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摘要 随着网络科学的发展, 普通网络无法描述多个个体间的交互作用, 这就有必要引入高阶网络.

高阶网络能够刻画普通网络无法描述的网络特征, 其中单纯形 (2 阶以上) 扮演着关键角色. 牵制控制

具有 “四两拨千斤” 的作用, 在高阶网络中只需牵制一部分单纯形就能达到同步. 但如何选取合适的

单纯形进行牵制控制, 是一个充满挑战而又全新的课题. 本文给出高阶网络达到同步的自适应牵制控

制律, 并提出如何选择合适的单纯形进行牵制, 选择方式由高阶网络广义 Laplacian 矩阵次小特征值

对应的单位特征向量分量决定. 数值仿真结果表明该方法简单有效, 牵制控制效果与单纯形选择方式

一致.
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1 引言

虽然人们对具有成对相互作用的普通网络进行了大量研究 [1∼6], 然而, 现实生活中个体间的作

用不仅有成对个体的交互, 还有多个个体之间高阶的交互, 如人脑网络、秀丽线虫网络和论文合作

网络等. 包含多个个体高阶交互的网络称为高阶网络. 典型的高阶网络模型有单纯复形 (simplicial

complex) [7∼10] 和超图 (hypergraph) [7, 9, 11]. 前者需有 2 阶及以上单纯形, 后者需有 3 节点及以上超

边. 这里讨论的高阶网络, 指的是单纯复形网络, 与文献 [8] 中的单纯形网络是一致的. 最近, 学者们

对高阶网络同步动力学的研究兴趣日益浓厚 [10∼12]. 同步在自然系统和工程系统中无处不在, 是个体

最终达到一种共同状态的群体行为.实际网络中,有时多个个体可以通过耦合作用自发地达到同步.对

于网络无法自发同步的情况, 可以设计并应用一些控制器驱动网络实现同步, 即同步控制 [2, 5, 6]. 由于
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高阶网络中的交互关系比较复杂, 关于同步控制文献目前还非常少. 因此, 研究高阶网络同步控制, 将

是一个具有现实意义而又充满挑战的课题.

在高阶网络中, 通过控制所有单纯形使网络达到同步的代价太大也无必要. 牵制控制在网络中有

“牵一发而动全身” 的功效, 因此只需牵制一部分单纯形, 就能实现相同的控制目标. 目前对于高阶网

络牵制控制的文献非常少,除了文献 [13,14]研究了有向超图的牵制控制外,其他牵制控制的研究都是

基于低阶网络的节点 (0- 阶单纯形) [5, 15,16] 和边 (1- 阶单纯形) [6, 17,18] 的. 关于单纯形 (2 阶及以上)

牵制控制的研究几乎空白. 本文研究了高阶网络 (2 阶及以上单纯形) 的牵制控制, 研究发现当高阶网

络的内联耦合矩阵是单位阵时, 其广义 Laplacian 矩阵的次小特征值 [7, 8, 10,19∼21] 将直接影响网络能

否达到同步.为实现同步,本文设计了针对网络中一部分单纯形的自适应控制律.而如何选取合适的单

纯形进行牵制, 涉及改变给定单纯形的耦合大小和次小特征值对应的单位特征向量分量. 本文不仅给

出高阶网络同步的自适应牵制控制律, 还给出需要牵制的单纯形的选择方式. 由此得到与牵制控制的

仿真结果相一致的单纯形选择方式.

文章结构安排如下. 第 2 节介绍相关引理和概念; 第 3 节阐述高阶网络广义 Laplacian 矩阵次小

特征值的重要性、高阶网络的牵制自适应控制器的设计和依次牵制单纯形的选择; 第 4 节通过一些例

子验证方法的有效性; 最后, 第 5 节总结全文并作未来展望.

2 预备知识

为了更好地研究高阶网络, 先引入一些预备知识.

2.1 相关引理

引理1 ([22]) 设 G = (V, E) 是无向、加权、连通的网络, 由节点集 V 和边集 E 构成. 令 L(G) 为

该网络对应的 Laplacian 矩阵, v 为它的次小特征值 λ2(G) 对应的单位特征向量. 零特征值对应的特

征向量 (1, 1, . . . , 1)T 记为 1. 对任意向量 x, 有

λ2(G) = min
x⊥1,xTx=1

xTL(G)x =
∑

v⊥1,vTv=1
[i1,i2]∈E

ci1i2 (vi1 − vi2)
2
,

(1)

其中, xT 表示向量 x 的转置, 二元数组 [i1, i2] 表示 G 中一条权重为 ci1i2 的边, vi1 和 vi2 是 v 中第 i1

和 i2 个分量.

