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Abstract
Toxicity detection mitigates the dissemination of toxic content (e.g.,
hateful comments, posts, and messages within online social actions)
to safeguard a healthy online social environment. However, mali-
cious users persistently develop evasive perturbations to disguise
toxic content and evade detectors. Traditional detectors or methods
are static over time and are inadequate in addressing these evolv-
ing evasion tactics. Thus, continual learning emerges as a logical
approach to dynamically update detection ability against evolving
perturbations. Nevertheless, disparities across perturbations hinder
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the detector’s continual learning on perturbed text. More impor-
tantly, perturbation-induced noises distort semantics to degrade
comprehension and also impair critical feature learning to render
detection sensitive to perturbations. These amplify the challenge
of continual learning against evolving perturbations.

In this work, we present ContiGuard, the first framework tailored
for continual learning of the detector on time-evolving perturbed
text (termed continual toxicity detection) to enable the detector
to continually update capability and maintain sustained resilience
against evolving perturbations. Specifically, to boost the compre-
hension, we present an LLM powered semantic enriching strategy,
where we dynamically incorporate possible meaning and toxicity-
related clues excavated by LLM into the perturbed text to improve
the comprehension. To mitigate non-critical features and amplify
critical ones, we propose a discriminability driven feature learn-
ing strategy, where we strengthen discriminative features while
suppressing the less-discriminative ones to shape a robust classifica-
tion boundary for detection. Additionally, we introduce a historical
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capability replay strategy to preserve previously learned features
via feature alignment to alleviate capability forgetting. To the best
of our knowledge, this work is the first study on continual toxicity
detection against time-evolving evasive perturbed text. Extensive
experiments prove the superior performance of ContiGuard over
both existing detectors and continual methods. Code and dataset
are available at https://github.com/khk-abc/ContiGuard.

Warning: This paper contains discussions of harmful content that
may be disturbing to some readers.

CCS Concepts
• Information systems → Social networks; • Security and
privacy→ Social aspects of security and privacy; •Computing
methodologies→ Natural language processing.
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1 Introduction
Toxicity detection aims to identify toxic text like hateful content [11],
social bias [48], and stereotypes [16], to safeguard healthy social
interactions, which is critical for society safety [7]. However, de-
tection efforts face significant challenges due to the continuous
evolution of evasive tactics: malicious users regularly create text
perturbations to bypass detectors, such as character repetition (iiid-
dioot), homoglyph substitution (id10t), and other potential tactics.

Existing detection methods struggle to adapt to the continu-
ous evolution of evasive perturbations. Most of them are tailored
for ordinary text (e.g., idiot), limiting their ability to identify per-
turbed toxic text [4, 24]. A few methods incorporate specific types
of perturbed text into training [4, 24], excelling at detecting known
perturbations such as character repetition. But they struggle to deal
with continually appearing perturbations since they do not update
detection ability against appearing perturbations over time, like
homoglyph substitution. Consequently, the challenge of continu-
ally detecting emerging perturbed toxic text remains an open but
overlooked problem, posing risks to society’s safety.

Considering continual learning can update the detector’s capa-
bility over time, we model different types of perturbed text as the
ones distributed in distinct perturbation domains, and we harness
domain continual learning to update the detection ability of the
detector, enabling the detector to evolve along with constantly
appearing perturbations and making it suitable for the evolving
evasive perturbed text.

While continual learning is a logical approach to address evolv-
ing perturbed text in toxicity detection, it remains hindered by
several critical challenges. Specifically, the heterogeneity of per-
turbations (e.g., iiiddioot and id10t) leads to the forgetting of the

detector’s historical detection capability over time. Furthermore,
perturbations disrupt the original textual structure, making the
detector struggle to comprehend text, especially the hidden toxic-
ity within text. In addition, the detector learns noisy or irrelevant
features derived from perturbations, such as manipulation vari-
ations of perturbation (e.g., iiiddioot vs. idiiiiottt, both perturbed
from idiot). These features are noisy and redundant, less critical
for toxicity classification, and even obscure the learning of critical
toxicity-related features, rendering the detector dependent on these
features and sensitive to diverse perturbed text. In summary, the
perturbations corrupt the original semantics, causing the detector
to struggle to understand text. They also introduce less-critical
features, which occupy the detector’s representational capacity
and deviate the detector’s focus from critical features, degrading
continual detection against diverse perturbed text.

In this work, we propose ContiGuard, the first framework to
continually identify evolving perturbed toxic text. Firstly, to im-
prove the text comprehension hindered by corrupted semantics,
we propose an LLM powered semantic enriching strategy, where we
analyze that LLM can be utilized to reason auxiliary information
from its parametric knowledge to enrich the insights into perturbed
text, enhancing the text comprehension for detection. During the
incorporation of the information into perturbed text, it also acts
as a momentum factor to mitigate the risk of trapping into local
optima. Specifically, we dynamically incorporate possible meaning
and toxicity-related clues excavated by LLM into perturbed text to
boost the comprehension.

To mitigate the interference of non-critical features and focus
more on critical ones to make the detector robust to diverse per-
turbed text, we propose a discriminability driven feature learning
strategy since the discriminability is inherently critical to shape
a reliable boundary for the robust classification, where we mea-
sure each feature’s contribution using attribution analysis [50] and
differentiate their discriminative power. We then strengthen the
discriminative features via global rotation and suppress less dis-
criminative ones by unlearning, forcing the detector to learn core
features for the robust detection.

To alleviate the forgetting of detection capability due to the lost
historical features caused by the gaps among perturbations, we
further adopt a historical capability replay strategy, where we align
features of memory samples between the old and current detectors
to preserve historical features, maintaining the detector’s prior
detection capability.

