑒𝑖𝑗∈(𝐺)

(

𝑣𝑘𝑖 − 𝑣𝑘𝑗
)2.

Therefore, we formulate the variation as

𝜆2 (𝐺𝑛) − 𝜆2 (𝐺) ≈ min
𝑘=1,2,…,𝑟

1
𝑀

𝜉′𝑘

= min
𝑘=1,2,…,𝑟

∑

𝑒𝑖𝑗∈(𝐺)

(

𝑣𝑘𝑖 − 𝑣𝑘𝑗
)2.

The proof is complete.  ■

4. Network models

This section aims to identify network models that possess the advantageous property of dynamics resilience. Empirical 
studies reveal that networks characterized by simple Fiedler values dominate empirical observations across complex systems [26]. 
Conversely, networks with multiple Fiedler values often exhibit more symmetric structures and are relatively less common than those 
with simple Fiedler values [1]. For fundamental network models, previous studies have demonstrated that for a star network with 
𝑁 ≥ 3, the Fiedler value is 1, with a multiplicity of 𝑁 −2 [27]. Moreover, physical lattice networks often exhibit Fiedler multiplicity 
𝑟 > 1 due to their high structural symmetry. According to Theorem  1, this means that when adding edges to these lattice networks, 
the networks exhibit excellent dynamics resilience. This result opens up a new perspective in the dynamics of lattice networks for 
edge-additions and may provide critical insights for advancing physical lattice design.

In order to extend the range of network topologies exhibiting dynamics resilience, we propose two network models: a fan network 
characterized by a fan-like structure, and a circle-connected network centered around a circular structure. We also expand upon 
these two networks and identify that both the quasi-fan network and the general circle-connected network demonstrate dynamics 
resilience. Moreover, by incorporating a circular structure into the fan network, we find that the circle-fan network also achieves 
dynamics resilience.

4.1. Fan network

The fan network is derived from the star network by transforming the branch nodes into sub-networks of a similar structure. 
This network is dubbed a fan network due to its overall shape, which resembles a fan. The sub-network features a central node that 
connects to 𝑠 ≥ 3 sub-networks through 𝑝 edges, and each sub-network contains 𝑚 nodes, as illustrated in Fig.  3.
4 
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Fig. 3. Figure (a)/(b) illustrates a network with each sub-network containing 𝑚 = 2/𝑚 = 4 nodes, featuring 𝑠 = 4/𝑠 = 6 blades, with each blade 
comprising 𝑝 = 2 edges.

The Laplacian matrix 𝐿1 of a fan network with 𝑚𝑠 + 1 nodes is expressed as

𝐿1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑠𝑝 −𝐸𝑇 ⋯ −𝐸𝑇 −𝐸𝑇

−𝐸𝑇 𝐵 + 𝑒′ ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 0

−𝐸𝑇 ⋯ 0 𝐵 + 𝑒′ 0
−𝐸𝑇 ⋯ 0 0 𝐵 + 𝑒′

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

where 𝐿1 is a block-partitioned claw matrix. The Laplacian matrix corresponding to the fan blade is defined as 𝐵. Since the sub-
network of each fan blade is connected, 𝐵 is irreducible. Within 𝐵, the nodes corresponding to the first 𝑝 rows and 𝑝 columns are 
connected to the central node, and the remaining 𝑚−𝑝 rows and 𝑚−𝑝 columns correspond to the 𝑚−𝑝 nodes that are not connected 
to the central node by any edge. 𝐸 =

(

𝟏𝑇 , 𝟎𝑇
)𝑇
1×𝑚, 𝟏 = (1,… , 1)𝑇1×𝑝, 𝟎 = (0,… , 0)𝑇1×(𝑚−𝑝), 𝑒′ =

(

𝐼𝑝×𝑝 𝟎𝑝×(𝑚−𝑝)
𝟎(𝑚−𝑝)×𝑝 𝟎(𝑚−𝑝)×(𝑚−𝑝)

)

𝑚×𝑚
, 𝑒 ∈ R𝑚

represents 𝑚-dimensional vector whose elements are all 1, 𝐼𝑝×𝑝 represents an identity matrix with 𝑝 rows and 𝑝 columns.

det
(

𝐿1 − 𝜆𝐼
)

=

|

|

|

|

|

|

|

|

|

−𝜆 −𝐸𝑇 ⋯ −𝐸𝑇

−𝜆𝑒 𝐵 + 𝑒′ − 𝜆𝐼 ⋯ 0
⋮ ⋮ ⋱ ⋮

−𝜆𝑒 0 ⋯ 𝐵 + 𝑒′ − 𝜆𝐼

|

|

|

|

|

|

|

|

|

= −𝜆 ||
|

𝐵 + 𝑒′ − 𝜆𝐼 + 𝑠𝑒𝐸𝑇 |
|

|

|

|

𝐵 + 𝑒′ − 𝜆𝐼|
|

𝑠−1 .

Setting 𝐴 = 𝐵 + 𝑒′ + 𝑠𝑒𝐸𝑇 , 𝐶 = 𝐵 + 𝑒′, 𝐻 = 𝑒𝐸𝑇 , thus 𝐴 = 𝐶 + 𝑠𝐻 . 𝜆1 (𝐴) and 𝜆1 (𝐶) respectively formulate as
𝜆1 (𝐴) = min

𝑋∈R𝑚 ,‖𝑋‖=1
𝑋𝑇 (𝐶 + 𝑠𝐻)𝑋,

and

𝜆1 (𝐶) = min
𝑋∈R𝑚 ,‖𝑋‖=1

𝑋𝑇𝐶𝑋.

Assuming that 𝑋𝐴 and 𝑋𝐶 are the eigenvectors corresponding to 𝜆1 (𝐴) and 𝜆1 (𝐶) respectively, which satisfy 
𝑋𝑇

𝐴𝐶𝑋𝐴 ≥ 𝑋𝑇
𝐶𝐶𝑋𝐶 , (9)

𝑋𝑇
𝐴𝑠𝐻𝑋𝐴 ≥ 𝜆1 (𝑠𝐻) = 0. (10)

By adding the left-hand sides and the right-hand sides of inequalities Eq. (9) and Eq. (10) respectively, we get
𝜆1 (𝐴) ≥ 𝜆1 (𝐶) .

Thus, we conclude that
𝜆2

(

𝐿1
)

= 𝜆1 (𝐶) = 𝜆1
(

𝐵 + 𝑒′
)

,

and it is easy to see that the multiplicity of the eigenvalue 𝜆2
(

𝐿1
) is 𝑠 − 1.

Consequently, according to Theorem  1, the network exhibits dynamics resilience by the arbitrary addition of 𝑛 ≤ 𝑠 − 2 edges, 
which means that 𝑠 − 2 is the threshold for dynamics transition of fan networks.

To investigate the relationship between the Fiedler value of the fan network and the parameters 𝑚, 𝑠, and 𝑝, we assume that each 
sub-network is in a fully connected state. We then explore the relationship between the Fiedler value 𝜆 (𝐿 ) and these parameters, 
2 1
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Fig. 4. Heatmap of the fan network. 𝜆2(𝐿1) increases with increasing edges 𝑝 to sub-networks and decreasing nodes 𝑚 per sub-network, while it 
is independent of 𝑠.

Fig. 5. The network consists of 4 blades in Fig. (a) and 5 blades in Fig. (b), with varying connections to sub-networks of 3, 4, and 5 nodes 
through 1 to 3 edges.

and present the resulting heatmap in Fig.  4. From Fig.  4 we can clearly see that, the Fiedler value of a network is enhanced when 
there are more edges 𝑝 connecting the central node to the sub-networks and fewer nodes 𝑚 within each sub-network with a fixed 
𝑠. Moreover, this network’s Fiedler value is independent of the number of sub-networks 𝑠.

4.2. Quasi-fan network

A quasi-fan network is an evolution of the fan network, characterized by variations in the structure of its blades and the 
connections to the central node, as shown in Fig.  5. Unlike the fan network, the quasi-fan network permits each blade to have 
a distinct way of connection, and the manner in which each blade connects to the central node can also vary. Let 𝑠 be the number 
of blades in the network. For the 𝑖th blade, 𝑚𝑖 signifies the number of nodes within the blade, 𝑝𝑖 represents the number of nodes 
that are directly connected to the central node.

The Laplacian matrix of quasi-fan network 𝐿′
1 is 

𝐿′
1 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑝1 + 𝑝2 +⋯ + 𝑝𝑠 −𝐸𝑇
1 ⋯ −𝐸𝑇

𝑠
−𝐸1 𝐵1 + 𝑒′1 ⋯ 0
⋮ ⋮ ⋱ ⋮

−𝐸𝑠 0 ⋯ 𝐵𝑠 + 𝑒′𝑠

⎞

⎟

⎟

⎟

⎟

⎠

, (11)

where 𝐿′
1 is a block-partitioned claw matrix. The Laplacian matrix for the 𝑖th fan blade is denoted as 𝐵𝑖, which is recognized as 

an irreducible matrix. The variable 𝑚𝑖 denotes the number of nodes within the 𝑖th sub-network. Within the matrix 𝐵𝑖, the nodes 
corresponding to the first 𝑝𝑖 rows and 𝑝𝑖 columns are connected to the central node in the quasi-fan network. The remaining 𝑚𝑖 − 𝑝𝑖
rows and 𝑚𝑖−𝑝𝑖 columns represent the nodes that are not linked to the central node. The matrix 𝐸𝑖 is defined as 

(

𝟏𝑇 , 𝟎𝑇
)𝑇
1×𝑚𝑖

, where 

𝟏 = (1,… , 1)𝑇1×𝑝𝑖  and 𝟎 = (0,… , 0)𝑇1×(𝑚𝑖−𝑝𝑖)
. Additionally, 𝑒′𝑖 is given by the matrix 

(

𝐼𝑝𝑖×𝑝𝑖 𝟎𝑝𝑖×(𝑚𝑖−𝑝𝑖)
𝟎(𝑚𝑖−𝑝𝑖)×𝑝𝑖 𝟎(𝑚𝑖−𝑝𝑖)×(𝑚𝑖−𝑝𝑖)

)

𝑚𝑖×𝑚𝑖

, with 𝐼𝑝𝑖×𝑝𝑖  being 
the 𝑝𝑖 × 𝑝𝑖 identity matrix.

By deleting the first row and column from Eq. (11), we obtain the principal submatrix 𝐴1. Let the eigenvalues of 𝐴1 be sorted 
in ascending order as 𝜇1 ≤ 𝜇2 ≤ ⋯ ≤ 𝜇𝑚1+𝑚2+⋯+𝑚𝑠

. By Lemma  2, we have 

0 = 𝜆
(

𝐿′ ) ≤ 𝜇 ≤ 𝜆
(

𝐿′ ) ≤ ⋯ ≤ 𝜆( )

(

𝐿′ ) . (12)
1 1 1 2 1 𝑚1+𝑚2+⋯+𝑚𝑠 1

6 
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Fig. 6. Relationship between 𝜆1
(

𝐿
(

𝐾𝑚𝑗

)

+ 𝑒′
)

 and 𝑚𝑗 .

Since ||
|

|

{

𝑖 ∈  ∶ 𝜆1
(

𝐵𝑖 + 𝑒′𝑖
)

= min𝑗∈𝜆1
(

𝐵𝑗 + 𝑒′𝑗
)}

|

|

|

|

= 𝑎 and 𝜇1 = min𝑗∈𝜆1
(

𝐵𝑗 + 𝑒′𝑗
)

, we have 

𝜇1 = 𝜇2 = ⋯ = 𝜇𝑎. (13)

Combining Eq. (12) and (13), we obtain 𝜆2
(

𝐿′
1
)

= 𝜆3
(

𝐿′
1
)

= ⋯ = 𝜆𝑎
(

𝐿′
1
)

, which indicates that the multiplicity of 𝜆2
(

𝐿′
1
) is at 

least 𝑎 − 1. Similar to the derivation process of the fan network, we find
𝜆2

(

𝐿′
1
)

= min
𝑗∈

𝜆1
(

𝐵𝑗 + 𝑒′𝑗
)

.

Therefore, for a quasi-fan network, if ||
|

|

{

𝑖 ∈  ∶ 𝜆1
(

𝐵𝑖 + 𝑒′𝑖
)

= min𝑗∈𝜆1
(

𝐵𝑗 + 𝑒′𝑗
)}

|

|

|

|

= 𝑎(𝑎 ≥ 3), then 𝜆2
(

𝐿′
1
)

= min𝑗∈𝜆1
(

𝐵𝑗 + 𝑒′𝑗
)

with the multiplicity at least 𝑎−1. Among them, the cardinality |⋅| is used to represent the number of elements in the set,  represents 
the set of sub-networks serial numbers {1, 2,… , 𝑠}.

Notably, for quasi-fan networks, the determination of both Fiedler multiplicity and dynamics resilience can be significantly 
simplified by examining the structure of the sub-networks and their connection to the central node. This finding substantially 
diminishes the computational complexity involved in the analysis of the entire network.

When all sub-networks are fully connected networks with 𝑚𝑗 nodes and each sub-network has only one edge connected to the 
central node, we have

𝐵𝑗 + 𝑒′𝑗 = 𝐿
(

𝐾𝑚𝑗

)

+ 𝑒′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑚𝑗 −1 −1 ⋯ −1
−1 𝑚𝑗 − 1 −1 ⋯ −1
−1 −1 𝑚𝑗 − 1 ⋯ −1
⋮ ⋮ ⋮ ⋱ ⋮
−1 −1 −1 ⋯ 𝑚𝑗 − 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝐾𝑚𝑗
 is fully connected with 𝑚𝑗 nodes in 𝐿′

1.
Since the relationship between 𝜆1

(

𝐿
(

𝐾𝑚𝑗

)

+ 𝑒′
)

 and the number of nodes 𝑚𝑗 in each sub-network cannot be explicitly 
formulated, it is essential to employ numerical computation methods to investigate this issue in detail. Fig.  6 illustrates a 
monotonically decreasing relationship between the number of sub-network nodes and 𝜆1

(

𝐿
(

𝐾𝑚𝑗

)

+ 𝑒′
)

.

4.3. Circle-connected network

A circle-connected network has a central circle surrounded by identically structured sub-networks that the networking topology 
exhibits uniform connectivity, and each node on the central circle also serves as a node within one of the sub-networks, as presented 
in Fig.  7. The network includes a central circle of order 𝑠 ≥ 3 and 𝑠 identical sub-networks. Within each sub-network, there are 𝑚
nodes, and each sub-network is connected.

The Laplacian matrix of a circle-connected network with  𝑚𝑠 nodes is expressed as

𝐿2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐵 + 𝑌0 −𝑋0 −𝑋0
−𝑋0 𝐵 + 𝑌0 −𝑋0

−𝑋0 𝐵 + 𝑌0
⋱ −𝑋0

−𝑋0 −𝑋0 𝐵 + 𝑌0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝐵 is the Laplacian matrix corresponding to the sub-network. 𝑋0 is a matrix with 1 in the first row and first column, while 
zeros elsewhere, and 𝑌 = 2𝑋 .
0 0
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Fig. 7. Figure (a)/(b) illustrates a network with each sub-network containing 𝑚 = 5/𝑚 = 4 nodes, arranged around a central circle of order 3 or 
6.

Fig. 8. A general circle-connected network with 𝑠 = 4 sub-networks, each containing 𝑚 = 4 nodes, linked via 2 circles.

Let ℎ be a matrix with ones on the first superdiagonal and at the bottom left corner. Thus, 2𝐼 − ℎ − ℎ𝑠−1 is a cyclic tridiagonal 
matrix, and 𝐿2 is denoted by

𝐿2 = 𝐼𝑠 ⊗
(

𝐵 + 𝑌0
)

− ℎ ⊗𝑋0 − ℎ𝑠−1 ⊗𝑋0.

The eigenvalue of ℎ is the root of 𝜆𝑠 − 1 = 0, yields 𝜔𝑘 = cos 2𝑘𝜋
𝑠 + 𝑖 sin 2𝑘𝜋

𝑠 , 1 ≤ 𝑘 ≤ 𝑠. It is evident that the reciprocal of 𝜔𝑘 is its 
conjugate, thus 𝜔𝑘 + 𝜔𝑠−1

𝑘 = 𝜔𝑘 +
1
𝜔𝑘

= 𝜔𝑘 + 𝜔𝑘 = 2 cos 2𝑘𝜋
𝑠 . Therefore, we have

|

|

𝜆𝐼 − 𝐿2
|

|

=
𝑠

∏

𝑘=1

|

|

|

𝜆𝐼 −
(

𝐵 + 𝑌0
)

+ 𝜔𝑘𝑋0 + 𝜔𝑠−1
𝑘 𝑋0

|

|

|

=
𝑠

∏

𝑘=1

|

|

|

|

𝜆𝐼 − 𝐵 − 4 sin2 𝑘𝜋
𝑠
𝑋0

|

|

|

|

.

Since the matrix 4 sin2 𝑘𝜋
𝑠 𝑋0 has eigenvalues with only one eigenvalue of 1, all other eigenvalues are 0. Since 𝐵 is a symmetric 

matrix, 𝜆1
(

𝐿2
)

= 𝜆1 (𝐵) = 0. According to Courant–Weyl inequalities [28], we deduce that 𝜆2
(

𝐿2
)

= 𝜆1
(

𝐵 + 4 sin2 𝜋
𝑠𝑋0

)

=

𝜆1
(

𝐵 + 4 sin2 (𝑠−1)𝜋
𝑠 𝑋0

)

 and its multiplicity is always 2. Thus, dynamics resilience is preserved under single edge-addition.
When the sub-network reduces to a single node, the circle-connected network simplifies to a cycle network. And the characteristic 

polynomial of 𝐿2 is 
∏𝑠

𝑘=1
|

|

|

𝜆 − 4 sin2 𝑘𝜋−𝜋
𝑠

|

|

|

, which is similar to the results previously mentioned.

4.4. General circle-connected network

Extending the concept of a circle-connected network to a more general scenario, if 𝑙 (2 ≤ 𝑙 ≤ 𝑚) 𝑠-order circles are employed to 
connect identical sub-networks in the same manner, as shown in Fig.  8.

Denote

𝑋′
0 =

⎛

⎜

⎜

⎜

⎜

1 0
0 1

⋱

⎞

⎟

⎟

⎟

⎟

, 𝑌 ′
0 = 2𝑋′

0,
⎝

0
⎠
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Fig. 9. Heatmap shows how 𝜆2(𝐿′
2) for a general circle-connected network varies with 𝑚, 𝑠, and 𝑙. 𝜆2(𝐿′

2) decreases with increasing 𝑠 or 𝑚 when 
𝑙 is constant, and with increasing 𝑚 or decreasing 𝑙 when 𝑠 is fixed. It also drops as 𝑠 increases or 𝑙 decreases with 𝑚 held constant.

Fig. 10. In a circle-fan network, a central node is connected to 𝑠 = 4 sub-networks, each with 𝑚 = 5 nodes via 𝑝 = 2 edges per blade, and these 
sub-networks are interconnected through 𝑙 = 2 circles.

where the first 𝑙 rows and 𝑙 columns of 𝑋′
0 with the elements on the main diagonal being 1 and the rest being 0. Correspondingly, 

the Laplacian matrix 𝐿′
2 of the general circle-connected network is

𝐿′
2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐵 + 𝑌 ′
0 −𝑋′

0 −𝑋′
0

−𝑋′
0 𝐵 + 𝑌 ′

0 −𝑋′
0

−𝑋′
0 𝐵 + 𝑌 ′

0
⋱ −𝑋′

0
−𝑋′

0 −𝑋′
0 𝐵 + 𝑌 ′

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Similar to the above derivation, we refer that if the Fiedler value of 𝐿′
2 has the multiplicity at least 2,

𝜆2 (𝐵) ≥ 𝜆1
(

𝐵 + 4 sin2 𝑘𝜋
𝑠
𝑋′

0

)

.

It is observed that the number 𝑙 of central circles connecting to sub-networks in the same manner identically determines whether 
the Fiedler value is multiple or not, which consequently governs whether the network can exhibit dynamics resilience under 
edge-additions.

To investigate how network’s dynamics are influenced by 𝑚, 𝑠, and 𝑙 in fully connected sub-networks, we examine the relationship 
between 𝜆2(𝐿′

2) and these variables. As shown in Fig.  9, if 𝑙 holds constant, 𝜆2(𝐿′
2) decreases with an increase in the number of sub-

networks 𝑠 and the number of nodes 𝑚 per sub-network. Moreover, with a constant 𝑠, 𝜆2(𝐿′
2) decreases as both 𝑙 and 𝑚 increase. 

Notably, fixing 𝑚 and reducing 𝑠 while increasing 𝑙 significantly enhances the network’s dynamics.

4.5. Circle-fan network

After adding 𝑙 circles to the fan network in the same way, the circle-fan network is shown in Fig.  10. Define 𝐿  as the Laplacian 
3
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Fig. 11. Wheel network with 𝑠 + 1 nodes.

matrix of the circle-fan network, and it is represented as

𝐿3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑠𝑝 −𝐸𝑇 −𝐸𝑇 ⋯ −𝐸𝑇

−𝐸 𝐵 + 𝑒′ + 𝑌 ′
0 −𝑋′

0 ⋯ −𝑋′
0

−𝐸 −𝑋′
0 𝐵 + 𝑒′ + 𝑌 ′

0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
−𝐸 −𝑋′

0 0 ⋯ 𝐵 + 𝑒′ + 𝑌 ′
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

In line with the derivation in the preceding models, if 𝜆1
(

𝐵 + 𝑒′ + 𝑠𝑒𝐸𝑇 ) ≥ 𝜆1
(

𝐵 + 𝑒′ + 4 sin2 𝑘𝜋
𝑠 𝑋′

0

)

, the circle-fan network 
displays dynamics resilience.

When the sub-network is a node, the fan network transitions into a wheel network (see Fig.  11). It is easy that the Fiedler value 
of a wheel network with 𝑠+ 1 nodes is 1 + 4 sin2 𝜋

𝑁  and has multiplicity 2. This implies the network exhibits its dynamics resilience 
under arbitrary addition of any single edge.

5. Experiments and results

To validate the impact of edge-additions on networks with high dynamics resilience and the threshold 𝑟 − 1, we added edges 
to both the physical lattice networks and the aforementioned network models. We quantitatively compare the actual variations in 
Fiedler values against their theoretical variations (as obtained by Theorems  1 and 2), thereby verifying the feasibility conditions of 
the proposed theory.

We first consider three representative physical lattice networks with Fiedler multiplicity 𝑟 = 2: graphene lattice (15 edges), ruby 
lattice (132 edges), and kagome lattice (18 edges). We conducted 100 randomized edge-addition experiments on the networks to 
compare theoretical and actual Fiedler value’s variations. As depicted in Fig.  12, the network exhibits dynamics resilience when 
adding 𝑟 − 1 = 1 edge. When more than 𝑟 − 1 edges are added, the ruby lattice exhibits significantly smaller deviations between 
actual and theoretical Fiedler value’s variations compared to other physical lattice networks, suggesting higher estimation accuracy. 
This observed phenomenon correlates strongly with the ruby lattice’s characteristically higher edge count 𝑀 . For sparsely connected 
lattices (graphene and kagome lattices), the Fiedler value estimation becomes biased when the number of added edges 𝑛 exceeds 2.

Furthermore, we investigate the constructed fan networks with increased edge count 𝑀 , aiming to broaden the analytical 
perspective and validate the reliability of our theoretical framework.

We construct fan networks with edge counts 𝑀 = 40, 150, 230, and 700, whose corresponding Fiedler multiplicities are 4, 9, 9, 
and 19, respectively. When the edge count 𝑀 is small, the variations between actual and theoretical values remain significant as 
shown in Fig.  13. These variations decrease dramatically to 𝑂(10−4) as 𝑀 increases, confirming the method’s critical dependence 
on 𝑀 and quantitatively satisfying 𝑛 ≪ 𝑀 at 𝑀 > 500 to bound 𝛥𝜆2’s deviation. Moreover, we verify that increasing the number of 
fan blades 𝑠 induces a proportional growth in structurally similar sub-networks, which in turn enhances network symmetry, thereby 
leading to higher Fiedler multiplicity 𝑟 as well as higher threshold 𝑠 − 2 for dynamics transition.

To systematically investigate the relationship between network edge count 𝑀 and the precision of Fiedler value estimation, we 
formally define the relative error: 

𝛿𝑛 =
|

|

|

𝛥𝜆𝑎𝑐𝑡𝑢𝑎𝑙2 − 𝛥𝜆𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙2
|

|

|

𝛥𝜆𝑎𝑐𝑡𝑢𝑎𝑙2

, (14)

where 𝛥𝜆𝑎𝑐𝑡𝑢𝑎𝑙2  indicates the actual change in Fiedler value after adding 𝑛 edges. And 𝛥𝜆𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙2 = min𝑘=1,2,…,𝑟
∑

𝑒𝑖𝑗∈(𝐺)
(

𝑣𝑘𝑖 − 𝑣𝑘𝑗
)2, 

which is the theoretical estimation proposed in Theorem  1.
Since the threshold for dynamics transition of the fan network is 𝑠−2 as described in the construction process of the model above. 

When the number of nodes of the fan blades 𝑚 = 5 and the number of edges connecting the center node and the fan blades 𝑝 = 2
are fixed, the number of edges added to the network is the same for every 1 unit increase in the number of fan blades 𝑠. Therefore, 
the discussion of the increase in the number of edges 𝑀 can be transformed into a discussion of the increase in 𝑠, and further a 
quantitative relationship can be established with the Fiedler multiplicity 𝑟. Fig.  14 demonstrates that the estimation accuracy of the 
Fiedler variation shows significant improvement with increasing values of parameter 𝑠.
10 
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Fig. 12. Comparative analysis of theoretical versus actual Fiedler values for three physical lattice networks (graphene, kagome [29], and ruby 
lattices [30]) with their corresponding network graphs. The ruby lattice, possessing the highest edge count 𝑀 , demonstrates exceptional agreement 
between theoretical and actual Fiedler values, while the remaining two lattice networks achieve inferior estimation precision.

Fig. 13. Using four representative fan networks, it shows Fiedler value estimation errors decay from 𝑂(10−1) to 𝑂(10−4) as edge count 𝑀 increases, 
revealing 𝑀-dependent accuracy.
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Fig. 14. The relative error 𝛿𝑛 (defined in Eq. (14)) of adding 𝑛 edges decreases as the number of blades 𝑠 increases with other parameters fixed 
in fan networks, demonstrating enhanced estimation accuracy with greater edge count 𝑀 .

6. Conclusion

We have investigated that networks with Fiedler multiplicity 𝑟 ≥ 2 exhibit dynamics resilience when 𝑛 ≤ 𝑟 − 1 edges are 
added through mathematical analysis, which has been verified in some network models, i.e., fan network, circle-connected network, 
quasi-fan network, general circle-connected network and circle-fan network. This implies that the network’s structural integrity 
and its ability to maintain dynamics or resist disruptions are enhanced by the presence of this high Fiedler multiplicity. The 
results have provided a theoretical foundation for understanding dynamics in real networks exhibiting dynamics resilience, such 
as lattice materials. Furthermore, our findings may extend to social network dynamics, biological networks and communication 
infrastructures [31–34].
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