2.2 相关定义

定义1 ([7]) (k − 1)- 阶单纯形 (simplex) 是由 k 个节点 i1, i2, . . . , ik 的交互形成的, 记为 [i1, i2,

. . . , ik].

定义2 ([7]) 单纯复形 (simplicial complex)是由单纯形的集合形成的. 如 n个单纯形 ξ1, ξ2, . . . , ξn

的集合是一个单纯复形 K. 将这些单纯形 ξ1, ξ2, . . . , ξn 的最高阶数定义为该单纯复形的阶数.

3 主要结果

考虑由 N 个节点构成的 D-阶无向、加权、连通的单纯复形 Gh = (V, E),其节点集和单纯形集分
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别为 V 和 E , 该高阶网络中第 i 个节点的动力学可描述为

ẋi = f (xi) + c1

N∑
j1=1

σ
(1)
ij1

(t)A
(1)
ij1

h(1) (xi, xj1) + c2

N∑
j1=1

N∑
j2=1

σ
(2)
ij1j2

(t)A
(2)
ij1j2

h(2) (xi, xj1 , xj2) + · · ·

+ cD

N∑
j1=1

· · ·
N∑

jD=1

σ
(D)
ij1···jD (t)A

(D)
ij1···jDh

(D) (xi, xj1 , . . . , xjD ) , i = 1, . . . , N,

(2)

其中, f 表示单个节点的动力学, cd 表示高阶网络的 d-阶耦合强度, h(d) (xi, xj1 , . . . , xjd) : R(d+1)×n →
Rn表示 d- 阶内联耦合函数, h(d) (xi, xj1 , . . . , xjd) 通常满足自然耦合条件

[10, 23] h(d) (x, x, . . . , x) = · · ·
= h(2) (x, x) = h(1) (x), d = 1, . . . , D. σ

(d)
ij1···jd(t) 表示在时刻 t 节点 i, j1, . . . , jd 构成的 d- 阶交互

的权重. 若节点 i 和 j 交互, 则张量矩阵中 A
(1)
ij = 1; 否则, A

(1)
ij = 0. 类似地, 若节点 i, j1, . . . , jd

高阶交互, 则张量矩阵中 A
(d)
ij1...jd

= 1; 否则, A
(d)
ij1...jd

= 0. 将普通加权网络的 Laplacian 矩阵推广到

高阶网络中, 则这个单纯复形的 d- 阶 Laplacian 矩阵的元可表示为 L
(d)
ij (t) = P

(d)
i (t)δij − Q

(d)
ij (t), 其

中, P
(d)
i (t) =

∑N
j1,...,jd=1 σ

(d)
ij1···jd(t)A

(d)
ij1...jd

, Q
(d)
ij (t) =

∑N
j1,...,jd−1=1 σ

(d)
ijj1···jd−1

(t)A
(d)
ijj1...jd−1

. 若 i = j, 则

δij = 1; 否则, δij = 0. 这个 D- 阶单纯复形的广义 Laplacian 矩阵可表示为

L(t) =
D∑

d=1

cdL
(d)(t). (3)

3.1 广义 Laplacian 矩阵次小特征值重要性

对于网络模型 (2), 若 h(d) (xi, xj1 , xj2 , . . . , xjd) =
1
d (xj1 + xj2 + · · ·+ xjd − dxi), 则式 (2) 可描述为

ẋi = f (xi)−
N∑
j=1

(c1L
(1)
ij (t) + c2L

(2)
ij (t) + · · ·+ cDL

(D)
ij (t))xj . (4)

在讨论这种高阶网络的同步之前, 先引入一个有用的假设.

假设1 存在一个常数 κ > 0, 函数 f 满足 ∥Df(s)∥ 6 κ, 其中, Df(s) 是 f 在 s 处的 Jacobian

矩阵.

下面开始研究上述高阶网络的同步问题.