Our contributions are summarized as follows.

• We first highlight a crucial yet overlooked continual toxicity
detection problem, i.e., enabling the detector to continually
update its detection capability along with evolving, evasive
perturbed text prevalent in real-world scenarios, which is
essential for safeguarding social safety.

• We propose ContiGuard, the first framework for continual
toxicity detection, performing LLM powered semantic en-
riching, discriminability driven feature learning, and histori-
cal capability replay to address the key challenges.

• Extensive experiments show the superior performance of
ContiGuard against evolving perturbed text compared to
existing detectors, static methods, and continual approaches.

https://github.com/khk-abc/ContiGuard
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Figure 1: Illustration of our ContiGuard framework.

2 Methodology
2.1 Problem Formulation
Perturbed text is modeled as the text distributed in perturbation do-
mains. Correspondingly, continual toxicity detection against time-
evolving perturbed text is formulated as domain-incremental toxic-
ity classification with incremental perturbation domains. Specifi-
cally, perturbation domain 𝑝𝑖 appears at the i-th moment within the
lifespan𝑇 of a lifelong detector 𝐹 . Given a perturbed toxicity dataset
𝐷𝑝𝑖 comprising 𝑁𝑝𝑖 samples (𝑥𝑝𝑖 , 𝑗 , 𝑦𝑝𝑖 , 𝑗 ) where 𝑗 = {1, 2, . . . , 𝑁𝑝𝑖 },
𝑥𝑝𝑖 , 𝑗 denotes the text perturbed by 𝑝𝑖 , and𝑦𝑝𝑖 , 𝑗 ∈ Y withY = {0, 1}
is the toxicity label. The task optimizes the parameters 𝜃𝐹 by mini-
mizing the loss to maximize the conditional probabilities of labels,
enabling the detector to continually recognize toxicity in evolving
perturbed text over time as follows:

𝜃 ∗𝐹 := argmax
𝜃𝐹

𝑇∏
𝑖

𝑁𝑝𝑖∏
𝑗

𝑝𝜃𝐹 (𝑦𝑝𝑖 , 𝑗 |𝑥𝑝𝑖 , 𝑗 ), (1)

where 𝑝𝜃𝐹 (𝑦𝑝𝑖 , 𝑗 |𝑥𝑝𝑖 , 𝑗 ) denotes the conditional probability of the
true label computed by the detector.

2.2 ContiGuard Framework
As Fig. 1 shows, ContiGuard mainly includes three strategies:

(1) LLM powered semantic enriching strategy. Evasive perturba-
tions intentionally obfuscate text, rendering toxicity implicit and
impeding text comprehension. To address this, we analyze that LLM
can provide auxiliary information to enrich insights into perturbed
text for toxicity detection and can smooth gradients during opti-
mization. Correspondingly, we leverage LLM to capture potential
original meanings and toxicity-related clues and we integrate them
into perturbed text to enhance comprehension.

(2) discriminability driven feature learning strategy. Perturbations
induce noises to make the features of perturbed text redundant
and noisy, causing non-critical features to occupy the detector’s
representation capacity and rendering detection sensitive to vari-
ous perturbations. Considering the discriminability is the critical
property to shape a reliable classification boundary for robust toxi-
city detection, we measure the discriminative power of features for

toxicity detection, and we strengthen the discriminative features
by global flipping and suppress less discriminative ones, guiding
the detector to prioritize learning critical features.

(3) Historical capability replay strategy. Various types of perturba-
tions are significantly distinct so the historical detection capability
against previous types of perturbed text may be lost. Hence, we
retain the detector’s historical capability by aligning the features
of memory samples encoded with the old and current detectors.

2.2.1 LLM Powered Semantic Enriching Strategy. Given the rich
knowledge and reasoning ability of LLM, this strategy use LLM to
mine useful auxiliary information to improve the understanding of
perturbed text, such as possible meaning and toxicity-related clues.

(1) Preliminaries We first analyze how the auxiliary information
from LLM enriches the perturbed text. Let 𝑋𝑝𝑖 , 𝑋𝑎𝑖 , and 𝑌𝑝𝑖 denote
the perturbed text, LLM generated auxiliary information, and pre-
dicted label, respectively. The conditional probability of 𝑌𝑝𝑖 given
𝑋𝑝𝑖 is decomposed as:

𝑝 (𝑌𝑝𝑖 |𝑋𝑝𝑖 ) =
∫

𝑝 (𝑌𝑝𝑖 |𝑋𝑎𝑖 = 𝑥𝑎𝑖 , 𝑋𝑝𝑖 )𝑝 (𝑋𝑎𝑖 = 𝑥𝑎𝑖 |𝑋𝑝𝑖 )d𝑥𝑎𝑖 , (2)

where 𝑥𝑎𝑖 is the specific values of 𝑋𝑎𝑖 . Hence, the objective of con-
tinual toxicity detection, maximizing

∏𝑇
𝑖 𝑝𝜃𝐹 (𝑌𝑝𝑖 |𝑋𝑝𝑖 ), becomes:

max
𝜃𝐹

𝑇∏
𝑖

∫
𝑝𝜃𝐹 (𝑌𝑝𝑖 |𝑥𝑎𝑖 , 𝑋𝑝𝑖 )𝑝𝜃𝐿𝐿𝑀 (𝑥𝑎𝑖 |𝑋𝑝𝑖 )d𝑥𝑎𝑖 (3)

Based on 𝑝𝜃𝐹 (𝑌𝑝𝑖 |𝑥𝑎𝑖 , 𝑋𝑝𝑖 ), the auxiliary information enriches the
insights into perturbed text and bridges the learning on different
perturbed text over time via the shared insights (e.g., the same re-
stored terms and similar clues within various perturbations). In ad-
dition, the LLM parameters 𝜃𝐿𝐿𝑀 remain fixed during optimization
to render 𝑝𝜃𝐿𝐿𝑀 (𝑥𝑎𝑖 |𝑋𝑝𝑖 ) an optimization-independent but input-
dependent factor, which encapsulates the probability tendency of
the toxicity-related knowledge in the LLM to adjust the learning
by weighting the detector’s output probability.

Furthermore, perturbations introduce noises, resulting in a jagged
optimization process that is highly prone to converging to local op-
tima. In contrast, the auxiliary information structured via ordinary
text is less noisy and more flat, and the gradient derived from such
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information can act as a momentum term to mitigate the risk of the
optimization process becoming trapped in local optima. Specifically,
we incorporate the features of auxiliary information 𝑋𝑎𝑖 into the
features of perturbed text 𝑋𝑝𝑖 by linearly weighting as:

𝑓 ( [𝑋𝑝𝑖 , 𝑋𝑎𝑖 ]) = 𝛼 𝑓 (𝑋𝑝𝑖 ) + (1 − 𝛼) 𝑓 (𝑋𝑎𝑖 ), (4)

where 𝛼 denotes the weight and 𝑓 : 𝑋 ↦→ R𝑑 is the function of
extracting features from input, i.e., the encoder of detector. Then
the gradients of incorporated features 𝑓 (·) := 𝑓 ( [𝑋𝑝𝑖 , 𝑋𝑎𝑖 ]) have:

𝜕L
𝜕𝜃𝐹

=
𝜕L
𝜕𝑓 (·)

𝜕𝑓 (·)
𝜕𝑓 (𝑋𝑝𝑖 )

𝜕𝑓 (𝑋𝑝𝑖 )
𝜕𝜃𝐹

+ 𝜕L
𝜕𝑓 (·)

𝜕𝑓 (·)
𝜕𝑓 (𝑋𝑎𝑖 )

𝜕𝑓 (𝑋𝑎𝑖 )
𝜕𝜃𝐹

= 𝛼
𝜕L
𝜕𝑓 (·)

𝜕𝑓 (𝑋𝑝𝑖 )
𝜕𝜃𝐹

+ (1 − 𝛼) 𝜕L
𝜕𝑓 (·)

𝜕𝑓 (𝑋𝑎𝑖 )
𝜕𝜃𝐹

,

(5)

where 𝜕𝑓 (𝑋𝑝𝑖
)

𝜕𝜃𝐹
and 𝜕𝑓 (𝑋𝑎𝑖

)
𝜕𝜃𝐹

represent the gradients derived from
the perturbed text 𝑋𝑝𝑖 and auxiliary information 𝑋𝑎𝑖 , respectively.
When the former introduced noises lead to the risk of trapping in
local optima, the latter serves as momentum to alleviate this risk.

Next, we obtain auxiliary information and weights as follows.
(2) Implementation The evasive tactics make the toxicity to be

implicitly hinted so that the LLM needs to conduct in-depth analysis
rather than just scratching the surface. Inspired by the Golden
Circle principle [49], a structured thinking logic which understands
things from phenomena to essence through multi-questioning, we
introduce a How-Why-What interrogation mechanism to require
LLM to conduct considerable analysis as follows.

How Stage: LLM explores how to mine possible meaning and
toxicity-related clues from perturbed text.

Why Stage: According to the how stage, LLM must give the
reason why it performs this procedure.

What Stage: LLM exploreswhat the possiblemeaning and toxicity-
related clues is according to how and why.

Subsequently, we incorporate the auxiliary information into the
perturbed text to enrich insights for detection. Since there are vari-
ous differences (e.g., information gain) between the auxiliary infor-
mation and the perturbed text in different samples, the information
contributes differently to the toxicity judgment and we need to
employ the auxiliary information in a dynamical way. Specifically,
we introduce a difference-based dynamical cooperation, where we
compute the point-wise difference between the features of both
auxiliary information x𝑎𝑖 , 𝑗 ∈ R𝑑 and perturbed text x𝑝𝑖 , 𝑗 ∈ R𝑑 , and
we then compute the dynamical weights as follows.

w𝑝𝑖 , 𝑗 = 𝜎 (W𝑇
𝑔 (CONV((x𝑝𝑖 , 𝑗 − x𝑎𝑖 , 𝑗 )2)) + b𝑔), (6)

where 𝜎 represents the sigmoid function, and CONV denotes the
convolutional operation to locally smooth the differences since the
point-wise differences are sensitive due to outlier values introduced
by perturbations. Then dynamical weights w𝑝𝑖 , 𝑗 are computed by
global linear projection (W𝑔 and b𝑔), and we further incorporate
x𝑎𝑖 , 𝑗 and x𝑝𝑖 , 𝑗 to get the cooperated features f𝑝𝑖 , 𝑗 ∈ R𝑑 as follows.

f𝑝𝑖 , 𝑗 =
x𝑝𝑖 , 𝑗 +w𝑝𝑖 , 𝑗 · x𝑎𝑖 , 𝑗

(1 +w𝑝𝑖 , 𝑗 )
(7)

2.2.2 Discriminability Driven Feature Learning Strategy. Noises in
perturbations introduce trivial or irrelevant features, which renders
the detector sensitive to various perturbed text. Hence, explicitly

guiding the detector to learn critical features is essential for en-
hancing its robustness. Given that toxicity detection is inherently
a classification task, the key to learning the critical feature lies
in the core property of classification, i.e., discriminability. This is
because the discriminability enables the detector to exhibit distinct
probabilistic tendencies across classes (i.e., shape the robust inter-
class classification boundary), making it the foundational support
for breaking free from the interference of trivial features and en-
hancing the learning for critical ones. Accordingly, we propose a
discriminability driven feature learning strategy to guide critical
feature learning, which primarily comprises three stages:

