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This paper investigates the dynamics of a directed acyclic neural network by edge adding control. We find that
the local stability and Hopf bifurcation of the controlled network only depend on the size and intersection of
directed cycles, instead of the number and position of the added edges. More specifically, if there is no cycle

Is_ltab;l?f’ i in the controlled network, the local dynamics of the network will remain unchanged and Hopf bifurcation will
C;)ge Hureation not occur even if the number of added edges is sufficient. However, if there exist cycles, then the network may

undergo Hopf bifurcation. Our results show that the cycle structure is a necessary condition for the generation
of Hopf bifurcation, and the bifurcation threshold is determined by the number, size, and intersection of cycles.

Numerical experiments are provided to support the validity of the theory.

1. Introduction

Directed acyclic networks are common in the real-world, which
do not contain directed cycles (rings) (Bang-Jensen & Gutin, 2008;
Jiang, Zhou, Small, Lu, & Zhang, 2023; Williams, Bach, Matthiesen,
Henriksen, & Gagliardi, 2018), such as directed chains, directed grids
and directed star-chains. A great number of scholars are committed
to the dynamics of these directed acyclic networks, mainly involving
synchronization and consensus performance (Panteley & Loria, 2017;
Papachristodoulou, Jadbabaie, & Miinz, 2010; Zhou, Chen, Lu, & Lii,
2016; Zhu, Zhou, Yu, & Lu, 2020a, 2020b). For example, Zhang, Chen,
and Mo (2017) investigated the effect of adding a reverse edge to the
consensus of directed 1D chain and directed 2D grid, and concluded
that the reverse edge would decrease the dominant convergence rate
of the network. Subsequently, Hao, Wang, Duan, and Chen (2019)
discussed the effect of adding two reverse edges on the consensus
of the directed chain based on Zhang et al. (2017), and found that
the consensus performance would not be enhanced when the second
reverse edge is added.

However, these results only studied the consensus of simple directed
chains, and did not get a general conclusion about directed acyclic
graph networks. On the one hand, various dynamics of this type of
networks should be further investigated beyond synchronization and
consensus. For instance, stability and bifurcation are important tools
for exploring complex systems and networks (Chen, Xiao, Wan, Huang,
& Xu, 2021; Tao, Xiao, Zheng, Cao, & Tang, 2020; Wang, Zhao, & Cao,
2016), which focus on the dynamics of systems when parameters are

continuously changed (Song, Han, & Wei, 2005; Wang & Jian, 2010;
Xu, Cao, Xiao, Ho, & Wen, 2014). Among single parameter bifurca-
tions, Hopf bifurcation is extensively explored since it demonstrates the
dynamic phenomenon from point to limit cycle in phase plane(Guo,
2022; Wu, Zhang, & Feng, 2021). Recently, with further research of
bifurcation on nonlinear systems, bifurcation control (Chen, Hill, & Yu,
2003; Jiang, Chen, Huang, & Yan, 2020; Wang, Wang, & Xia, 2019)
has been proposed to observe the dynamics of controlled parameterized
systems, such as time delay self-feedback control (Premraj, Suresh,
Banerjee, & Thamilmaran, 2017), hybrid control (Yuan & Yang, 2015)
and stochastic control (Xu, Ma, & Zhang, 2011). On the other hand,
the complexity of directed acyclic networks in the real world is much
higher than that of directed chain. The innate character of dynamics in
modified directed acyclic networks should also be studied rather than
considering only one edge adding operation on special networks (Liu,
Xie, Shi, & Yao, 2022; Mo, Chen, & Zhang, 2019). Neural networks
are a particular class of complex networks with the capability of signal
processing that has become a hot research topic in computer science
and engineering (Awodele & Jegede, 2009; Guan, Lai, Li, Yang, & Gu,
2022; Jiang, Xiong, & Shi, 2021). Nevertheless, currently most neural
network models are given in advance (Peng & Song, 2009; Xu, Tang,
& Liao, 2011), and there is little specific research on their structure,
which makes it difficult to design a suitable model based on practical
requirements. Thus, it is worth paying attention to which edge adding
method can maintain or improve the local dynamics of directed acyclic
neural networks and which structure plays a significant role in the
dynamics of the neural networks.
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Based on the above discussion, we sum up the main innovation and
contribution of this paper as follows.

1. We propose edge adding control on a delayed directed acyclic
neural network with arbitrary structure to investigate the im-
provement of network dynamics. Time delay is selected as a
key parameter to study the stability and Hopf bifurcation of the
network.

2. It is found that the emergence of directed cycles is the decisive
factor in the dynamic changes of the network. The edge adding
operations maintain the stability of the network when there is no
directed cycle, while the Hopf bifurcation may occur when there
is at least one directed cycle. That is to say, the cycle structure
is a necessary condition for the generation of Hopf bifurcation.

3. Cycles with the same number and size have a consistent effect
on the local stability and Hopf bifurcation of the network, re-
gardless of the number and position of the added edges. The
Hopf bifurcation threshold is affected by the number, size, and
intersection of the cycles.

In the theoretical analysis, we use the Coates flow graph to further
broaden the application scope of theoretical calculation, then obtain
more detailed sufficient conditions to estimate the network stability
and the existence of Hopf bifurcation. In addition, previous studies
have lacked attention to the structure of neural network models, with
most of them being given network structures, such as quaternion neural
network (Wang & Jian, 2010) and ring neural network (Tao et al.,
2020). Therefore, the existing results are only applicable to a few
models and have certain limitations. However, starting from searching
for the key structure of a neural network, we derive the necessary
conditions for the generation of Hopf bifurcation in the network, and
analyzed the factors that affect the threshold of Hopf bifurcation.

The rest of the paper is arranged as follows. Section 2 provides some
mathematical preliminaries and definitions. In Section 3, we design
an edge adding control on a directed acyclic neural network, and
investigate the local stability and Hopf bifurcation of the controlled
network under different directed cycles. In Section 4, some numerical
examples are given to verify the validity of the theory. Finally, a brief
conclusion and summary section completes the paper.

2. Preliminaries and definitions

Lemma 1 (Desoer, 1960). For a square matrix Q of n-order corresponding
to the flow graph G, one has

p
detQ =) (-)""G,,

i=1
where p represents the number of subgraphs for G, each consisting of non-
contact loops of n nodes. n; and G; are the number of directed loops
and the product of the connection gains of each edge in the ith subgraphs
(i=1,...,p). (See Fig. 1).

Definition 1. A node is called the root node (leader node) of a directed
acyclic network if it does not receive information from other nodes.

Definition 2. When adding a directed edge to a directed acyclic graph,
the start node of the edge is called the head node, and the end node is
called the tail node.

Definition 3. A directed cycle of length / is defined as a directed
closed loop containing / nodes {n,n,,...,n;} and [ directed edges
(ny,ny), (ny,n3), ..., (n;,np). The size of the directed cycle refers to the
number of nodes on it.

Definition 4. For k directed cycles, if any one intersects with the
remaining k — 1 cycles but does not coincide, then k cycles are called
fully intersected cycles.
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A square matrix All types of subgraphs

Determinant of Q

‘Q‘ = (116, + (-G, + (-G,
=11

Corresponding flow graph G, =1x3x5

Fig. 1. A 3-order matrix and its corresponding subgraphs.

3. Directed neural network

Consider a directed acyclic neural network with time delay as

n
)'c,-(t):—a,-x,- + Zbijfij(xj(t_r))’ M
j=1
where x; is the state of the ith neuron at time ¢, a; > 0 (i = 1,2,...,n) the
self-feedback coefficient of the ith neuron, b;; the connection weight
between neurons j and i (b; ;=0 if no directed edge from j to i),
and 7 the time delay. f;;(-) denotes the activation function satisfying
fijhyec land f, (0)=0, f; j’ (0) # 0. Note that the structure of network
(1) can be arbitrary, and unnecessarily contain a spanning tree.
According to Lemma 1, it is easy to know that the characteristic
equation of the Jacobian matrix of network (1) at the zero equilibrium
point is given by
n
[[a+ar=0, )
i=1

which shows 4; = —aq; (i=1,2,...,n).

Remark 1. The zero equilibrium point is trivial for neural net-
work models, which means that most network models have the zero
equilibrium point and not necessarily the non-zero equilibrium points.
Therefore, the stability analysis results of the zero equilibrium point
have a wider applicability. Moreover, the non-zero equilibrium points
can be transformed into the zero equilibrium point through a lin-
ear transformation. For example, for system ¢ = F(¢) with non-zero
equilibrium point E,(¢*), consider the following linear transformation

E=¢-¢",
then system 5 = F(¢ + &) have zero equilibrium point E(0). For this
reason, the stability and bifurcation analysis of the non-zero equilib-

rium point of & = F(&) are equivalent to that of the zero equilibrium of

E=FCE+¢&.

Accordingly, we have the following conclusion for directed acyclic
network (1).

Lemma 2. For any t > 0, network (1) will not undergo Hopf bifurcation
due to real numbers a; (i = 1,2,...,n), and its zero equilibrium point is
always stable when all a; > 0.

Proof. Due to the eigenvalues of the Jacobian matrix of network
(1) being 4, = —q; (i = 1,2,...,n), there is no pair of pure virtual
eigenvalues. Therefore, the network will not undergo Hopf bifurcation.
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Fig. 2. Adding edge of a directed star-chain network with three chains.

In addition, if a; > 0, then all eigenvalues of the Jacobian matrix of the
network have negative real parts, that is, the zero equilibrium point is
asymptotically stable.

Now we attempt to improve the dynamic properties of network (1)
by edge adding control, and obtain the following controlled network

5,(0) = —ape (D) + ) by £ 06t = ) + (D), 3)
j=1
in which u;(r) denotes the edge adding controller. For example, if
a directed edge from neuron k to neuron i is added, then u;(r) =
by [ (X (t = 7).

Remark 2. Edge adding operation is an effective method for identify-
ing key structures that affect network dynamics, and it has been widely
applied in studying network consensus (Hao et al., 2019; Jiang et al.,
2023; Zhang et al., 2017). Therefore, the control strategy of Eq. (3) is
aimed at investigating which structure can determine the dynamics of
directed neural networks.

Theorem 1. If there is no directed cycle in edge adding network (3), then
the characteristic equation of its Jacobian matrix at the zero equilibrium
point is the same as that of network (1), that is, this edge adding control
does not improve the local dynamics of the original network.

Proof. Since there is no cycle in edge adding network (3), the char-
acteristic equation of Jacobian matrix of network (3) at the zero
equilibrium point is also given by Eq. (2), that is, the edge adding
operation without cycle structure does not affect the local dynamics
of the network.

Theorem 2. The characteristic equation of Jacobian matrix of network
(3) at the zero equilibrium point is determined by the size and number of its
cycles, as well as whether they intersect, and is independent of the number
and position of the added edges.

Proof. According to Lemma 1, the characteristic equation of a matrix
is only determined by the size and number of non-contact loops in
its corresponding flow graph. Hence, for a directed acyclic network, if

different added edges make the network have the same number and size
of directed cycles, then the effect of these edges on the characteristic
equation is consistent.

Assumption 1. The self-feedback coefficient and connection weight of
network (1) are unified, namely q; = q, b;; f;;/(0) = b for i, j = 1,2, ... ,n.

Fig. 2 shows two edge adding strategies, one that does not form
a directed cycle, and the other that forms cycles. In the following
two subsections, under the condition of Assumption 1, we investigate
the impact of different cycles on the stability and bifurcation of the
network.

3.1. Adding edges forms one cycle

Given that the edge adding control makes network (3) form a cycle
with p nodes, then according to Lemma 1, the characteristic equation
of Jacobian matrix of network (3) at the zero equilibrium point is

A+ )" + (=" P (=1)P(4+ a)"PbPe™" =0,

and further, by multiplying ¢*"* on both sides of the above equation,
we have

[+ @] { [(1+ e ] - b7} =0, @

The following two cases are discussed in the light of whether the
time delay 7 is zero.

Case I: 7 = 0. On this condition, characteristic Eq. (4) is rewritten
as

G+a) P {(A+af -b} =0. 5)
Therefore, we have the following conclusions.
Lemma 3. For b > 0, if a > b is satisfied, then the zero equilibrium point

of network (3) without delay is asymptotically stable; it is unstable when
a < b holds.

Proof. On the one hand, Eq. (5) has n — p real roots, which are
all negative for a > 0. On the other, the residual root of Eq. (5) is
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determined by
sP— b =0, 6)

where s = 1 + a. Hence, we can obtain all the roots of Eq. (6) on the
complex plane for b > 0,
;=4 +ta= bel? = b(cos; +isind)),

with 0, = (2jz)/p, j =0,1,...,p— 1. Apparently, s, is the root with the
largest real part among all s;, illustrating Re(4;) < Re(4y) = Re(sg)—a =
b—a<O0forall j=0,1,...,p—1, when a > b holds. Thus, if b > 0 and
a > b, then all roots of Eq. (5) have negative real parts, that is, the zero
equilibrium point of network (3) is asymptotically stable. Moreover, if
a < b, then Eq. (6) obviously has a positive root 4, that is, the zero
equilibrium point is unstable.

Lemma 4. If b < 0, the following conclusions hold true.

1. For an odd number p, the solution of non-delay network (3) is stable
when a > —bcos (z/p ), and unstable when a < —bcos (z/p).

2. For an even number p, the solution of non-delay network (3) is stable
when a > —b, and unstable when a < —b.

Proof.

1. For b < 0 and odd number p, then clearly 5" < 0. In the case, all
roots of Eq. (6) on the complex plane are

_ — 9_ . .
5;=Aj+a=—be’ = —b(cos; +1sin¥;),

where 0, = (2j + Dz /p, j =0,1,...,p— L. The roots with largest
real part are s, and s,_;. Hence, if a > —bcos (z/p ) is met, then
Re(4;) < Re(dy) = Re(sg) —a = —bcos(x/p) —a < 0 for all
j =0,1,...,p— 1. Further, all roots of Eq. (5) contain negative
real parts when a > —bcos (z/p ) and there are two roots s, and
s,_1 having positive real parts when a < —bcos (z/p ). Thus, the
conclusion is clearly tenable.

2. Since p is an even number and b < 0, one has »" > 0. Emphati-
cally, the method of proof is the same as that of Lemma 3.

Case II: 7 > 0. Assume that there is a pair of pure virtual roots for
Eq. (4) defined as 4, = +iw, we have

(iw+a)” — bP(cos wpr — isinwpr) = 0.
Observing the above equation, we obtain
H,(w)— b’ coswpr =0,
{Hz(w) + bP sinwpr =0,
and
H}(@)+ Hj (o) = b, @
where
H(@) = (i0) + Cy (@) a® + -+ a,
iH,(@) = C) (i) a+ C} (i)' @ + - + CI7 (iw)a" ™!,
when p is an even number, and
H|(w) = C;(ia))"_]a + C]f(iw)”_3a3 + -+ a?,
iHy(@) = (i0)’ + C)(i0)"2a® + - + C07 (iw)a"",

when p is an odd number.
Denoting

O() 2 Hi(w) + H:(w) - b =0,
then one has
2
0(z) 227 + (C;a) 2PNy g PP =, ®

in which z = @?.
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Lemma 5. Eq. (8) has at least one positive root when a < |b| holds.

Proof. If a < |b| is true, then Q(0) = a* — b* < 0. Moreover, Q(z) is a

continuous function of z over [0, o), which shows “T 0(z) = +oo.
Z—+00

From the zero point theorem, there is at least one positive root for

Eq. (8).

Without loss of generality, suppose that Eq. (8) has p real roots
defined as z G =12,...,p), then the corresponding frequency ®; =
4/Z;- When 7 is taken as a bifurcation parameter, the key value of Hopf
bifurcation point is written as

. H|(w;)
r}”:L{arccos( it >+2lﬂ},
pw; bp

in which j =1,2,...,p,1=0,1,2,..., and let

= 0 = o)

j:III,IZI,r,l,.,p { o },wo =) .

Now, we just need to check the transversality condition to ensure the
generation of Hopf bifurcation. Hence, differentiating both sides of
Eq. (4) with respect to 7, we have

To

p(A+a)P”! da + bPpe= 7 (ﬂr + A) =0,
dr dr

and further

() =53
dr AA+a) A
Substituting = with 1z, it follows that
-1
Re ( a4 ) S
dr A=iwgy,t=1 w(z) + a2

Combining with Lemma 5, the following theorem of stability and
Hopf bifurcation for delayed controlled system can be derived.

Theorem 3. For delayed controlled network (3) with one cycle, if a <
|b| is satisfied, then the solution of the controlled network asymptotically
stabilizes to the zero equilibrium point when t € (0, ), and is unstable when
T € (1y, +00). In addition, a Hopf bifurcation occurs at the zero equilibrium
point when t = 1,

3.2. Adding edges forms k non-intersected cycles

When the edge adding control forms k non-intersected cycles, and
the corresponding number of nodes is defined as ¢, ¢,, ..., g;, then the
subgraphs of flow graph associated with the Jacobian matrix at the zero
equilibrium point has k + 1 types, so its characteristic equation is

k k-1 k

[(/l+ a)e‘f]” _ 2 b [(/1 +a)eh]n—‘lj + 2 Z b1 i [(/1 + a)e“]"‘q”_q/z

Jj=1 q1=lia=j1+1
k S in=Y*
o (=BT Y (4 + @)t EE Y =0,

and replacing (A+a)e*” by r, the equation is further rewritten as an nth
polynomial equation of r

k k=1 k
= Z bl 4 Z 2 Bt Fip p 4y 5, + e+ (_1)kbzf=l 9qj r"_zle 9 = 0.

Jj=1 J1=1j=1
©)

Case I: 7 = 0. Define r; G = 1,2,...,n) as n roots of Eq. (9) with
r = A+ a, including multiple roots, then the following lemma holds.

Lemma 6. For the controlled network (3) with k non-intersected cycles
and © = 0, we have

1. fa> max {Re(r;)}, then network (3) is asymptotically stable
J=12,....n
at the zero equilibrium point.

2. Ifa< ma {Re(r;)}, then network (3) is unstable at the zero
j=12,...n

equilibrium point.
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Proof.

{Re( )} is satisfied, then we have

{Re( )}—a<0,

which shows that all roots of the characteristic equation have
negative real parts, so the zero equilibrium point of the network

is asymptotically stable.
2. Define A* as the eigenvalue associated with x| {Re(r))}. I
} holds, then it is easy to verify Re (4*) =

1. Ifa>_max
=

Re (4;) =Re(r;) —a < _max

a < r]nzax {Re

1 {Re r; } —a > 0. Hence, there is at least one positive
Jj=
root /1* which means that the zero equilibrium point of the

network is unstable.

Case II: 7 > 0. Define R; = aj+iﬂ/- (j =1,2,...,n) as nroots of Eq. (9)
with r = (4 + a)e’?, including multiple roots. Hence, it holds that

(h+ )" =a; +ip;, (10)

for all j = 1,2,...,n. Suppose that 4,, = +iy (y > 0) is a pair of pure
imaginary roots of Eq. (9), then 4 = iy is also the root of Eq. (10) if and
only if the following equation holds

(y + a)(cos yr + isiny7) = a; +1f;. 1)

According to Eq. (11), one has

acosyr —ysinyr = a;,
. ! 12)
ycosyt +asinyr = f;,
and
o &y +ad —aj =0, 13)

from which we know that there exist positive real roots for Eq. (13)
when a < R; holds. Let v G=12,....n) be n positive real roots of
Eq. (13). By Eq. (12), the following set of critical time delay for Hopf
bifurcation is obtained,

. aa; +v;p;
11(])=l arccos /—/21 +2jm 5,
Y az+yj
with j=1,2,....m, [ =0,1,2, ...
T('):T(()j()): min

: )
j=12,...n { } Yo = }/jo

By differentiating both sides of Eq. (9) with respect to z, the transver-
sality condition is calculated as follows,

, and

di oAt d )_
e 4 (14 a)e” (dTTH =0,
and
-1
Re(ﬂ) -1
dr /1=i;/0,‘r=‘r[’) y&-‘,—az

Therefore, we obtain the stable interval and critical delay point of
the controlled network.

Theorem 4. For delayed controlled network (3) with k non-intersected
cycles, if a < ‘Rj) (j = 1,2,...,n) is satisfied, then the zero equilibrium
point of the network is locally asymptotically stable for = € (0, ‘r(’)), and
unstable when = € (z,+c0). In addition, the network undergoes a Hopf
bifurcation at the zero equilibrium point when 7 = 1.
Remark 3. For the intersected k cycles, the characteristic equation
is more difficult to obtain, but we know that the number of terms is
less than Eq. (9). In particular, if k cycles are the same size and fully
intersected (see example Fig. 3), then the characteristic equation is
A+ a)"? {[(A+a)e**|’ — kb’ } = 0.

Neural Networks 176 (2024) 106329

Fig. 3. Adding a reverse edge to a grid network causes the generation of multiple fully
intersected cycles of the same size.

O} (1D

e Ny

(1

Fig. 4. Four equivalent edge adding methods have the same effect on the local
dynamics of the network.

Corollary 1. For k fully intersected cycles with the same number of nodes
p, the effect of k on the first Hopf bifurcation is equivalent to revising the
connection weight b in proportion.

Proof. If adding edge control renders k fully intersected cycles with
the same number of nodes p, then at zero equilibrium point, the
characteristic equation of Jacobian matrix of the network is given by
(A+a)? { [(4+ a)e’]” - kb”} =0.
Hence, the critical value of time delay for the first Hopf bifurcation is
Hy(wj,)
) arccos (%1;,0 )
V) = ————=,
bwj,

where a)jz.o is the positive root of the following equation,

2
02 27+ (Cla) 27! 4t ¥ = 2B =0,

which shows that the impact of k on the first Hopf bifurcation is
equivalent to increasing b by a factor of (’/;

Remark 4. In an undirected network, an undirected edge can be
seen as a directed cycle with 2 nodes formed by two directed edges.
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(b) T =141

Fig. 5. Numerical results of network (15). (a) The zero equilibrium point of the network is locally asymptotically stable when 7 < z,. (b) Four stable periodic solutions coexist near
the zero equilibrium point when 7 > 7, and from the inside to the outside, the initial values are (1.4,1.3,1.2,1.2,1.3,1.2,1.2), (1.5,1.3,1.1,1.2,1.3,1.1,1.2), (1.3,1.3,1.1,1,1.3,1.1,1),

(1,1.3,1.1,1,1.3,1.1,1).

Fig. 6. Numerical results of network (15). (a)(b) With the further increase in time delay, the periodic solution near the zero equilibrium point still exists, and the periodic

amplitude becomes larger and larger.

Furthermore, there are many intersected directed cycles in undirected
networks. Therefore, with time delay as the bifurcation parameter, the
undirected neural network would undergo Hopf bifurcation, and the
bifurcation threshold is affected by the network connectivity.

4. Numerical simulation

In this section, we take the directed acyclic star-chain network as
examples to display the correctness of our theoretical results. In fact,
each chain of a directed acyclic star-chain network is directed, which
is a more complex directed acyclic network than directed chain.

Fig. 4 shows several equivalent edge adding strategies, in which
each subgraph forms three disjoint directed cycles with three nodes.
According to Theorem 2, these edge adding methods have the same
effect on the local dynamics of the network, that is, the Hopf bifurcation
threshold of the controlled network is the same under these edge adding

controls. Then, two specific examples are provided to demonstrate the
impact of directed cycles on the directed neural network dynamics in
the following.

Example 1 (One Cycle).
Consider the star-chain neural network with two nodes in each
chain as

(%) = —ax, 1),

X,(t) = —ax,(t) + btanh(x, (t — 1)),

X3(t) = —ax3(t) + btanh(x,(t — 7)),

Q X4(t) = —ax,(t) + btanh(x (t — 7)), 14)
X5(t) = —ax5(t) + btanh(x,(t — 1)),

Xg(t) = —axg(t) + btanh(x, (r — 1)),

X7(t) = —ax;(t) + btanh(x¢(t — 7)),
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Fig. 7. Under different nodes p, bifurcation diagram of network (15) with positive connection weight b.

(@) p=3

(b)p=5

Fig. 8. Under different nodes p, bifurcation diagram of network (15) with negative connection weight b.

where the activation function is f(x) = tanh(x). It is easy to know from
Lemma 1 that network (14) will not undergo Hopf bifurcation for any
delay 7. Now considering the edge adding control on network (14), we
get the following controlled network,

X1 (1) = —ax (1),

X5(t) = —ax,(t) + btanh(x (r — 7)) + btanh(x4(t — 7)),

X3(t) = —ax3(t) + btanh(x,(t — 7)),

Xx4(t) = —ax,(t) + btanh(x,(t — 7)) + btanh(x4(f — 7)), (15)
X5(t) = —axs5(t) + btanh(x,(t — 7)),

Xg(t) = —axg(t) + btanh(x (r — 7)) + btanh(x,(t — 7)),

X7(t) = —ax4(t) + btanh(x4(t — 7)),

where three directed edges are added to network (14), forming a three-
node directed cycle. By selecting fixed a = 0.6 and b = —0.7, the
critical value 7, = 1.406 of the first Hopf bifurcation is obtained. By
Theorem 3, when 7 < 7, the zero equilibrium point of the network is

locally asymptotically stable (see Fig. 5(a)); and when 7 > 7, periodic
solutions will occur near the zero equilibrium point. It is interesting
that there is a non-trivial phenomenon of four stable periodic solutions
coexisting in the phase plane (see Fig. 5(b)). With the further increase
in time delay, the coexistence periodic phenomenon disappears and the
amplitude of the remaining single periodic solution gradually increases
(see Fig. 6). It is noteworthy that the selection of initial values of
phase trajectory is not mandatory and can be freely chosen within a
certain range. For example, in Fig. 5(a), since the network is locally
asymptotically stable with a time delay of = = 1.3, the initial values near
the zero equilibrium point are feasible. However, in Fig. 5(b), there is
a phenomenon of multi-period coexistence, which makes the selection
range of the initial values smaller but not absolute.

Fig. 7 reflects that on the whole, the bifurcation threshold tends to
decrease as the number of nodes on the cycle increases; the increase in
the connection weight b can also decrease the bifurcation threshold. In
addition, the self-feedback coefficient « has no significant impact on the
bifurcation threshold. Therefore, under edge adding control, smaller
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0.3

Fig. 9. Numerical results of network (16). (a) The zero equilibrium point of the network is locally asymptotically stable when 7 < z;. (b) There is a stable periodic solution near

the zero equilibrium point when 7 > 7.

0.25

02+
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Fig. 10. Bifurcation threshold changes with the connection weight and the number of
fully intersected cycles.

cycle and connection weights can effectively improve the bifurcation
threshold of time delay.

Remark 5. In fact, the impact of connection weight b on the bifur-
cation threshold of time delay is related to the parity of the number
of nodes (this is, p) on the cycle. More specifically, when p is an even
number, the effects of the positive and negative b on the bifurcation
threshold are consistent, but when p is an odd number, the effects are
different (see Figs. 7(b)(d) and 8).

Example 2 (Two Cycles).
In what follows, we consider the directed cyclic neural network that
forms two cycles after adding edges to network (14),
X1 (1) = —ax; (1),
X, (t) = —ax,(t) + btanh(x;(t — 7)) + btanh(x,(t — 7)),
%3(1) = —ax;(t) + btanh(x,(t — 7)) + btanh(xs(r — 1)),
X4(t) = —ax4(t) + btanh(x, (t — 7)) + btanh(xe(f — 7)), (16)
%5(f) = —axs(f) + btanh(x,(t — 7)) + btanh(x,(t — 7)),
q(f) = —axq(t) + btanh(x, (t — 7)) + btanh(x,(t — 7)),

%7(1) = —ax;(t) + btanh(x,( — 7)) + b tanh(x;( — 7)).

It is obvious that the critical value of the Hopf bifurcation is r(’) =1.295,
indicating that the zero equilibrium point of network (16) is locally
asymptotically stable when r = 1 < r(’) (see Fig. 9(a)), and there exists a

stable periodic solution near the zero equilibrium point for 7 = 1.6 > 7]

Epochs =14000
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Fig. 11. Fit function y = sin4x using BP and Elman neural networks respectively.

(see Fig. 9(b)). Moreover, Fig. 10 shows that the bifurcation threshold
gradually decreases for fixed a = 0.6 and p = 4 when the connection
weight and the number of fully intersected cycles increase.

A directed cyclic network can be viewed as a directed acyclic
network formed cycles by adding edges. Thus, combining theoretical
analysis and numerical simulations, we have the following remark.

Remark 6. In a directed neural network with time delay, cycle
structure can improve the dynamic properties of the network, and
the improvement in dynamics is related to the size, number, and
intersection of the directed cycles.

Moreover, the results are of practical significance in some aspects.
For example, we use BP (Wu, Wang, Cheng, & Li, 2011) and Elmen
(with directed cycle structure) (Portegys, 2010) neural networks respec-
tively to fit function y = sin4x. As shown in Fig. 11, it is clear that under
the same epochs=14000, the fitting effect of the BP neural network
is better, indicating that the cycle structure may reduce the fitting
accuracy. Therefore, feedforward neural networks are commonly used
to fit data. Furthermore, with the rise of graph neural network (GNN),
GNN is suitable for processing large-scale graphic data. The goal of
GNN is to learn useful representations from graph structured data and
use these representations for various tasks. Cycle structures are widely
present in real networks. As a consequence, exploring the influence of
directed cycles on the stability of network model can help us further
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study the recognition accuracy of GNN, which will be a potentially
important research topic. We will attempt to apply the research results
to practical neural network, such as GNN or GCN, in our future work.

5. Conclusion and discussion

This paper has studied the influence of adding edge on the stability
of a directed acyclic neural network with time delay. It has been
found that the cycle formed by edge adding operation is crucial to
the dynamics of the network. Moreover, we have given the conditions
for the local stability of the network and proved the existence of Hopf
bifurcation with time delay as a bifurcation parameter under one cycle
and multiple disjoint cycles. Numerically, a star-chain neural network
model is considered, and some nontrivial phenomena are observed,
such as periodic solutions and multi-periodic coexistence. Theoreti-
cal and numerical results show that edge adding control with cycle
structure can effectively improve the dynamics of directed networks,
and the bifurcation threshold is closely intertwined with the size of
the cycle and the connection weight, and all theoretical results and
numerical experiments are valid for any directed acyclic network,
including directed chains, directed star-chains, and directed grids, etc.
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