若 s 为孤立节点方程 ẋ = f(x) 的解, 并在文献 [24] 的假设下 (所有节点的动力学都相同; 各个

节点之间的同阶耦合函数相同; 同步流形是不变流形; 在同步流形附近可以作线性化), 让网络 (4) 在

s 上作变分. 引入误差 ei = xi − s, 则高阶网络的同步问题转化成误差系统在零解的稳定性问题. 等

式 (4) 在 s 上的变分方程为

ėi = Df(s)ei −
N∑
j=1

(c1L
(1)
ij (t) + c2L

(2)
ij (t) + · · ·+ cDL

(D)
ij (t))ej . (5)

记 e = (eT1 , e
T
2 , . . . , e

T
N )T 和 x = (xT

1 , x
T
2 , . . . , x

T
N )T, 则式 (5) 可描述为

ė = (IN ⊗Df(s)− L(t)⊗ In)e. (6)

存在正交矩阵 M , 使得 MTL(t)M = diag{λ1(t), λ2(t), . . . , λN (t)} , Λ(t). 设 η = (MT ⊗ In)e, 其

中 η = (ηT1 , η
T
2 , . . . , η

T
N )T, 则

η̇ = (MT ⊗ In)(IN ⊗Df(s)− L(t)⊗ In)(M ⊗ In)η

= (IN ⊗Df(s)− Λ(t)⊗ In)η.
(7)
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进一步地, 式 (7) 可表示为

η̇i = (Df(s)− λi(t)In)ηi, 1 6 i 6 N. (8)

因为 λ1(t) = 0 对应同步流形的变分等式 [24,25], 所以网络 (2) 同步解的渐进稳定转化为系统 (9)

零解的渐进稳定,

η̇i = (Df(s)− λi(t)In)ηi, 2 6 i 6 N. (9)

定理1 若假设 1 成立, 则合适的耦合强度 cd 能使网络 (2) 达到同步.

证明 设李雅普诺夫 (Lyapunov) 函数:

V =
1

2

N∑
i=2

ηTi ηi.

由假设 1, 有

V̇ =

N∑
i=2

ηTi η̇i

=

N∑
i=2

ηTi (Df(s)− λi(t)In)ηi

6 (κ− λ2(t))

N∑
i=2

ηTi ηi,

(10)

因此, 选取合适的 cd (1 6 d 6 D) 可保证 λ2(t) > κ, 则 0 6 (λ2(t) − κ)
∑N

i=2 η
T
i ηi 6 −V̇ , 进一步地,∫ t

0
(λ2(τ)−κ)

∑N
i=2 η

T
i ηidτ 6 −

∫ t

0
V̇ dτ 6 V (0)<+∞. 由 Barbalat引理, limt→∞(λ2(t)−κ)

∑N
i=2 η

T
i ηi =

0. 故而, 当 t → ∞ 时, ηi → 0, 这里 2 6 i 6 N , 此时系统 (9) 的零解是渐进稳定的, 从而误差系统的

零解渐进稳定, 进一步可知网络 (2) 达到同步.

上述结果表明, 高阶网络内联耦合矩阵为单位矩阵时, 广义 Laplacian 矩阵的次小特征值 λ2 将直

接影响网络能否达到同步以及同步的快慢, λ2 越大, 同步越快. 接下来, 进一步讨论如何设置牵制控

制器使高阶网络达到同步.

3.2 高阶网络的牵制自适应控制

为描述方便, 本小节主要研究网络 (2) 中 D = 2 的 2- 阶无向单纯复形. 对于更高阶的其余类型

高阶网络, 可以类似地讨论.

引入节点平均态 s =
∑N

j=1 xj/N . 在假设 1条件下,当网络同步时,式 (2)中所有节点的动力学都

趋于 s, 且 s 在正向极限集的意义下满足 ẋ = f(x) [26]. 由 3.1 小节中式 (5) 可知, 节点 i 的状态误差

可描述为

ėi = Df(s)ei −
N∑
j=1

(c1L
(1)
ij (t) + c2L

(2)
ij (t))ej . (11)

定理 2 给出高阶网络中只需牵制一部分单纯形就能实现同步的自适应控制律. 为方便起见, 牵制

2- 阶单纯形同时也牵制其对应的 1-阶单纯形. 设 Ẽ(d) ⊆ E 是被牵制的 d- 阶单纯形的集合.对 Ẽ(1) 和

Ẽ(2), 若标签为 2∗ 的 2- 阶单纯形 [i2∗ , j2∗ , k2∗ ] ∈ Ẽ(2), 则 [i2∗ , j2∗ ], [i2∗ , k2∗ ], [j2∗ , k2∗ ] ∈ Ẽ(1).
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定理2 设 G̃h = (Ṽ(d), Ẽ(d)) 是 Gh 的一个子图, Ṽ(d) 是 Ẽ(d) 对应的节点集, 这里 d = 1, 2. 在假

设 1 条件下, 模型 (2) 中 D = 2 对应的 2- 阶单纯复形在如下自适应控制律 (12) 下是同步的:
σ̇
(1)
ij (t) =− αij(xi − xj)

T(xi − xj), [i2∗ , j2∗ ] ∈ Ẽ(1),

σ̇
(2)
ijk(t) =− [βij(xi − xj)

T(xi − xj) + βik(xi − xk)
T(xi − xk)

+ βkj(xk − xj)
T(xk − xj)], [i2∗ , j2∗ , k2∗ ] ∈ Ẽ(2),

(12)

其中, αij , βij , βik 和 βkj 是正常数.

证明 由 1- 阶 Laplacian 矩阵和 2- 阶 Laplacian 矩阵的定义可知, 自适应控制律 (12) 可表示为 L̇
(1)
ij (t) =− αij(xi − xj)

T(xi − xj), i, j ∈ Ṽ(1),

L̇
(2)
ij (t) =− βij(xi − xj)

T(xi − xj), i, j ∈ Ṽ(2).
(13)

构造如下李雅普诺夫函数:

V (t) =
1

2

N∑
i=1

eTi ei +
∑

[i2∗ ,j2∗ ]∈Ẽ(1)

i,j∈Ṽ(1),i̸=j

c1
2αij

(L
(1)
ij (t) + c

(1)
ij )2 +

∑
[i2∗ ,j2∗ ]∈Ẽ(2)

i,j∈Ṽ(2),i̸=j

c2
2βij

(L
(2)
ij (t) + c

(2)
ij )2, (14)

其中 c
(d)
ij = c

(d)
ji > 0 是待定常数. 由等式 (11) 和 (13), 可得 V (t) 的导数

V̇ (t) =

N∑
i=1

eTi Df(s)ei −
∑

[i2∗ ,j2∗ ]∈Ẽ(1)

i,j∈Ṽ(1)

2c1L
(1)
ij (t)eTi ej −

∑
[i2∗ ,j2∗ ]/∈Ẽ(1)

j /∈Ṽ(1)

2c1L
(1)
ij (0)eTi ej

−
∑

[i2∗ ,j2∗ ]/∈Ẽ(1)

i/∈Ṽ(1),j∈Ṽ(1)

2c1L
(1)
ij (0)eTi ej −

∑
[i2∗ ,j2∗ ]∈Ẽ(2)

i,j∈Ṽ(2)

2c2L
(2)
ij (t)eTi ej −

∑
[i2∗ ,j2∗ ]/∈Ẽ(2)

j /∈Ṽ(2)

2c2L
(2)
ij (0)eTi ej

−
∑

[i2∗ ,j2∗ ]/∈Ẽ(2)

i/∈Ṽ(2),j∈Ṽ(2)

2c2L
(2)
ij (0)eTi ej −

∑
[i2∗ ,j2∗ ]∈Ẽ(1)

i,j∈Ṽ(1),i̸=j

2c1(L
(1)
ij (t) + c

(1)
ij )(eTi ei − eTi ej)

−
∑

[i2∗ ,j2∗ ]∈Ẽ(2)

i,j∈Ṽ(2),i̸=j

2c2(L
(2)
ij (t) + c

(2)
ij )(eTi ei − eTi ej).

(15)

记 x = (xT
1 , x

T
2 , . . . , x

T
N )T 和 e = (eT1 , e

T
2 , . . . , e

T
N )T. 定义 Laplacian 矩阵 Υ

(d)
N×N , d = 1, 2. 当 i ̸= j

时, 若 {i, j} ∈ Ẽ(d), Υ
(d)
ij = −c

(d)
ij ; 否则, Υ

(d)
ij = L

(d)
ij (0). 当 i = j 时, Υ

(d)
ii = −

∑N
k=1,k ̸=i Υ

(d)
ik . 由等

式 (15) 和假设 1 可得

V̇ (t) 6 κ

N∑
i=1

eTi ei +
∑

[i2∗ ,j2∗ ]∈Ẽ(1)

i,j∈Ṽ(1)

2c1c
(1)
ij eTi ej −

∑
[i2∗ ,j2∗ ]/∈Ẽ(1)

i/∈Ṽ(1),j∈Ṽ(1)

2c1L
(1)
ij (0)eTi ej −

∑
[i2∗ ,j2∗ ]/∈Ẽ(1)

j /∈Ṽ(1)

2c1L
(1)
ij (0)eTi ej

+
∑

[i2∗ ,j2∗ ]∈Ẽ(2)

i,j∈Ṽ(2)

2c2c
(2)
ij eTi ej −

∑
[i2∗ ,j2∗ ]/∈Ẽ(2)

i/∈Ṽ(2),j∈Ṽ(2)

2c2L
(2)
ij (0)eTi ej −

∑
[i2∗ ,j2∗ ]/∈Ẽ(2)

j /∈Ṽ(2)

2c2L
(2)
ij (0)eTi ej

= eT
{
κ(IN ⊗ In)− [(c1Υ

(1) + c2Υ
(2))⊗ In]

}
e.

(16)
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若存在一个正交矩阵 X = (x1, . . . , xN ) 满足 XT(c1Υ
(1) + c2Υ

(2))X = Λ. 令 χ = (XT ⊗ In)e.

由于 λ1(c1Υ
(1) + c2Υ

(2)) = 0, 对应的特征向量 x1 = 1
N (1, 1, . . . , 1)T, 则 χ1 = (xT

1 ⊗ In)e = 0. 因此,

χT(Λ⊗ In)χ > λ2(c1Υ
(1) + c2Υ

(2))χT(IN ⊗ In)χ. 进一步地, 由不等式 (16) 有

V̇ (t) 6 eT[κ(IN ⊗ In)− (X ⊗ In)(Λ⊗ In)(X
T ⊗ In)]e

= κeT(IN ⊗ In)e− χT(Λ⊗ In)χ

6 κeT(IN ⊗ In)e− λ2(c1Υ
(1) + c2Υ

(2))χT(IN ⊗ In)χ

= eT[κ(IN ⊗ In)− λ2(c1Υ
(1) + c2Υ

(2))(IN ⊗ In)]e

= eT[(κ− λ2(c1Υ
(1) + c2Υ

(2)))(IN ⊗ In)]e,

其中 λ2(c1Υ
(1) + c2Υ

(2)) 是 Laplacian 矩阵 c1Υ
(1) + c2Υ

(2) 的次小特征值. 因此, 选取合适的 c
(d)
ij 可得

(κ− λ2(c1Υ
(1) + c2Υ

(2)))(IN ⊗ In)<0, 则函数 V (t) 单调递减有界, 进而 ei, L
(1)
ij (t) 和 L

(2)
ij (t) 有界. 由

等式 (13) 可知, L
(1)
ij (t) 和 L

(2)
ij (t) 分别收敛到一个负数, 从而误差 ei → 0, 则误差系统渐进稳定, 也就

是说, 高阶网络在自适应控制律 (12) 下是同步的.

由定理 2 的证明可知, 通过改变给定单纯形的耦合大小来牵制高阶网络, 网络能达到同步. 接下

来, 基于网络广义 Laplacian 矩阵的次小特征值, 通过改变给定单纯形的耦合大小对单纯形进行排序.

3.3 牵制单纯形的选择

无向、加权、连通的 D-阶单纯复形 Gh = (V, E)由 ld 个 d-阶单纯形 [id1
1 , . . . , id1

d+1], [i
d2
1 , . . . , id2

d+1],

. . . , [i
dld
1 , . . . , i

dld

d+1] 完全决定, (d+ 1)- 元组 [i
dj

1 , . . . , i
dj

d+1] 是 Gh 的一个标签为 dj 的 d- 阶单纯形, 其中

d = 1, . . . , D, i
dj

1 , . . . , i
dj

d+1 ∈ V 且 j = 1, . . . , ld. 它的广义 Laplacian矩阵 L(Gh)的次小特征值为 λ2,对

应的单位特征向量为 v,则 L(Gh)v = λ2v. 将 Gh中一个标签为 dp的 d-阶单纯形 [i
dp

1 , . . . , i
dp

d+1]及其对

应的所有非零低阶单纯形构成的集合记为 [i
dp

1 , . . . , i
dp

d+1]
◦
或 Ddp , 称其为该 d- 阶单纯形 [i

dp

1 , . . . , i
dp

d+1]

对应的 d-阶全单纯形 (full simplex). 当 Ddp 的耦合强度增加 ϵ后,记为 Gh
dϵ
p
,它对应的广义 Laplacian

矩阵为 L(Gh
dϵ
p
)且 L(Gh

dϵ
p
) = L(Gh)+ϵE,这里半正定矩阵 E可视为矩阵 L(Gh)的扰动矩阵 [27], ϵ既可以

是正数也可以是负数, p = 1, 2, . . . , ld. 以下讨论假定 ϵ > 0,对 ϵ < 0的情况,可作类似讨论.设 λ2(G
h
dϵ
p
)

是 L(Gh
dϵ
p
) 的次小特征值, 对应的单位特征向量为 v(Gh

dϵ
p
), 则 L(Gh

dϵ
p
)v(Gh

dϵ
p
) = λ2(G

h
dϵ
p
)v(Gh

dϵ
p
). 在 D-

阶单纯复形 Gh 中,当 Ddp 的耦合强度增加 ϵ后,原网络次小特征值的变化量记为 ∆s
dϵ
p
= λ2(G

h
dϵ
p
)−λ2.

接下来, 研究原网络次小特征值变化量 ∆s
dϵ
p
的具体形式.

对于由 ld 个 d- 阶单纯形 [id1
1 , . . . , id1

d+1], [i
d2
1 , . . . , id2

d+1], . . . , [i
dld
1 , . . . , i

dld

d+1] 决定的 D- 阶单纯复形

Gh, 它的广义 Laplacian 矩阵是各阶 Laplacian 矩阵的线性组合. 由引理 1 可知, 对于任意向量 x, 有

λ2(G
h
dϵ
p
) = min

x⊥1
xTx=1

xTL(Gh
dϵ
p
)x = min

x⊥1
xTx=1

xT(L(Gh) + ϵE)x

> min
x⊥1

xTx=1

xTL(Gh)x+ ϵ min
x⊥1

xTx=1

xTEx

=λ2 + ϵ min
x⊥1

xTx=1

xTEx.

(17)

由上可知, 原网络次小特征值的变化量 ∆s
dϵ
p
= λ2(G

h
dϵ
p
)− λ2 > 0, 即 Ddp 的耦合强度增加后, 高阶网络

的次小特征值不减. 受此启发, 本文将 Ddp 的耦合强度增加 ϵ 后, 原网络次小特征值的变化量 ∆s
dϵ
p
作

为衡量 Ddp 中单纯形选择方式的一个标准.
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以下定理给出 Ddp 的耦合强度增加 ϵ 后原网络次小特征值变化量 ∆s
dϵ
p
的线性近似.

定理3 设广义 Laplacian 矩阵 L(Gh) 有 r 重次小特征值 λ2, 对应的 r 个正交单位特征向量分别

为 v12 , v
2
2 , . . . , v

r
2, 令 B = (v12 , v

2
2 , . . . , v

r
2). 对较小的 ϵ, 有

∆s
dϵ
p
≈ min

j=1,2,...,r

∑
{s(d),t(d)}∈[i

dp
1 ,...,i

dp
d+1

]

[i
dp
1 ,...,i

dp
d+1

]∈E

ϵ
(
ϱj,s(d) − ϱj,t(d)

)2
,

(18)

其中 ϱj,s(d) 和 ϱj,t(d) 分别是 d-阶单纯形 [i
dp

1 , . . . , i
dp

d+1]中的节点 s(d)和 t(d)在向量 ϱj 中对应的分量,

ϱj = (v12 , v
2
2 , . . . , v

r
2)φj = Bφj , φj 是对应特征值 ξj2 的单位特征向量, ξ12 6 ξ22 6 · · · 6 ξr2 是矩阵 BTEB

的特征值, j = 1, 2, . . . , r.

证明 对较小的 ϵ, 广义 Laplacian 矩阵 L(Gh
dϵ
p
) 的特征值 λj

2(G
h
dϵ
p
) 满足 [28]

λj
2(G

h
dϵ
p
) = λ2 + ξj2ϵ+ o(ϵ), j = 1, 2, . . . , r. (19)

显然, 矩阵 BTEB 是对称且半正定的. 由于 φj 是对应特征值 ξj2 的单位特征向量, 则

BTEBφj = ξj2φj , j = 1, 2, . . . , r. (20)

等式 (20) 两侧同时左乘单位特征向量 φj
T, 则

φj
TBTEBφj = φj

Tξj2φj , j = 1, 2, . . . , r. (21)

由于 ϱj = (v12 , v
2
2 , . . . , v

r
2)φj = Bφj , φj

Tξj2φj = ξj2, 则

ξj2 = ϱj
TEϱj , j = 1, 2, . . . , r. (22)

由等式 (19), (22) 和引理 1, 可得

λj
2(G

h
dϵ
p
)− λ2 = ξj2ϵ+ o(ϵ) = ϵϱj

TEϱj + o(ϵ)

=
∑

{s(d),t(d)}∈[i
dp
1 ,...,i

dp
d+1

]

[i
dp
1 ,...,i

dp
d+1

]∈E

ϵ
(
ϱj,s(d) − ϱj,t(d)

)2
+ o(ϵ), j = 1, 2, . . . , r. (23)

进一步地, ∆s
dϵ
p
的近似值为

∆s
dϵ
p
≈ min

j=1,2,...,r

∑
{s(d),t(d)}∈[i

dp
1 ,...,i

dp
d+1

]

[i
dp
1 ,...,i

dp
d+1

]∈E

ϵ
(
ϱj,s(d) − ϱj,t(d)

)2
.

显然, ϵ 的值不影响单纯形选择的结果, 因此, 本文将

min
j=1,2,...,r

∑
{s(d),t(d)}∈[i

dp
1 ,...,i

dp
d+1

]

[i
dp
1 ,...,i

dp
d+1

]∈E

(
ϱj,s(d) − ϱj,t(d)

)2

作为衡量牵制单纯形选择的一个近似标准 ∆s
dϵ
p
. 当网络结构有明显的对称性时, 其广义 Laplacian 矩

阵的次小特征值可能产生重根. 如果次小特征值 λ2 是 r 重根, 它对应的 r 个正交单位特征向量构成

的矩阵 B 和矩阵 BTEB 的单位特征向量 φj 将直接影响近似标准 ∆s
dϵ
p
. 因此, 如果 Ddp 的耦合强度

增加 ϵ 后对 ∆s
dϵ
p
的影响越大, 那么 Ddp 越应该被牵制. 对 ϵ < 0 的情况, 可作类似讨论.
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图 1 (网络版彩图) 单纯复形脑网络 (数据取自文献 [29])

Figure 1 (Color online) Simplicial complex brain network (data from [29])

注1 特别地, 若广义 Laplacian 矩阵 L(Gh) 的次小特征值 λ2 是单根 (这里 r = 1), 则近似标准

∆s
dϵ
p
为 ∑

{s(d),t(d)}∈[i
dp
1 ,...,i

dp
d+1

]

[i
dp
1 ,...,i

dp
d+1

]∈E

(
vs(d) − vt(d)

)2
,

其中, vs(d) 和 vt(d) 分别是 d- 阶单纯形 [i
dp

1 , . . . , i
dp

d+1] 中的节点 s(d) 和 t(d) 在向量 v 中对应的分量.

4 数值验证

本节以图 1 所示的一个无向、加权的脑网络为例 (数据取自文献 [29]), 验证上述理论.

该网络由 65 个节点 (0- 阶单纯形) 和 730 条无向边 (1- 阶单纯形) 组成, 其中, 每条边表示连接

两个节点之间的纤维素. 假设 3 个节点构成的全连接结构 (三角形) 都是 2- 阶单纯形, 则网络中共有

3613个 2-阶单纯形. 从该网络中随机地选出 12个全单纯形 D2p (p = 1, 2, . . . , 12),计算它们的近似标

准 ∆s
dϵ
p
, 结果如表 1 所示. 这里 c1 = c2 = 1, 且原网络的次小特征值为 9.047925.

由表 1 中 D2p 的近似标准 ∆s
dϵ
p
可知, 牵制 [6, 14, 15]

◦
, [63, 64, 65]

◦
和 [1, 2, 6]

◦
的顺序依次递减.

接下来, 通过牵制控制网络模型 (2) 中 D = 2 的 2- 阶无向单纯复形的这 3 个 D2p 来验证近似标

准 ∆s
dϵ
p
的合理性.
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表 1 图 1 中 12 个 D2p 的排序

Table 1 Rankings of the 12 D2p in Figure 1a)

D2p Approximation ∆s
dϵp

Rankings

[1, 2, 6]
◦

0.000206 12

[1, 3, 6]
◦

0.000412 9

[1, 3, 8]
◦

0.000596 7

[1, 3, 10]
◦

0.000535 8

[1, 3, 12]
◦

0.000628 6

[62, 63, 64]
◦

0.001670 5

[62, 64, 65]
◦

0.001692 4

[63, 64, 65]
◦

0.001720 3

[6, 15, 40]
◦

0.000274 10

[6, 15, 41]
◦

0.000240 11

[6, 14, 15]
◦

3.991993 1

[3, 14, 15]
◦

3.975744 2

a) The coupling strengths of 1-order simplexes and 2-order simplexes are c1 = c2 = 1.

以 Lorenz 系统作为单个节点作仿真, 此时

f (xi) =


−10 10 0

28 −1 0

0 0 −8
3




xi1

xi2

xi3

+


0

−xi1xi3

xi1xi2

,

其他参数取 c1 = c2 = 4, αij = 2, βij = βik = βkj = 1. 每个节点的初始状态均从区间 (−0.5, 0.5) 中随

机选取.

图 2是牵制图 1中的 3个 D2p 后,节点 i的误差 ∥ei∥ =
√
(xi1 − si1)2 + (xi2 − si2)2 + (xi3 − si3)2

曲线, 其中, xi1, xi2 和 xi3 是节点 xi 的 3 个状态分量, si1, si2 和 si3 是同步态 si 的 3 个分量, 且

si =
∑N

j=1 xj/N , 1 6 i 6 65.

由图 2 可知, 牵制 [6, 14, 15]
◦
对应的网络中的节点 i 的状态误差曲线趋于零的速度最快, 此时网

络同步的速度最快, 对应的单纯形最应该被控制; 其次是 [63, 64, 65]
◦
; 最次是 [1, 2, 6]

◦
. 由牵制控制的

仿真结果可知 [6, 14, 15]
◦
, [63, 64, 65]

◦
和 [1, 2, 6]

◦
对应的单纯形被牵制的顺序依次递减,这与表 1中的

理论结果是一致的. 因此, 本文提出的牵制单纯形的选择标准 ∆s
dϵ
p
是合理的.

5 结论

对于无向、加权、连通的高阶网络, 若内联耦合矩阵是单位矩阵, 高阶网络广义 Laplacian 矩阵的

次小特征值将直接影响网络同步. 通过改变给定单纯形的耦合大小来牵制单纯形, 能使网络达到同步.

对于如何选择合适的单纯形牵制控制使高阶网络更快地自适应同步这一问题,本文通过改变给定单纯

形的耦合大小, 原网络次小特征值与改变单纯形耦合强度后网络次小特征值的对比, 提出了一个牵制

单纯形选择的近似标准. 这一近似标准与次小特征值 (不唯一) 对应的正交单位特征向量构成的矩阵

及扰动矩阵都有关. 特别地, 若次小特征值唯一, 则近似标准只需用到广义 Laplacian矩阵次小特征值

对应单位特征向量的分量, 形式非常简洁. 最后, 通过仿真验证了控制单纯形后网络同步的速度与牵

716

 https://engine.scichina.com/doi/10.1360/SSI-2023-0142



中国科学 :信息科学 第 54 卷 第 3 期

Time

图 2 (网络版彩图) 在图 1 所示的网络中, 牵制 D2p 的状态误差 ∥ei∥ vs. t (1 6 i 6 65)

Figure 2 (Color online) In the network depicted in Figure 1, the error ∥ei∥ vs. t (1 6 i 6 65) by controlling D2p

制单纯形的选择一致. 我们希望这些结果未来能应用到高阶交互的真实网络中, 如保密通讯、网络攻

击和信息传播等.
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Abstract With the development of network science, simple networks have their limitations to capture

interactions among multiple individuals. Therefore, it is significant to focus on the development of higher-order

networks. Simplexes above 2 orders play a key role in higher-order networks, which can describe the network

characteristics. In higher-order networks, pinning control is crucial as synchronization can only be attained by

pinning certain simplexes. However, selecting proper simplexes for pinning control is a challenging and novel

problem. The paper introduces an adaptive pinning control law designed to attain synchronization and a method

for selecting suitable simplexes in higher-order networks. This method relies on the unit eigenvector component

corresponding to the second smallest eigenvalue of the generalized Laplacian matrix associated with network

topology. The results of the pinning control are consistent with that of selecting simplexes, and numerical

simulations show the simplicity and effectiveness of this approach.
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