(1) Feature Contribution Measuring To differentiate the discrimi-
native power of features, we firstly quantify the probabilistic con-
tribution caused by each feature on the class by attribution analysis
based on integrated gradient as follows:

𝐴𝑦 (f𝑝𝑖 , 𝑗 ) = (f𝑝𝑖 , 𝑗 − f ′)
∫ 1

0

𝜕𝐹𝑦 (f ′ + 𝛽 (f𝑝𝑖 , 𝑗 − f ′))
𝜕f𝑝𝑖 , 𝑗

d𝛽, (8)

where f ′ ∈ R𝑑 denotes the reference features when there is no
information input (set to zero vector by default). 𝐹𝑦 : R𝑑 ↦→ R rep-
resents the projection from the features to the output probability
of class 𝑦, and 𝛽 indicates the scaling coefficient. 𝐴𝑦 (f𝑝𝑖 , 𝑗 ) ∈ R𝑑

denotes the quantified contribution of feature f𝑝𝑖 , 𝑗 for the output
probability of class 𝑦. When 𝐴𝑘

𝑦 (f𝑝𝑖 , 𝑗 ) > 0 and 𝐴𝑘
𝑦 (f𝑝𝑖 , 𝑗 ) < 0, it

indicates that the k-th element of feature f𝑘𝑝𝑖 , 𝑗 has a positive and
negative impact, i.e., increasing and decreasing probabilistic ten-
dencies on the label 𝑦, respectively. For example, increasing the
feature f𝑘𝑝𝑖 , 𝑗 will make the detector output a larger probability on
the class 𝑦 when 𝐴𝑘

𝑦 (f𝑝𝑖 , 𝑗 ) > 0 and vice versa.
(2) Discriminative Feature Differentiating When one feature con-

tributes positively or negatively to both the non-toxic (𝑦 = 0) and
toxic (𝑦 = 1) classes, the feature is less discriminative since it cannot
make the detector exhibit significant probabilistic differences be-
tween classes, contributing less in shaping the classification bound-
ary. Hence, we differentiate the discriminability of one feature
according to whether its attribution differs on classes as follows:

m𝑙𝑒𝑠𝑠
f𝑝𝑖 ,𝑗

= I{𝐴𝑦=0 (f𝑝𝑖 , 𝑗 )𝐴𝑦=1 (f𝑝𝑖 , 𝑗 ) > 0}, (9)

where I is the indicator function. m𝑙𝑒𝑠𝑠
f𝑝𝑖 ,𝑗

∈ R𝑑 represents the mask
for the less-discriminative elements within feature f𝑝𝑖 , 𝑗 . The parts
of m𝑙𝑒𝑠𝑠,𝑘

f𝑝𝑖 ,𝑗
= 1 contribute similarly on toxic and non-toxic classes.

(3) Discriminability Driven Feature Learning After differentiating
discriminative power, we guide feature learning with discriminabil-
ity as the core driver. First, we enhance the discriminative features
to boost robustness. Specifically, when features rotate globally, the
classification boundary should rotate accordingly, decoupling the
discriminability from trivial attributes like absolute direction and
position of the features and preserving it. Drawing on this insight,
we rotate features and reclassify to strengthen discriminability.
Given rotating high-dimensional features incurs high computa-
tional cost (O(𝑑2)), we adopt a flipping (a special case with O(𝑑)
complexity) to rotate features, aiming to enhance the discriminabil-
ity of features and improve robustness, shown as follows:

L𝑚𝑜𝑟𝑒 = CE(W𝑇
𝑐 (−f𝑝𝑖 , 𝑗 ) + b𝑐 , 𝑦𝑝𝑖 , 𝑗 ), (10)
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where CE and 𝑦𝑝𝑖 , 𝑗 are cross-entropy loss for classification and true
label, respectively. W𝑐 , b𝑐 denote the classifier head in the detector.

Furthermore, we unlearn less discriminative elements within
features and relearn them to compose more robust features, shap-
ing a reliable classification boundary. Considering neutral features
should yield near-random predictions without any probabilistic
tendency toward any class, we thus exploit a uniform distribution
as supervision to unlearn the less discriminative elements, resetting
them to be neutral. Subsequently, these elements are iteratively
relearned multiple times to make them more robust.

Lless = CE(W𝑇
𝑐 (f𝑝𝑖 , 𝑗 ◦mless

f𝑝𝑖 ,𝑗
) + b𝑐 , u), (11)

where u ∈ R |Y | is the uniform distribution over the label space.

2.2.3 Historical Capability Replay Strategy. To mitigate the forget-
ting of historical detection capability, we select top-k representative
samples as memory samples to preserve the capability. Specifically,
we mix memory samples into the training data, and we align the fea-
tures of memory samples encoded by the old and current detectors
since features encapsulate the detector’s capability as follows:

L𝑎𝑙𝑖𝑔𝑛 = − 1
𝑇

𝑇∑︁
𝑖

( 1
𝑁𝑝𝑖

𝑁𝑝𝑖∑︁
𝑗

(cos(f𝑜𝑙𝑑𝑝𝑖 , 𝑗
, f𝑐𝑢𝑟𝑝𝑖 , 𝑗

) + 𝑍𝑖 )), (12)

where 𝑍𝑖 = − log
∑𝑁𝑝𝑖

𝑘
exp(cos(f𝑜𝑙𝑑

𝑝𝑖 ,𝑘
, f𝑐𝑢𝑟
𝑝𝑖 ,𝑘

)) is the normalization
factor. f𝑜𝑙𝑑

𝑝𝑖 ,𝑘
and f𝑐𝑢𝑟

𝑝𝑖 ,𝑘
are the features of the j-th sample encoded by

old and current detectors, respectively. cos is the cosine similarity.
Finally, the total loss is:

L = L𝑐𝑙𝑠 + 𝜆(L𝑚𝑜𝑟𝑒 + L𝑙𝑒𝑠𝑠 ) + 𝛾L𝑎𝑙𝑖𝑔𝑛, (13)

where L𝑐𝑙𝑠 = CE(W𝑇
𝑐 f𝑝𝑖 , 𝑗 + b𝑐 , 𝑦𝑝𝑖 , 𝑗 ) is the basic classification loss.

𝜆 and 𝛾 is the scale factors.

3 Experiments
3.1 Experimental Setup
Dataset Based on Jigsaw [27], a widely used large-scale English
dataset for toxicity detection, we construct a perturbed dataset
by perturbing the Jigsaw with 9 types of perturbations (named
DynEscape). In DynEscape, each type of perturbed text is separately
type-wise managed, and every type owns 2584/1294/430 samples
in train/test/valid splits. The perturbations include: Insert (i#dio!t),
Repeat (iiiddiott), Swap (idito),Remove (idot),Homo (id10t),Mask
(id**t), Abbr (abbreviation/slang replacement, bite me → BTM),
Auth (add authoritative text around the ordinary text to make it
more convincing), and Distract (add distracting words around the
ordinary text to make it more confusing). With DynEscape, we
can evaluate the vulnerability of the existing detectors and static
fine-tuning detection methods on evolving perturbed text, and we
also can explore continual toxicity detection of ContiGuard against
evolving perturbed text. Furthermore, to examine the generalization
and practical application of ContiGuard, we conduct a cross-dataset
evaluation onNoisyHate [58] dataset, which is collected frommixed
multi-types of human-written perturbed text in the wild.

Evaluation Protocol All our fine-tuned detectors are composed
of an encoder of BERT-base and a classification head of a two-layer
forward network. We conduct three types of experiments and use
accuracy as the metric for classification.

(1) We evaluate the exiting detectors on perturbed DynEscape
to explore their vulnerability, including commercial APIs (Perspec-
tiveAPI [32] and OpenAI Moderation [40]) and fine-tuned detectors
(ToxicBERT/ToxicRoBERTa [20], Original/Multilingual/Unbiased
variants of Detoxify [19], Paradetox [36], and DeTox [6]).

(2) To analyze performance degradation of the statically fine-
tuned detector, we fine-tune the detector with one specific pertur-
bation type and test the detector on the remaining types to simulate
the scenario where the detector continually encounters the types
of perturbed text created over time.

(3) We examine our continual learning (CL) strategies by compar-
ing ContiGuard with adapted common CL methods on DynEscape,
including LFL [22], EWC [26], LWF [34], GEM [37], EPI [55], CEAR [64],
DUCT [65] and SOYO [54]. Joint trains the detector with all data,
and Stream sequentially optimizes the detector by pipeline data,
and they act as the reference bound.

3.2 Main Results
Firstly, the results of existing detectors are shown in Tab. 1. We find
that the performance of existing detectors degrades significantly
under all perturbations, with relative drops ranging from a max-
imum of 35.8% to a minimum of 14.4% compared to the ordinary
text, denoting their susceptibility to perturbed text. This is because
the perturbations obfuscate text to hide the toxicity, which makes
the perturbed text significantly different from the ordinary ones,
but the existing detectors are trained on ordinary text and ignore
the adaptability to the perturbed text.

Secondly, the results of statically fine-tuned detectors are shown
in Fig. 2. We find that the statically fine-tuned detectors perform
well on the types of perturbed text used for fine-tuning (numbers
on the diagonal), but perform poorly on other types of perturbed
text (numbers outside the diagonal), where the performance drops
in almost all types, and they even perform randomly on many
types. We believe that the disparities among perturbations seriously
impede the generalization across types so that the statically fine-
tuned detectors on fixed specific types of perturbations are not
suitable when the perturbations are continually created.

Finally, the continual detection results under different data or-
ders are shown in Table 2. All CL methods continually update the
detection capability of the detector to capture continual adaptability
to perturbations that occur over time. However, existing CL meth-
ods are limited because they never consider the unique properties
of the continuous toxicity detection task and even perform worse
than Stream, while ContiGuard performs the best and outperforms
Joint, despite Joint utilizing all data at every moment. We believe
this is due to the hindrance of understanding the perturbed text due
to semantic corruption and the difficulty in learning key features
that are surrounded by the perturbation-introduced noisy features.
Existing CL methods are never designed for these unique issues,
resulting in limited performance. In contrast, ContiGuard enriches
the perturbed text and performs robust feature learning to miti-
gate semantic corruption and noisy feature interference, achieving
excellent and robust continuous detection.

Furthermore, Fig. 3 shows the performances in every type of
perturbed text at the𝑇9 moment. We find that ContiGuard performs
the best in most perturbation types and is more balanced than
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Table 1: The results of ContiGuard and existing detectors on perturbed text. The subscripts indicate the relative performance
degradation compared with ordinary text. The best scores are highlighted in bold.

Existing Detectors Insert Repeat Swap Remove Homo Mask Abbr Auth Distract Avg

PespectiveAPI 77.20 64.61 70.48 60.51 64.84 63.29 50.93 66.38 64.37 64.7325.9%↓
OpenAI Moderation 66.15 52.24 61.13 56.49 50.78 59.35 51.00 84.47 81.14 62.5325.2%↓
ToxBERT 60.90 60.97 58.81 58.34 53.55 55.87 58.35 73.26 75.12 61.6914.4%↓
ToxRoBERTa 50.93 50.39 51.24 52.32 50.15 50.31 51.39 55.26 79.83 54.6534.0%↓
DetoxifyOriginal 61.59 63.76 61.90 57.73 56.96 59.27 56.03 71.87 75.66 62.7529.8%↓
DetoxifyMultilingual 60.20 58.50 56.41 56.96 82.53 59.20 52.63 66.62 81.92 63.8826.6%↓
DetoxifyUnbiased 51.31 51.00 53.32 53.40 50.15 51.93 51.55 78.59 80.14 57.9332.5%↓
Paradetox 51.31 51.47 51.85 51.62 49.92 52.63 51.16 69.55 72.57 55.7935.8%↓
DeTox 69.55 52.47 58.73 59.58 52.63 62.44 50.23 53.71 66.92 58.4828.3%↓
ContiGuard 85.57 87.23 85.18 83.97 90.40 82.94 80.58 92.19 90.15 86.473.0%↓

Table 2: The results of ContiGuard and adapted CL methods. T𝑖 denote averaged performance of all orders at i-th moment. O𝑗

T9
denote performance of j-th order at T9 moment. * indicates significant difference at p<0.001.

Continual T1 T2 T3 T4 T5 T6 T7 T8 T9 O1
T9 O2

T9 O3
T9 O4

T9

Joint 84.14 86.63 85.43 85.07 84.56 85.05 85.03 85.31 85.88 85.63 85.51 86.31 86.06
Stream 84.23 84.64 76.52 77.36 78.17 79.55 79.73 74.28 78.26 79.49 74.08 78.95 80.49
LFL 83.46 82.88 77.15 76.59 75.30 78.25 78.44 75.01 78.15 79.48 74.19 79.07 79.85
EWC 84.66 84.88 76.41 78.48 77.89 80.89 78.64 76.01 79.32 79.81 75.43 80.25 81.80
LWF 83.46 85.08 79.39 79.86 76.31 76.92 75.56 72.58 72.30 72.29 74.94 65.40 76.56
EPI 84.12 81.46 81.60 79.13 79.90 78.23 76.98 78.26 79.20 79.03 79.50 79.19 79.07
GEM 83.94 84.83 78.39 79.96 80.82 80.76 80.56 78.47 80.99 80.51 80.23 81.19 82.03
CEAR 84.35 84.39 72.56 78.60 80.45 80.97 81.22 81.30 80.60 82.71 80.04 77.01 82.65
DUCT 78.75 75.51 67.60 67.97 66.86 69.47 70.82 67.29 62.98 66.87 56.81 68.01 60.23
SOYO 80.47 81.10 80.12 79.67 79.52 79.46 79.27 79.66 80.07 80.18 79.99 80.12 79.98
ContiGuard 87.17 89.27 86.20 86.42 85.41 86.29 85.41 84.92 86.47∗ 85.67 86.28 86.34 87.58

Figure 2: Results of statically fine-tuned detectors. Rows:
types used for fine-tuning. Columns: types used for testing.

existing CL methods across types. For example, despite EPI being
close to ContiGuard in Auth and Distract, it works very poorly

in Insert and Swap, indicating a serious imbalance. By contrast,
ContiGuard is close to or exceeds Joint on all perturbations.

3.3 Analysis
AblationAnalysis To investigate the effectiveness of our proposed
strategies, we conduct the ablated variants: (1) ablated LLM power:
without LLM powered auxiliary information (w/o aux) and with-
out dynamical cooperation (w/o coop); (2) ablated discriminability
driven: without discriminability driven feature learning (w/o disc),
without enhancement of more discriminative features (w/o more),
and without suppression of less discriminative features (w/o less);
(3) ablated historical replay: without memories (w/o mem) and
without feature alignment (w/o align).

As Tab. 3 shows, the performance of the variants drops to differ-
ent degrees at most moments, and all drop significantly at the 𝑇9
moment. These results prove that the proposed strategies are effec-
tive for continual toxicity detection against evolving perturbed text.
Especially, the LLM powered enriching is helpful since the provided
extra information enriches the insights of toxicity judgment.

Analysis of the Memory Sample Number To study the per-
formance tendency under different numbers of memory samples,
we experiment with varying numbers to observe the performance
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Figure 3: Results on different types of perturbed text at 𝑇9.
The numbers denote the best accuracy for each type.

Table 3: Ablation results at different moments.

T1 T2 T3 T4 T5 T6 T7 T8 T9

ContiGuard 87.17 89.27 86.20 86.42 85.41 86.29 85.41 84.92 86.47
w/o aux 83.11 84.63 80.52 81.03 80.03 81.85 82.12 80.06 81.97
w/o coop 87.42 88.88 85.62 85.71 85.90 87.16 85.63 86.22 85.96
w/o disc 86.20 87.71 84.08 85.63 86.18 85.30 84.49 84.74 85.71
w/o more 86.36 88.84 85.61 86.07 86.22 85.78 84.75 84.59 85.89
w/o less 86.78 88.86 86.49 86.11 86.17 85.59 84.44 84.06 86.25
w/o mem 87.17 88.86 83.22 85.99 84.99 84.61 83.79 83.84 84.67
w/o align 87.17 88.81 85.57 85.73 86.42 86.33 84.39 83.08 84.87

changes as Fig. 4 shows. We find that under varying numbers, the
performance change trend of toxicity detection is basically similar
over time. In addition, as the number increases, the accuracies over-
all increase, and the performance degradation becomes relatively
gentle. For example, when the number is 0, the performance decline
trend is significant, while when it is 8, the decline trend becomes
slower. We believe this is because memory samples can replay the
detection capability to mitigate the forgetting.

Retention Rate of Discriminative Features To examine the
effectiveness of discriminability driven feature learning and histor-
ical capability replay, we analyze the retention rate changing of
discriminative features after removing the two strategies. As Fig. 5
shows, the retention rates of discriminative features are all above
80% over the moments in ContiGuard. However, when we ablate
the two strategies, the retention rates decline to different degrees.
Especially, the retention rate for perturbed text appearing at the 𝑇1
moment significantly drops at the𝑇9 moment (see the first column),
demonstrating that ContiGuard enables the detector to retain most
of the learned discriminative features critical for toxicity detection,
which mitigates the issue of capability forgetting.

Analysis of Contribution Measurement To explore differ-
ent attribution methods, we compare integrated gradient (IG) and

Figure 4: Results of different memory sample numbers.

Figure 5: Retention rate of critical features, which denotes the
proportion of historical critical features in current critical
features. Each column shows the changes over time.

widely used SHAP [39], which resample output changes to estimate
feature contribution. As Tab. 4 shows, IG outperforms SHAP and
we attribute it to the distinct responses of the two methods to subtle
feature contribution changes induced by different perturbation ma-
nipulations: IG leverages gradients to capture such subtle changes
sensitively, whereas SHAP resamples on the output for estimation,
and this may attenuate the contribution of these subtle changes.

Table 4: Results of different contributionmeasuringmethods.

Methods T1 T2 T3 T4 T5 T6 T7 T8 T9

IG 87.17 89.27 86.20 86.42 85.41 86.29 85.41 84.92 86.47
SHAP 86.73 89.33 84.86 85.04 86.30 85.96 84.15 85.44 85.94

Application Evaluation To evaluate ContiGuard’s practical
application, we test CL methods on NoisyHate, as Fig. 6 shows.
NHbest is the original best detector (67.2) [58] on NoisyHate. We
observe that CL methods mostly outperform NHbest, and Conti-
Guard exhibits the best performance and excellent cross-dataset
adaptability. Furthermore, considering users’ demand for costs, ef-
ficiency, and performance, we analyze from two perspectives: (1).
Training with sampled datasets: we conduct training using sam-
pled training data, with sampling proportions ranging from 20% to
100%. This analysis aims to quantify how the detector performance
changes as training costs are lowered by reducing data usage. (2).
Testing without LLM: we test the detector under a setting where
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LLM is excluded (referred to as ContiGuard𝐸𝑐𝑜 ). This setup is de-
signed to explore how performance shifts when detection speed is
enhanced by removing LLM during real application.

As Fig. 7 shows, a reduction in training data volume leads to
a significant decrease in the training cost required per type of
perturbation. For instance, when only using 20% of training data,
the training time per type of perturbation is reduced to approx-
imately 0.15 hours (9 minutes), and ContiGuard still performs
well on both the DynEscape and NoisyHate datasets. Furthermore,
ContiGuard𝐸𝑐𝑜 delivers excellent performance on NoisyHate, with
a detection speed about 220 items/s. This confirms ContiGuard𝐸𝑐𝑜
can balance detection performance and efficiency. Notably, we ob-
serve a trend: when training data is reduced to around 20%–60%
of the original data volume, both ContiGuard and ContiGuard𝐸𝑐𝑜
show better performance on NoisyHate. We attribute this to differ-
ences in the perturbation characteristics of the datasets: DynEscape
considers the situation of extreme perturbations, whereas Noisy-
Hate is collected in the wild and owns milder perturbations, so less
modeling on DynEscape makes it easier to generalize to NoisyHate.
In addition, the consideration of extreme perturbations also enables
ContiGuard trained on DynEscape to have a greater generaliza-
tion margin when applied to real-world data like NoisyHate. For
example, ContiGuard’s performances on NoisyHate are all higher
than those on DynEscape across proportions. In conclusion, users
can tailor ContiGuard to their needs by adjusting two aspects: the
volume of training data and whether to exploit LLM during testing,
which allows a trade-off among cost, efficiency, and performance.

Figure 6: Results on DynEscape and NoisyHate.

Figure 7: Results of different training data sampling rates.

Case Study To examine the impact of LLM, we compare Conti-
Guard and ContiGuard𝐸𝑐𝑜 (excluding LLM) via cases in Fig. 8.

Case (1) firstly appears at the historical moment and is obfus-
cated by homoglyph substitution. ContiGuard𝐸𝑐𝑜 and ContiGuard
all identify the toxicity. However, when the last moment comes,
after being trained on the text perturbed by character insertion,
ContiGuard𝐸𝑐𝑜 fails to recognize the toxicity in case (1) since the
disparity between perturbations breaks the historically learned de-
tection ability. In contrast, ContiGuard enriches the perturbed text
with the insights of aggressive attitude and the strong profanity
‘fuck’ captured with LLM and learns from the insights to mitigate
the ability breaking so that it still correctly detects the toxic case.

Case (2) firstly appears at the last moment and is perturbed
by character insertion. ContiGuard𝐸𝑐𝑜 cannot associate and unify
toxicity patterns in this case with the historically learned ones
(e.g., perturbed ‘fuck’) since the difference across perturbations
obfuscates the detection. Hence, it fails to recognize the toxicity.
ContiGuard can capture the insights of the aggressive attitude
and the toxic term ‘fuck’, which helps ContiGuard to perceive the
similar toxic patterns from the insights in cases (1) and (2), enabling
ContiGuard to successfully identify the toxicity in case (2).

Overall, ContiGuard uses LLM’s analysis to enrich perturbed text
to improve comprehension and to bridge different perturbations
through shared insights derived from the analysis, which mitigates
the forgetting of toxicity detection ability.

Figure 8: Case study for examining the impact of the LLM.

4 Conclusion
In this work, we first highlight the crucial yet overlooked challenge
of continual toxicity detection against evolving evasive perturbed
text drafted by malicious users, and we propose a novel Conti-
Guard framework exploiting strategies of LLM powered semantic
enriching, discriminability driven feature learning, and historical
capability replay to enable the detector to perform robust continual
toxicity detection against evolving evasive perturbed text. Extensive
experimental results show the superior performance of ContiGuard
over the existing detectors and continual methods.
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A Related Work
A.1 Toxicity Detection
Various methods are proposed for toxicity detection, which can be
primarily categorized into two types: ordinary text-focused and
perturbations-augmented.

Ordinary text-focused methods are targeted at improving the
performance on text without perturbations [2, 24, 40, 47, 60, 62].
Many datasets across different languages have been constructed for
this task [5, 15, 29]. Most of these datasets are curated from social
platforms like X, Reddit, and Zhihu [18, 38, 48] with lots of manual
efforts for annotation, and a few of them are generated by LLMs
like GPT3 [20]. The ordinary text-focused methods rely on lexical
clues in normal text and are vulnerable to even simple attacks.

Perturbation-augmented methods enhance the detectors’ robust-
ness by incorporating perturbed text. They [1, 30, 58] may manip-
ulate characters, words, or sentences in the text, e.g., character
swap and/or substitution, homoglyph/homophone substitution, de-
composition, near-neighbor word replacement, and distract injec-
tion [3, 10, 28, 59]. The existing perturbation-augmented methods
statically employ fixed specific types of perturbations to enhance
the detectors’ robustness, but they struggle to dynamically deal
with increasing crafted perturbations over time.

The existing methods do not update the detector’s capability so
they cannot deal with the perturbed text that appears increasingly.
In contrast, we collect 9 types of perturbations and conduct con-
tinual learning for the detector when these perturbations emerge
incrementally over time, enabling the detector to continually update
its capability against increasing perturbations.

A.2 Continual Learning
Continual learning aims to continually learn from an incrementally
appearing data stream [17]. There are three incremental learning
scenarios, i.e., domain-, class-, and task-incremental learning [52].

In domain-incremental learning, all tasks have the same label
space but different data domains [14, 43, 44, 51, 53], e.g., [65] pro-
poses dual consolidation to create a representation space suitable
for multiple domains incrementally and to merge the backbone
of different stages, accommodating all seen domains throughout
the learning. [54] introduces a gaussian mixture compressor and
domain feature re-sampler to store and balance prior domain data,
and proposes a multi-level domain feature fusion network to extract
domain feature, boosting the domain-incremental learning ability.

In task-incremental learning, the tasks are increasingly appear-
ing and being solved [9, 12, 13, 23, 46]. Recently, [31] introduces
an adapter-based continual imitation learning framework to ad-
dress the limitation of knowledge sharing by incrementally learning
shareable skills from demonstrations, enabling sample-efficient task
adaptation using the skills. [57] employs wavelet packet transform
to extract global-view spatial features via the regularized common
spatial pattern and captures local-view spatial features via tangent
space mapping from the Riemannian space to improve daily living
of patients with strokes by task incremental learning.

In class-incremental learning, the number of categories is con-
tinually growing [8, 41, 45, 56, 61, 66]. For instance, [35] employs
wavelet transform to map the image into the frequency domain and
balances the reusability and interference of output features based on
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the frequency domain similarity of the classes to mitigate the forget-
ting of previously acquired knowledge. [21] proposes to re-weight
the gradients towards balanced optimization and unbiased classifier
learning to address skewed gradient updates with biased weights.
[33] proposes to generalize conceptual knowledge learned from old
classes to new classes by simulating human learning capability.

The continual toxicity detection problem falls under domain-
incremental learning, where ordinary text is perturbed over time to
be distributed in varying perturbation domains for evading detec-
tors. To the best of our knowledge, there are no methods or datasets
focusing on the continual toxicity detection problem, and our work
is the first to explore the problem.

B Dataset Construction
Most existing toxicity datasets do not consider the perturbed text [4,
20, 42, 48]. Though a few datasets contain perturbed samples, there
are only limited types of perturbed text produced by monotonous
perturbation operations. Moreover, these datasets mix all types of
perturbations together [3, 25, 58], by which we cannot examine the
detectors’ adaptability to changing perturbations. To address this
issue, we construct DynEscape, a perturbation-wise toxicity dataset
covering 9 types of perturbations through three stages.

Stage 1.Data Cleaning and Toxicity-relevantWord Selection.
This stage aims to remove noises in raw data and find toxicity-
relevant words so that we can perturb them to confuse detectors.

In this stage, we choose Jigsaw [27] dataset as raw data since it
contains lots of toxic text (223k). However, Jigsaw cannot be directly
used for our purpose since it contains many noises. More impor-
tantly, perturbing toxicity-irrelevant words will have weak im-
pact on the detector. Hence we perform data cleaning and toxicity-
relevant word selection as the preprocessing.

(1) Data Cleaning.We clean noises in the Jigsaw, i.e., unknown
words (identified by spellchecker tool), private information (emails,
user ids), and meaning-less text (repeated sentences less than 5
words). We also find that Jigsaw is seriously imbalanced between
non-toxic and toxic samples, with a ratio approaching 10:1. Hence
we re-sample the toxic and non-toxic samples in 1:1 ratio, and
obtain 20k/20k toxic/non-toxic samples for perturbing.

(2) Toxicity-relevant Word Selection. We select words signif-
icantly influencing toxicity recognition. By perturbing these words,
we wish to bypass detectors. Note that besides toxic words, many
non-toxic words are also relevant to toxicity. