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A B S T R A C T

This paper investigates the dynamics of a directed acyclic neural network by edge adding control. We find that
the local stability and Hopf bifurcation of the controlled network only depend on the size and intersection of
directed cycles, instead of the number and position of the added edges. More specifically, if there is no cycle
in the controlled network, the local dynamics of the network will remain unchanged and Hopf bifurcation will
not occur even if the number of added edges is sufficient. However, if there exist cycles, then the network may
undergo Hopf bifurcation. Our results show that the cycle structure is a necessary condition for the generation
of Hopf bifurcation, and the bifurcation threshold is determined by the number, size, and intersection of cycles.
Numerical experiments are provided to support the validity of the theory.
1. Introduction

Directed acyclic networks are common in the real-world, which
do not contain directed cycles (rings) (Bang-Jensen & Gutin, 2008;
Jiang, Zhou, Small, Lu, & Zhang, 2023; Williams, Bach, Matthiesen,
Henriksen, & Gagliardi, 2018), such as directed chains, directed grids
and directed star-chains. A great number of scholars are committed
to the dynamics of these directed acyclic networks, mainly involving
synchronization and consensus performance (Panteley & Loría, 2017;
Papachristodoulou, Jadbabaie, & Münz, 2010; Zhou, Chen, Lu, & Lü,
2016; Zhu, Zhou, Yu, & Lu, 2020a, 2020b). For example, Zhang, Chen,
and Mo (2017) investigated the effect of adding a reverse edge to the
consensus of directed 1𝐷 chain and directed 2𝐷 grid, and concluded
that the reverse edge would decrease the dominant convergence rate
of the network. Subsequently, Hao, Wang, Duan, and Chen (2019)
discussed the effect of adding two reverse edges on the consensus
of the directed chain based on Zhang et al. (2017), and found that
the consensus performance would not be enhanced when the second
reverse edge is added.

However, these results only studied the consensus of simple directed
chains, and did not get a general conclusion about directed acyclic
graph networks. On the one hand, various dynamics of this type of
networks should be further investigated beyond synchronization and
consensus. For instance, stability and bifurcation are important tools
for exploring complex systems and networks (Chen, Xiao, Wan, Huang,
& Xu, 2021; Tao, Xiao, Zheng, Cao, & Tang, 2020; Wang, Zhao, & Cao,
2016), which focus on the dynamics of systems when parameters are
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E-mail address: jzhou@whu.edu.cn (J. Zhou).

continuously changed (Song, Han, & Wei, 2005; Wang & Jian, 2010;
Xu, Cao, Xiao, Ho, & Wen, 2014). Among single parameter bifurca-
tions, Hopf bifurcation is extensively explored since it demonstrates the
dynamic phenomenon from point to limit cycle in phase plane(Guo,
2022; Wu, Zhang, & Feng, 2021). Recently, with further research of
bifurcation on nonlinear systems, bifurcation control (Chen, Hill, & Yu,
2003; Jiang, Chen, Huang, & Yan, 2020; Wang, Wang, & Xia, 2019)
has been proposed to observe the dynamics of controlled parameterized
systems, such as time delay self-feedback control (Premraj, Suresh,
Banerjee, & Thamilmaran, 2017), hybrid control (Yuan & Yang, 2015)
and stochastic control (Xu, Ma, & Zhang, 2011). On the other hand,
the complexity of directed acyclic networks in the real world is much
higher than that of directed chain. The innate character of dynamics in
modified directed acyclic networks should also be studied rather than
considering only one edge adding operation on special networks (Liu,
Xie, Shi, & Yao, 2022; Mo, Chen, & Zhang, 2019). Neural networks
are a particular class of complex networks with the capability of signal
processing that has become a hot research topic in computer science
and engineering (Awodele & Jegede, 2009; Guan, Lai, Li, Yang, & Gu,
2022; Jiang, Xiong, & Shi, 2021). Nevertheless, currently most neural
network models are given in advance (Peng & Song, 2009; Xu, Tang,
& Liao, 2011), and there is little specific research on their structure,
which makes it difficult to design a suitable model based on practical
requirements. Thus, it is worth paying attention to which edge adding
method can maintain or improve the local dynamics of directed acyclic
neural networks and which structure plays a significant role in the
dynamics of the neural networks.
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Based on the above discussion, we sum up the main innovation and
contribution of this paper as follows.

1. We propose edge adding control on a delayed directed acyclic
neural network with arbitrary structure to investigate the im-
provement of network dynamics. Time delay is selected as a
key parameter to study the stability and Hopf bifurcation of the
network.

2. It is found that the emergence of directed cycles is the decisive
factor in the dynamic changes of the network. The edge adding
operations maintain the stability of the network when there is no
directed cycle, while the Hopf bifurcation may occur when there
is at least one directed cycle. That is to say, the cycle structure
is a necessary condition for the generation of Hopf bifurcation.

3. Cycles with the same number and size have a consistent effect
on the local stability and Hopf bifurcation of the network, re-
gardless of the number and position of the added edges. The
Hopf bifurcation threshold is affected by the number, size, and
intersection of the cycles.

In the theoretical analysis, we use the Coates flow graph to further
broaden the application scope of theoretical calculation, then obtain
more detailed sufficient conditions to estimate the network stability
and the existence of Hopf bifurcation. In addition, previous studies
have lacked attention to the structure of neural network models, with
most of them being given network structures, such as quaternion neural
network (Wang & Jian, 2010) and ring neural network (Tao et al.,
2020). Therefore, the existing results are only applicable to a few
models and have certain limitations. However, starting from searching
for the key structure of a neural network, we derive the necessary
conditions for the generation of Hopf bifurcation in the network, and
analyzed the factors that affect the threshold of Hopf bifurcation.

The rest of the paper is arranged as follows. Section 2 provides some
mathematical preliminaries and definitions. In Section 3, we design
an edge adding control on a directed acyclic neural network, and
investigate the local stability and Hopf bifurcation of the controlled
network under different directed cycles. In Section 4, some numerical
examples are given to verify the validity of the theory. Finally, a brief
conclusion and summary section completes the paper.

2. Preliminaries and definitions

Lemma 1 (Desoer, 1960). For a square matrix 𝑄 of 𝑛-order corresponding
o the flow graph 𝐺, one has

et𝑄 =
𝑝
∑

𝑖=1
(−1)𝑛+𝑛𝑖𝐺𝑖,

here 𝑝 represents the number of subgraphs for 𝐺, each consisting of non-
ontact loops of 𝑛 nodes. 𝑛𝑖 and 𝐺𝑖 are the number of directed loops
nd the product of the connection gains of each edge in the 𝑖th subgraphs
𝑖 = 1,… , 𝑝). (See Fig. 1).

efinition 1. A node is called the root node (leader node) of a directed
cyclic network if it does not receive information from other nodes.

efinition 2. When adding a directed edge to a directed acyclic graph,
he start node of the edge is called the head node, and the end node is
alled the tail node.

efinition 3. A directed cycle of length 𝑙 is defined as a directed
closed loop containing 𝑙 nodes {𝑛1, 𝑛2,… , 𝑛𝑙} and 𝑙 directed edges
(𝑛1, 𝑛2), (𝑛2, 𝑛3),… , (𝑛𝑙 , 𝑛1). The size of the directed cycle refers to the
umber of nodes on it.

efinition 4. For 𝑘 directed cycles, if any one intersects with the
emaining 𝑘 − 1 cycles but does not coincide, then 𝑘 cycles are called
ully intersected cycles.
2

e

Fig. 1. A 3-order matrix and its corresponding subgraphs.

. Directed neural network

Consider a directed acyclic neural network with time delay as

̇ 𝑖(𝑡) = −𝑎𝑖𝑥𝑖 +
𝑛
∑

𝑗=1
𝑏𝑖𝑗𝑓𝑖𝑗 (𝑥𝑗 (𝑡 − 𝜏)), (1)

here 𝑥𝑖 is the state of the 𝑖th neuron at time 𝑡, 𝑎𝑖 > 0 (𝑖 = 1, 2,… , 𝑛) the
elf-feedback coefficient of the 𝑖th neuron, 𝑏𝑖𝑗 the connection weight
etween neurons 𝑗 and 𝑖 (𝑏𝑖𝑗 = 0 if no directed edge from 𝑗 to 𝑖),
nd 𝜏 the time delay. 𝑓𝑖𝑗 (⋅) denotes the activation function satisfying
𝑖𝑗 (⋅) ∈ 𝐶1 and 𝑓𝑖𝑗 (0) = 0, 𝑓𝑖𝑗 ′(0) ≠ 0. Note that the structure of network
1) can be arbitrary, and unnecessarily contain a spanning tree.

According to Lemma 1, it is easy to know that the characteristic
quation of the Jacobian matrix of network (1) at the zero equilibrium
oint is given by
𝑛
∏

𝑖=1
(𝜆 + 𝑎𝑖) = 0, (2)

hich shows 𝜆𝑖 = −𝑎𝑖 (𝑖 = 1, 2,… , 𝑛).

emark 1. The zero equilibrium point is trivial for neural net-
ork models, which means that most network models have the zero
quilibrium point and not necessarily the non-zero equilibrium points.
herefore, the stability analysis results of the zero equilibrium point
ave a wider applicability. Moreover, the non-zero equilibrium points
an be transformed into the zero equilibrium point through a lin-
ar transformation. For example, for system 𝜉̇ = 𝐹 (𝜉) with non-zero
quilibrium point 𝐸1(𝜉∗), consider the following linear transformation

̃ = 𝜉 − 𝜉∗,

hen system ̇̃𝜉 = 𝐹 (𝜉 + 𝜉∗) have zero equilibrium point 𝐸0(0). For this
eason, the stability and bifurcation analysis of the non-zero equilib-
ium point of 𝜉̇ = 𝐹 (𝜉) are equivalent to that of the zero equilibrium of
̇̃ = 𝐹 (𝜉 + 𝜉∗).

Accordingly, we have the following conclusion for directed acyclic
etwork (1).

emma 2. For any 𝜏 ≥ 0, network (1) will not undergo Hopf bifurcation
ue to real numbers 𝑎𝑖 (𝑖 = 1, 2,… , 𝑛), and its zero equilibrium point is
lways stable when all 𝑎𝑖 > 0.

roof. Due to the eigenvalues of the Jacobian matrix of network
1) being 𝜆𝑖 = −𝑎𝑖 (𝑖 = 1, 2,… , 𝑛), there is no pair of pure virtual

igenvalues. Therefore, the network will not undergo Hopf bifurcation.
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Fig. 2. Adding edge of a directed star-chain network with three chains.
a
t
t
n

3

w
o

(

a
w
[

t

a

(

T

L
o
𝑎

P

In addition, if 𝑎𝑖 > 0, then all eigenvalues of the Jacobian matrix of the
network have negative real parts, that is, the zero equilibrium point is
asymptotically stable.

Now we attempt to improve the dynamic properties of network (1)
by edge adding control, and obtain the following controlled network

̇ 𝑖(𝑡) = −𝑎𝑖𝑥𝑖(𝑡) +
𝑛
∑

𝑗=1
𝑏𝑖𝑗𝑓𝑖𝑗 (𝑥𝑗 (𝑡 − 𝜏)) + 𝑢𝑖(𝑡), (3)

in which 𝑢𝑖(𝑡) denotes the edge adding controller. For example, if
a directed edge from neuron 𝑘 to neuron 𝑖 is added, then 𝑢𝑖(𝑡) =
𝑏𝑖𝑘𝑓𝑖𝑘(𝑥𝑘(𝑡 − 𝜏)).

Remark 2. Edge adding operation is an effective method for identify-
ing key structures that affect network dynamics, and it has been widely
applied in studying network consensus (Hao et al., 2019; Jiang et al.,
2023; Zhang et al., 2017). Therefore, the control strategy of Eq. (3) is
aimed at investigating which structure can determine the dynamics of
directed neural networks.

Theorem 1. If there is no directed cycle in edge adding network (3), then
the characteristic equation of its Jacobian matrix at the zero equilibrium
point is the same as that of network (1), that is, this edge adding control
does not improve the local dynamics of the original network.

Proof. Since there is no cycle in edge adding network (3), the char-
acteristic equation of Jacobian matrix of network (3) at the zero
equilibrium point is also given by Eq. (2), that is, the edge adding
operation without cycle structure does not affect the local dynamics
of the network.

Theorem 2. The characteristic equation of Jacobian matrix of network
(3) at the zero equilibrium point is determined by the size and number of its
cycles, as well as whether they intersect, and is independent of the number
and position of the added edges.

Proof. According to Lemma 1, the characteristic equation of a matrix
is only determined by the size and number of non-contact loops in
3

its corresponding flow graph. Hence, for a directed acyclic network, if a
different added edges make the network have the same number and size
of directed cycles, then the effect of these edges on the characteristic
equation is consistent.

Assumption 1. The self-feedback coefficient and connection weight of
network (1) are unified, namely 𝑎𝑖 = 𝑎, 𝑏𝑖𝑗𝑓𝑖𝑗 ′(0) = 𝑏 for 𝑖, 𝑗 = 1, 2,… , 𝑛.

Fig. 2 shows two edge adding strategies, one that does not form
directed cycle, and the other that forms cycles. In the following

wo subsections, under the condition of Assumption 1, we investigate
he impact of different cycles on the stability and bifurcation of the
etwork.

.1. Adding edges forms one cycle

Given that the edge adding control makes network (3) form a cycle
ith 𝑝 nodes, then according to Lemma 1, the characteristic equation
f Jacobian matrix of network (3) at the zero equilibrium point is

𝜆 + 𝑎)𝑛 + (−1)2𝑛−𝑝+1(−1)𝑝(𝜆 + 𝑎)𝑛−𝑝𝑏𝑝𝑒−𝜆𝑝𝜏 = 0,

nd further, by multiplying 𝑒𝜆𝑛𝜏 on both sides of the above equation,
e have

(𝜆 + 𝑎)𝑒𝜆𝜏
]𝑛−𝑝 {[(𝜆 + 𝑎)𝑒𝜆𝜏

]𝑝 − 𝑏𝑝
}

= 0. (4)

The following two cases are discussed in the light of whether the
ime delay 𝜏 is zero.

Case I: 𝜏 = 0. On this condition, characteristic Eq. (4) is rewritten
s

𝜆 + 𝑎)𝑛−𝑝
{

(𝜆 + 𝑎)𝑝 − 𝑏𝑝
}

= 0. (5)

herefore, we have the following conclusions.

emma 3. For 𝑏 > 0, if 𝑎 > 𝑏 is satisfied, then the zero equilibrium point
f network (3) without delay is asymptotically stable; it is unstable when
< 𝑏 holds.

roof. On the one hand, Eq. (5) has 𝑛 − 𝑝 real roots, which are

ll negative for 𝑎 > 0. On the other, the residual root of Eq. (5) is
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determined by

𝑠𝑝 − 𝑏𝑝 = 0, (6)

where 𝑠 = 𝜆 + 𝑎. Hence, we can obtain all the roots of Eq. (6) on the
complex plane for 𝑏 > 0,

𝑠𝑗 = 𝜆𝑗 + 𝑎 = 𝑏𝑒i𝜃 = 𝑏(cos 𝜃𝑗 + i sin 𝜃𝑗 ),

with 𝜃𝑗 = (2𝑗𝜋)∕𝑝, 𝑗 = 0, 1,… , 𝑝 − 1. Apparently, 𝑠0 is the root with the
largest real part among all 𝑠𝑗 , illustrating Re(𝜆𝑗 ) ≤ Re(𝜆0) = Re(𝑠0)−𝑎 =
𝑏 − 𝑎 < 0 for all 𝑗 = 0, 1,… , 𝑝 − 1, when 𝑎 > 𝑏 holds. Thus, if 𝑏 > 0 and
𝑎 > 𝑏, then all roots of Eq. (5) have negative real parts, that is, the zero
equilibrium point of network (3) is asymptotically stable. Moreover, if
𝑎 < 𝑏, then Eq. (6) obviously has a positive root 𝜆0, that is, the zero
equilibrium point is unstable.

Lemma 4. If 𝑏 < 0, the following conclusions hold true.

1. For an odd number 𝑝, the solution of non-delay network (3) is stable
when 𝑎 > −𝑏 cos (𝜋∕𝑝 ), and unstable when 𝑎 < −𝑏 cos (𝜋∕𝑝 ).

2. For an even number 𝑝, the solution of non-delay network (3) is stable
when 𝑎 > −𝑏, and unstable when 𝑎 < −𝑏.

Proof.

1. For 𝑏 < 0 and odd number 𝑝, then clearly 𝑏𝑛 < 0. In the case, all
roots of Eq. (6) on the complex plane are

𝑠𝑗 = 𝜆𝑗 + 𝑎 = −𝑏𝑒i𝜃 = −𝑏(cos 𝜃𝑗 + i sin 𝜃𝑗 ),

where 𝜃𝑗 = (2𝑗 + 1)𝜋∕𝑝, 𝑗 = 0, 1,… , 𝑝 − 1. The roots with largest
real part are 𝑠0 and 𝑠𝑝−1. Hence, if 𝑎 > −𝑏 cos (𝜋∕𝑝 ) is met, then
Re(𝜆𝑗 ) ≤ Re(𝜆0) = Re(𝑠0) − 𝑎 = −𝑏 cos (𝜋∕𝑝 ) − 𝑎 < 0 for all
𝑗 = 0, 1,… , 𝑝 − 1. Further, all roots of Eq. (5) contain negative
real parts when 𝑎 > −𝑏 cos (𝜋∕𝑝 ) and there are two roots 𝑠0 and
𝑠𝑝−1 having positive real parts when 𝑎 < −𝑏 cos (𝜋∕𝑝 ). Thus, the
conclusion is clearly tenable.

2. Since 𝑝 is an even number and 𝑏 < 0, one has 𝑏𝑛 > 0. Emphati-
cally, the method of proof is the same as that of Lemma 3.

Case II: 𝜏 > 0. Assume that there is a pair of pure virtual roots for
Eq. (4) defined as 𝜆1,2 = ±i𝜔, we have

(i𝜔+𝑎)𝑝 − 𝑏𝑝(cos𝜔𝑝𝜏 − i sin𝜔𝑝𝜏) = 0.

Observing the above equation, we obtain
{

𝐻1(𝜔) − 𝑏𝑝 cos𝜔𝑝𝜏 = 0,

𝐻2(𝜔) + 𝑏𝑝 sin𝜔𝑝𝜏 = 0,

and

𝐻2
1 (𝜔) +𝐻2

2 (𝜔) = 𝑏2𝑝, (7)

where
𝐻1(𝜔) = (i𝜔)𝑝 + 𝐶2

𝑝 (i𝜔)
𝑝−2𝑎2 +⋯ + 𝑎𝑝,

i𝐻2(𝜔) = 𝐶1
𝑝 (i𝜔)

𝑝−1𝑎 + 𝐶3
𝑝 (i𝜔)

𝑝−3𝑎3 +⋯ + 𝐶𝑝−1
𝑝 (i𝜔)𝑎𝑝−1,

when 𝑝 is an even number, and

𝐻1(𝜔) = 𝐶1
𝑝 (i𝜔)

𝑝−1𝑎 + 𝐶3
𝑝 (i𝜔)

𝑝−3𝑎3 +⋯ + 𝑎𝑝,

i𝐻2(𝜔) = (i𝜔)𝑝 + 𝐶2
𝑝 (i𝜔)

𝑝−2𝑎2 +⋯ + 𝐶𝑝−1
𝑝 (i𝜔)𝑎𝑝−1,

when 𝑝 is an odd number.
Denoting

𝑄(𝜔) ≜ 𝐻2
1 (𝜔) +𝐻2

2 (𝜔) − 𝑏2𝑝 = 0,

then one has

𝑄(𝑧) ≜ 𝑧𝑝 +
(

𝐶1
𝑝 𝑎

)2
𝑧𝑝−1 +⋯ + 𝑎2𝑝 − 𝑏2𝑝 = 0, (8)

in which 𝑧 = 𝜔2.
4

Lemma 5. Eq. (8) has at least one positive root when 𝑎 < |𝑏| holds.

Proof. If 𝑎 < |𝑏| is true, then 𝑄(0) = 𝑎2𝑝 − 𝑏2𝑝 < 0. Moreover, 𝑄(𝑧) is a
continuous function of 𝑧 over [0,∞), which shows lim

𝑧→+∞
𝑄(𝑧) = +∞.

From the zero point theorem, there is at least one positive root for
Eq. (8).

Without loss of generality, suppose that Eq. (8) has 𝑝 real roots
defined as 𝑧𝑗 (𝑗 = 1, 2,… , 𝑝), then the corresponding frequency 𝜔𝑗 =
√

𝑧𝑗 . When 𝜏 is taken as a bifurcation parameter, the key value of Hopf
bifurcation point is written as

𝜏(𝑗)𝑙 = 1
𝑝𝜔𝑗

{

arccos
(𝐻1(𝜔𝑗 )

𝑏𝑝

)

+ 2𝑙𝜋
}

,

in which 𝑗 = 1, 2,… , 𝑝, 𝑙 = 0, 1, 2,…, and let

𝜏0 = 𝜏(𝑗0)0 = min
𝑗=1,2,…,𝑝

{

𝜏(𝑗)0

}

, 𝜔0 = 𝜔𝑗0 .

ow, we just need to check the transversality condition to ensure the
eneration of Hopf bifurcation. Hence, differentiating both sides of
q. (4) with respect to 𝜏, we have

(𝜆 + 𝑎)𝑝−1 𝑑𝜆
𝑑𝜏

+ 𝑏𝑝𝑝𝑒−𝜆𝑝𝜏
(𝑑𝜆
𝑑𝜏

𝜏 + 𝜆
)

= 0,

nd further
𝑑𝜆
𝑑𝜏

)−1
= − 1

𝜆(𝜆 + 𝑎)
− 𝜏

𝜆
.

Substituting 𝜏 with 𝜏0, it follows that

Re
(𝑑𝜆
𝑑𝜏

)−1

𝜆=i𝜔0 ,𝜏=𝜏0
= 1

𝜔2
0 + 𝑎2

> 0.

Combining with Lemma 5, the following theorem of stability and
Hopf bifurcation for delayed controlled system can be derived.

Theorem 3. For delayed controlled network (3) with one cycle, if 𝑎 <
|𝑏| is satisfied, then the solution of the controlled network asymptotically
stabilizes to the zero equilibrium point when 𝜏 ∈ (0, 𝜏0), and is unstable when
𝜏 ∈ (𝜏0,+∞). In addition, a Hopf bifurcation occurs at the zero equilibrium
point when 𝜏 = 𝜏0.

3.2. Adding edges forms 𝑘 non-intersected cycles

When the edge adding control forms 𝑘 non-intersected cycles, and
the corresponding number of nodes is defined as 𝑞1, 𝑞2,… , 𝑞𝑘, then the
subgraphs of flow graph associated with the Jacobian matrix at the zero
equilibrium point has 𝑘 + 1 types, so its characteristic equation is

[

(𝜆 + 𝑎)𝑒𝜆𝜏
]𝑛 −

𝑘
∑

𝑗=1
𝑏𝑞𝑗

[

(𝜆 + 𝑎)𝑒𝜆𝜏
]𝑛−𝑞𝑗 +

𝑘−1
∑

𝑗1=1

𝑘
∑

𝑗2=𝑗1+1
𝑏𝑞𝑗1+𝑞𝑗2

[

(𝜆 + 𝑎)𝑒𝜆𝜏
]𝑛−𝑞𝑗1−𝑞𝑗2

+⋯ + (−1)𝑘𝑏
∑𝑘

𝑗=1 𝑞𝑗
[

(𝜆 + 𝑎)𝑒𝜆𝜏
]𝑛−

∑𝑘
𝑗=1 𝑞𝑗 = 0,

and replacing (𝜆+𝑎)𝑒𝜆𝜏 by 𝑟, the equation is further rewritten as an 𝑛th
polynomial equation of 𝑟

𝑟𝑛 −
𝑘
∑

𝑗=1
𝑏𝑞𝑗 𝑟𝑛−𝑞𝑗 +

𝑘−1
∑

𝑗1=1

𝑘
∑

𝑗2=1
𝑏𝑞𝑗1+𝑞𝑗2 𝑟𝑛−𝑞𝑗1−𝑞𝑗2 +⋯ + (−1)𝑘𝑏

∑𝑘
𝑗=1 𝑞𝑗 𝑟𝑛−

∑𝑘
𝑗=1 𝑞𝑗 = 0.

(9)

Case I: 𝜏 = 0. Define 𝑟𝑗 (𝑗 = 1, 2,… , 𝑛) as 𝑛 roots of Eq. (9) with
𝑟 = 𝜆 + 𝑎, including multiple roots, then the following lemma holds.

Lemma 6. For the controlled network (3) with 𝑘 non-intersected cycles
and 𝜏 = 0, we have

1. If 𝑎 > max
𝑗=1,2,…,𝑛

{

Re
(

𝑟𝑗
)}

, then network (3) is asymptotically stable
at the zero equilibrium point.

2. If 𝑎 < max
𝑗=1,2,…,𝑛

{

Re
(

𝑟𝑗
)}

, then network (3) is unstable at the zero

equilibrium point.
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Proof.

1. If 𝑎 > max
𝑗=1,2,…,𝑛

{

Re
(

𝑟𝑗
)}

is satisfied, then we have

Re
(

𝜆𝑗
)

= Re
(

𝑟𝑗
)

− 𝑎 ≤ max
𝑗=1,2,…,𝑛

{

Re
(

𝑟𝑗
)}

− 𝑎 < 0,

which shows that all roots of the characteristic equation have
negative real parts, so the zero equilibrium point of the network
is asymptotically stable.

2. Define 𝜆∗ as the eigenvalue associated with max
𝑗=1,2,…,𝑛

{

Re
(

𝑟𝑗
)}

. If

𝑎 < max
𝑗=1,2,…,𝑛

{

Re
(

𝑟𝑗
)}

holds, then it is easy to verify Re (𝜆∗) =

max
𝑗=1,2,…,𝑛

{

Re
(

𝑟𝑗
)}

− 𝑎 > 0. Hence, there is at least one positive
root 𝜆∗, which means that the zero equilibrium point of the
network is unstable.

Case II: 𝜏 > 0. Define 𝑅𝑗 = 𝛼𝑗+i𝛽𝑗 (𝑗 = 1, 2,… , 𝑛) as 𝑛 roots of Eq. (9)
with 𝑟 = (𝜆 + 𝑎)𝑒𝜆𝜏 , including multiple roots. Hence, it holds that

(𝜆 + 𝑎)𝑒𝜆𝜏 = 𝛼𝑗 + i𝛽𝑗 , (10)

for all 𝑗 = 1, 2,… , 𝑛. Suppose that 𝜆1,2 = ±i𝛾 (𝛾 > 0) is a pair of pure
imaginary roots of Eq. (9), then 𝜆 = i𝛾 is also the root of Eq. (10) if and
only if the following equation holds

(i𝛾 + 𝑎)(cos 𝛾𝜏 + isin𝛾𝜏) = 𝛼𝑗 + i𝛽𝑗 . (11)

According to Eq. (11), one has
{

𝑎 cos 𝛾𝜏 − 𝛾 sin 𝛾𝜏 = 𝛼𝑗 ,

𝛾 cos 𝛾𝜏 + 𝑎 sin 𝛾𝜏 = 𝛽𝑗 ,
(12)

and

𝜑(𝛾) ≜ 𝛾2 + 𝑎2 − 𝛼2𝑗 − 𝛽2𝑗 = 0, (13)

from which we know that there exist positive real roots for Eq. (13)
when 𝑎 < |

|

|

𝑅𝑗
|

|

|

holds. Let 𝛾𝑗 (𝑗 = 1, 2,… , 𝑛) be 𝑛 positive real roots of
Eq. (13). By Eq. (12), the following set of critical time delay for Hopf
bifurcation is obtained,

𝜏(𝑗)𝑙 = 1
𝛾𝑗

{

arccos

(

𝑎𝛼𝑗 + 𝛾𝑗𝛽𝑗
𝑎2 + 𝛾2𝑗

)

+ 2𝑗𝜋

}

,

with 𝑗 = 1, 2,… , 𝑛, 𝑙 = 0, 1, 2,…, and

𝜏′0 = 𝜏(𝑗0)0 = min
𝑗=1,2,…,𝑛

{

𝜏(𝑗)0

}

, 𝛾0 = 𝛾𝑗0 .

By differentiating both sides of Eq. (9) with respect to 𝜏, the transver-
sality condition is calculated as follows,
𝑑𝜆
𝑑𝜏

𝑒𝜆𝜏 + (𝜆 + 𝑎)𝑒𝜆𝜏
(𝑑𝜆
𝑑𝜏

𝜏 + 𝜆
)

= 0,

and

Re
(𝑑𝜆
𝑑𝜏

)−1

𝜆=i𝛾0 ,𝜏=𝜏′0
= 1

𝛾20 + 𝑎2
> 0.

Therefore, we obtain the stable interval and critical delay point of
the controlled network.

Theorem 4. For delayed controlled network (3) with 𝑘 non-intersected
cycles, if 𝑎 < |

|

|

𝑅𝑗
|

|

|

(𝑗 = 1, 2,… , 𝑛) is satisfied, then the zero equilibrium
point of the network is locally asymptotically stable for 𝜏 ∈ (0, 𝜏′0), and
unstable when 𝜏 ∈ (𝜏′0,+∞). In addition, the network undergoes a Hopf
bifurcation at the zero equilibrium point when 𝜏 = 𝜏′0.

Remark 3. For the intersected 𝑘 cycles, the characteristic equation
is more difficult to obtain, but we know that the number of terms is
less than Eq. (9). In particular, if 𝑘 cycles are the same size and fully
intersected (see example Fig. 3), then the characteristic equation is
(𝜆 + 𝑎)𝑛−𝑝

{[

(𝜆 + 𝑎)𝑒𝜆𝜏
]𝑝 − 𝑘𝑏𝑝

}

= 0.
5

Fig. 3. Adding a reverse edge to a grid network causes the generation of multiple fully
intersected cycles of the same size.

Fig. 4. Four equivalent edge adding methods have the same effect on the local
dynamics of the network.

Corollary 1. For 𝑘 fully intersected cycles with the same number of nodes
𝑝, the effect of 𝑘 on the first Hopf bifurcation is equivalent to revising the
connection weight 𝑏 in proportion.

Proof. If adding edge control renders 𝑘 fully intersected cycles with
the same number of nodes 𝑝, then at zero equilibrium point, the
characteristic equation of Jacobian matrix of the network is given by

(𝜆 + 𝑎)𝑛−𝑝
{

[

(𝜆 + 𝑎)𝑒𝜆𝜏
]𝑝 − 𝑘𝑏𝑝

}

= 0.

Hence, the critical value of time delay for the first Hopf bifurcation is

𝜏(𝑗0)0 (𝑘) =
arccos

(𝐻1(𝜔𝑗0 )
𝑘𝑏𝑝

)

𝑝𝜔𝑗0
,

where 𝜔2
𝑗0

is the positive root of the following equation,

𝑄(𝑧) ≜ 𝑧𝑝 +
(

𝐶1
𝑝 𝑎

)2
𝑧𝑝−1 +⋯ + 𝑎2𝑝 − 𝑘2𝑏2𝑝 = 0,

which shows that the impact of 𝑘 on the first Hopf bifurcation is
equivalent to increasing 𝑏 by a factor of 𝑝

√

𝑘.

Remark 4. In an undirected network, an undirected edge can be
seen as a directed cycle with 2 nodes formed by two directed edges.
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Fig. 5. Numerical results of network (15). (a) The zero equilibrium point of the network is locally asymptotically stable when 𝜏 < 𝜏0. (b) Four stable periodic solutions coexist near
the zero equilibrium point when 𝜏 > 𝜏0, and from the inside to the outside, the initial values are (1.4,1.3,1.2,1.2,1.3,1.2,1.2), (1.5,1.3,1.1,1.2,1.3,1.1,1.2), (1.3,1.3,1.1,1,1.3,1.1,1),
(1,1.3,1.1,1,1.3,1.1,1).
Fig. 6. Numerical results of network (15). (a)(b) With the further increase in time delay, the periodic solution near the zero equilibrium point still exists, and the periodic
amplitude becomes larger and larger.
Furthermore, there are many intersected directed cycles in undirected
networks. Therefore, with time delay as the bifurcation parameter, the
undirected neural network would undergo Hopf bifurcation, and the
bifurcation threshold is affected by the network connectivity.

4. Numerical simulation

In this section, we take the directed acyclic star-chain network as
examples to display the correctness of our theoretical results. In fact,
each chain of a directed acyclic star-chain network is directed, which
is a more complex directed acyclic network than directed chain.

Fig. 4 shows several equivalent edge adding strategies, in which
each subgraph forms three disjoint directed cycles with three nodes.
According to Theorem 2, these edge adding methods have the same
effect on the local dynamics of the network, that is, the Hopf bifurcation
threshold of the controlled network is the same under these edge adding
6

controls. Then, two specific examples are provided to demonstrate the
impact of directed cycles on the directed neural network dynamics in
the following.

Example 1 (One Cycle).
Consider the star-chain neural network with two nodes in each

chain as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝑥̇1(𝑡) = −𝑎𝑥1(𝑡),

𝑥̇2(𝑡) = −𝑎𝑥2(𝑡) + 𝑏 tanh(𝑥1(𝑡 − 𝜏)),

𝑥̇3(𝑡) = −𝑎𝑥3(𝑡) + 𝑏 tanh(𝑥2(𝑡 − 𝜏)),

𝑥̇4(𝑡) = −𝑎𝑥4(𝑡) + 𝑏 tanh(𝑥1(𝑡 − 𝜏)),

𝑥̇5(𝑡) = −𝑎𝑥5(𝑡) + 𝑏 tanh(𝑥4(𝑡 − 𝜏)),

𝑥̇6(𝑡) = −𝑎𝑥6(𝑡) + 𝑏 tanh(𝑥1(𝑡 − 𝜏)),

(14)
⎩

𝑥̇7(𝑡) = −𝑎𝑥7(𝑡) + 𝑏 tanh(𝑥6(𝑡 − 𝜏)),
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Fig. 7. Under different nodes 𝑝, bifurcation diagram of network (15) with positive connection weight 𝑏.
Fig. 8. Under different nodes 𝑝, bifurcation diagram of network (15) with negative connection weight 𝑏.
where the activation function is 𝑓 (𝑥) = tanh(𝑥). It is easy to know from
Lemma 1 that network (14) will not undergo Hopf bifurcation for any
delay 𝜏. Now considering the edge adding control on network (14), we
get the following controlled network,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑥̇1(𝑡) = −𝑎𝑥1(𝑡),

𝑥̇2(𝑡) = −𝑎𝑥2(𝑡) + 𝑏 tanh(𝑥1(𝑡 − 𝜏)) + 𝑏 tanh(𝑥4(𝑡 − 𝜏)),

𝑥̇3(𝑡) = −𝑎𝑥3(𝑡) + 𝑏 tanh(𝑥2(𝑡 − 𝜏)),

𝑥̇4(𝑡) = −𝑎𝑥4(𝑡) + 𝑏 tanh(𝑥1(𝑡 − 𝜏)) + 𝑏 tanh(𝑥6(𝑡 − 𝜏)),

𝑥̇5(𝑡) = −𝑎𝑥5(𝑡) + 𝑏 tanh(𝑥4(𝑡 − 𝜏)),

𝑥̇6(𝑡) = −𝑎𝑥6(𝑡) + 𝑏 tanh(𝑥1(𝑡 − 𝜏)) + 𝑏 tanh(𝑥2(𝑡 − 𝜏)),

𝑥̇7(𝑡) = −𝑎𝑥7(𝑡) + 𝑏 tanh(𝑥6(𝑡 − 𝜏)),

(15)

where three directed edges are added to network (14), forming a three-
node directed cycle. By selecting fixed 𝑎 = 0.6 and 𝑏 = −0.7, the
critical value 𝜏0 = 1.406 of the first Hopf bifurcation is obtained. By
Theorem 3, when 𝜏 < 𝜏 , the zero equilibrium point of the network is
7

0

locally asymptotically stable (see Fig. 5(a)); and when 𝜏 > 𝜏0, periodic
solutions will occur near the zero equilibrium point. It is interesting
that there is a non-trivial phenomenon of four stable periodic solutions
coexisting in the phase plane (see Fig. 5(b)). With the further increase
in time delay, the coexistence periodic phenomenon disappears and the
amplitude of the remaining single periodic solution gradually increases
(see Fig. 6). It is noteworthy that the selection of initial values of
phase trajectory is not mandatory and can be freely chosen within a
certain range. For example, in Fig. 5(a), since the network is locally
asymptotically stable with a time delay of 𝜏 = 1.3, the initial values near
the zero equilibrium point are feasible. However, in Fig. 5(b), there is
a phenomenon of multi-period coexistence, which makes the selection
range of the initial values smaller but not absolute.

Fig. 7 reflects that on the whole, the bifurcation threshold tends to
decrease as the number of nodes on the cycle increases; the increase in
the connection weight 𝑏 can also decrease the bifurcation threshold. In
addition, the self-feedback coefficient 𝑎 has no significant impact on the
bifurcation threshold. Therefore, under edge adding control, smaller
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Fig. 9. Numerical results of network (16). (a) The zero equilibrium point of the network is locally asymptotically stable when 𝜏 < 𝜏′0. (b) There is a stable periodic solution near
he zero equilibrium point when 𝜏 > 𝜏′0.
Fig. 10. Bifurcation threshold changes with the connection weight and the number of
fully intersected cycles.

cycle and connection weights can effectively improve the bifurcation
threshold of time delay.

Remark 5. In fact, the impact of connection weight 𝑏 on the bifur-
ation threshold of time delay is related to the parity of the number
f nodes (this is, 𝑝) on the cycle. More specifically, when 𝑝 is an even
umber, the effects of the positive and negative 𝑏 on the bifurcation
hreshold are consistent, but when 𝑝 is an odd number, the effects are
ifferent (see Figs. 7(b)(d) and 8).

xample 2 (Two Cycles).
In what follows, we consider the directed cyclic neural network that

orms two cycles after adding edges to network (14),

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑥̇1(𝑡) = −𝑎𝑥1(𝑡),

𝑥̇2(𝑡) = −𝑎𝑥2(𝑡) + 𝑏 tanh(𝑥1(𝑡 − 𝜏)) + 𝑏 tanh(𝑥4(𝑡 − 𝜏)),

𝑥̇3(𝑡) = −𝑎𝑥3(𝑡) + 𝑏 tanh(𝑥2(𝑡 − 𝜏)) + 𝑏 tanh(𝑥5(𝑡 − 𝜏)),

𝑥̇4(𝑡) = −𝑎𝑥4(𝑡) + 𝑏 tanh(𝑥1(𝑡 − 𝜏)) + 𝑏 tanh(𝑥6(𝑡 − 𝜏)),

𝑥̇5(𝑡) = −𝑎𝑥5(𝑡) + 𝑏 tanh(𝑥4(𝑡 − 𝜏)) + 𝑏 tanh(𝑥7(𝑡 − 𝜏)),

𝑥̇6(𝑡) = −𝑎𝑥6(𝑡) + 𝑏 tanh(𝑥1(𝑡 − 𝜏)) + 𝑏 tanh(𝑥2(𝑡 − 𝜏)),

𝑥̇7(𝑡) = −𝑎𝑥7(𝑡) + 𝑏 tanh(𝑥6(𝑡 − 𝜏)) + 𝑏 tanh(𝑥3(𝑡 − 𝜏)).

(16)

It is obvious that the critical value of the Hopf bifurcation is 𝜏′0 = 1.295,
indicating that the zero equilibrium point of network (16) is locally
asymptotically stable when 𝜏 = 1 < 𝜏′0 (see Fig. 9(a)), and there exists a
stable periodic solution near the zero equilibrium point for 𝜏 = 1.6 > 𝜏′
8

0

Fig. 11. Fit function 𝑦 = sin 4𝑥 using BP and Elman neural networks respectively.

(see Fig. 9(b)). Moreover, Fig. 10 shows that the bifurcation threshold
gradually decreases for fixed 𝑎 = 0.6 and 𝑝 = 4 when the connection
weight and the number of fully intersected cycles increase.

A directed cyclic network can be viewed as a directed acyclic
network formed cycles by adding edges. Thus, combining theoretical
analysis and numerical simulations, we have the following remark.

Remark 6. In a directed neural network with time delay, cycle
structure can improve the dynamic properties of the network, and
the improvement in dynamics is related to the size, number, and
intersection of the directed cycles.

Moreover, the results are of practical significance in some aspects.
For example, we use BP (Wu, Wang, Cheng, & Li, 2011) and Elmen
(with directed cycle structure) (Portegys, 2010) neural networks respec-
tively to fit function 𝑦 = sin 4𝑥. As shown in Fig. 11, it is clear that under
the same epochs=14000, the fitting effect of the BP neural network
is better, indicating that the cycle structure may reduce the fitting
accuracy. Therefore, feedforward neural networks are commonly used
to fit data. Furthermore, with the rise of graph neural network (GNN),
GNN is suitable for processing large-scale graphic data. The goal of
GNN is to learn useful representations from graph structured data and
use these representations for various tasks. Cycle structures are widely
present in real networks. As a consequence, exploring the influence of
directed cycles on the stability of network model can help us further
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study the recognition accuracy of GNN, which will be a potentially
important research topic. We will attempt to apply the research results
to practical neural network, such as GNN or GCN, in our future work.

5. Conclusion and discussion

This paper has studied the influence of adding edge on the stability
of a directed acyclic neural network with time delay. It has been
found that the cycle formed by edge adding operation is crucial to
the dynamics of the network. Moreover, we have given the conditions
for the local stability of the network and proved the existence of Hopf
bifurcation with time delay as a bifurcation parameter under one cycle
and multiple disjoint cycles. Numerically, a star-chain neural network
model is considered, and some nontrivial phenomena are observed,
such as periodic solutions and multi-periodic coexistence. Theoreti-
cal and numerical results show that edge adding control with cycle
structure can effectively improve the dynamics of directed networks,
and the bifurcation threshold is closely intertwined with the size of
the cycle and the connection weight, and all theoretical results and
numerical experiments are valid for any directed acyclic network,
including directed chains, directed star-chains, and directed grids, etc.

CRediT authorship contribution statement

Qinrui Dai: Writing – original draft, Software, Methodology, Writ-
ing – review & editing. Jin Zhou: Methodology, Project administration,
Supervision, Writing – review & editing. Zhengmin Kong: Project
administration, Software, Visualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported by the National Natural Science Foun-
dation of China under Grant Nos. 62173254 and 62173256, by the
National Key Research and Development Program of China under Grant
No. 2020YFA0714200, and by the National Key R&D Program of China
under Grant No. 2021ZD0112702.

References

Awodele, O., & Jegede, O. (2009). Neural networks and its application in engineering.
Informing Science and IT Education Conference(InSITE), 83–95.

Bang-Jensen, J., & Gutin, G. Z. (2008). Digraphs: theory, algorithms and applications.
Springer Science & Business Media.

hen, G., Hill, D. J., & Yu, X. (2003). Bifurcation control: theory and applications: vol.
293, Springer Science & Business Media.

hen, J., Xiao, M., Wan, Y., Huang, C., & Xu, F. (2021). Dynamical bifurcation for
a class of large-scale fractional delayed neural networks with complex ring-hub
structure and hybrid coupling. IEEE Transactions on Neural Networks and Learning
Systems.

Desoer, C. A. (1960). The optimum formula for the gain of a flow graph or a simple
derivation of coates’ formula. Proceedings of the IRE, 48(5), 883–889.

uan, J., Lai, R., Li, H., Yang, Y., & Gu, L. (2022). Dnrcnn: Deep recurrent convolutional
neural network for hsi destriping. IEEE Transactions on Neural Networks and Learning
Systems.
9

Guo, S. (2022). Theory and applications of equivariant normal forms and hopf
bifurcation for semilinear FDEs in Banach spaces. Journal of Differential Equations,
317, 387–421.

Hao, Y., Wang, Q., Duan, Z., & Chen, G. (2019). The role of reverse edges on consensus
performance of chain networks. IEEE Transactions on Systems, Man, and Cybernetics,
51(3), 1757–1765.

Jiang, X., Chen, X., Huang, T., & Yan, H. (2020). Bifurcation and control for a predator-
prey system with two delays. IEEE Transactions on Circuits and Systems II: Express
Briefs, 68(1), 376–380.

Jiang, W., Xiong, J., & Shi, Y. (2021). A co-design framework of neural networks and
quantum circuits towards quantum advantage. Nature Communications, 12(1), 579.

Jiang, S., Zhou, J., Small, M., Lu, J.-a., & Zhang, Y. (2023). Searching for key cycles
in a complex network. Physical Review Letters, 130(18), Article 187402.

Liu, Y., Xie, D., Shi, L., & Yao, L. (2022). The effect of reverse edges on convergence
rate of directed weighted chain network. International Journal of Systems Science,
53(16), 3465–3480.

Mo, X., Chen, Z., & Zhang, H. (2019). Effects of adding a reverse edge across a stem
in a directed acyclic graph. Automatica, 103, 254–260.

Panteley, E., & Loría, A. (2017). Synchronization and dynamic consensus of het-
erogeneous networked systems. IEEE Transactions on Automatic Control, 62(8),
3758–3773.

Papachristodoulou, A., Jadbabaie, A., & Münz, U. (2010). Effects of delay in multi-agent
consensus and oscillator synchronization. IEEE Transactions on Automatic Control,
55(6), 1471–1477.

Peng, Y., & Song, Y. (2009). Stability switches and hopf bifurcations in a pair of
identical tri-neuron network loops. Physics Letters A, 373(20), 1744–1749.

Portegys, T. E. (2010). A maze learning comparison of Elman, long short-term memory,
and mona neural networks. Neural Networks, 23(2), 306–313.

Premraj, D., Suresh, K., Banerjee, T., & Thamilmaran, K. (2017). Control of bifurcation-
delay of slow passage effect by delayed self-feedback. Chaos, 27(1), Article
013104.

Song, Y., Han, M., & Wei, J. (2005). Stability and hopf bifurcation analysis on a
simplified BAM neural network with delays. Physica D, 200(3–4), 185–204.

Tao, B., Xiao, M., Zheng, W. X., Cao, J., & Tang, J. (2020). Dynamics analysis and
design for a bidirectional super-ring-shaped neural network with n neurons and
multiple delays. IEEE Transactions on Neural Networks and Learning Systems, 32(7),
2978–2992.

ang, B., & Jian, J. (2010). Stability and hopf bifurcation analysis on a four-neuron
BAM neural network with distributed delays. Communications in Nonlinear Science
and Numerical Simulation, 15(2), 189–204.

Wang, X., Wang, Z., & Xia, J. (2019). Stability and bifurcation control of a delayed
fractional-order eco-epidemiological model with incommensurate orders. Journal of
the Franklin Institute, 356(15), 8278–8295.

ang, L., Zhao, H., & Cao, J. (2016). Synchronized bifurcation and stability in a ring
of diffusively coupled neurons with time delay. Neural Networks, 75, 32–46.

illiams, T. C., Bach, C. C., Matthiesen, N. B., Henriksen, T. B., & Gagliardi, L. (2018).
Directed acyclic graphs: A tool for causal studies in paediatrics. Pediatric Research,
84(4), 487–493.

Wu, W., Wang, J., Cheng, M., & Li, Z. (2011). Convergence analysis of online gradient
method for BP neural networks. Neural Networks, 24(1), 91–98.

Wu, R., Zhang, C., & Feng, Z. (2021). Hopf bifurcation in a delayed single species
network system. International Journal of Bifurcation and Chaos, 31(03), Article
2130008.

u, W., Cao, J., Xiao, M., Ho, D. W., & Wen, G. (2014). A new framework for
analysis on stability and bifurcation in a class of neural networks with discrete
and distributed delays. IEEE Transactions on Cybernetics, 45(10), 2224–2236.

Xu, Y., Ma, S., & Zhang, H. (2011). Hopf bifurcation control for stochastic dynamical
system with nonlinear random feedback method. Nonlinear Dynamics, 65, 77–84.

Xu, C., Tang, X., & Liao, M. (2011). Stability and bifurcation analysis of a six-neuron
BAM neural network model with discrete delays. Neurocomputing, 74(5), 689–707.

uan, L., & Yang, Q. (2015). Bifurcation, invariant curve and hybrid control
in a discrete-time predator–prey system. Applied Mathematical Modelling, 39(8),
2345–2362.

hang, H., Chen, Z., & Mo, X. (2017). Effect of adding edges to consensus networks with
directed acyclic graphs. IEEE Transactions on Automatic Control, 62(9), 4891–4897.

hou, J., Chen, J., Lu, J.-a., & Lü, J. (2016). On applicability of auxiliary system ap-
proach to detect generalized synchronization in complex network. IEEE Transactions
on Automatic Control, 62(7), 3468–3473.

hu, S., Zhou, J., Yu, X., & Lu, J.-a. (2020a). Bounded synchronization of heterogeneous
complex dynamical networks: A unified approach. IEEE Transactions on Automatic
Control, 66(4), 1756–1762.

hu, S., Zhou, J., Yu, X., & Lu, J.-a. (2020b). Synchronization of complex networks
with nondifferentiable time-varying delay. IEEE Transactions on Cybernetics, 52(5),
3342–3348.

http://refhub.elsevier.com/S0893-6080(24)00253-3/sb1
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb1
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb1
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb2
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb2
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb2
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb3
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb3
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb3
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb4
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb4
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb4
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb4
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb4
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb4
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb4
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb5
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb5
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb5
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb8
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb8
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb8
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb8
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb8
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb9
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb9
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb9
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb9
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb9
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb10
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb10
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb10
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb11
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb11
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb11
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb13
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb13
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb13
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb14
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb14
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb14
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb14
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb14
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb15
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb15
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb15
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb15
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb15
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb16
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb16
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb16
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb17
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb17
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb17
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb19
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb19
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb19
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb20
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb20
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb20
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb20
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb20
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb20
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb20
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb21
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb21
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb21
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb21
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb21
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb23
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb23
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb23
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb24
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb24
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb24
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb24
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb24
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb25
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb25
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb25
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb28
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb28
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb28
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb29
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb29
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb29
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb31
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb31
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb31
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb32
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb32
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb32
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb32
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb32
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb33
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb33
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb33
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb33
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb33
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb34
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb34
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb34
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb34
http://refhub.elsevier.com/S0893-6080(24)00253-3/sb34

	The role of directed cycles in a directed neural network
	Introduction
	Preliminaries and definitions
	Directed neural network
	Adding edges forms one cycle
	Adding edges forms k non-intersected cycles

	Numerical simulation
	Conclusion and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


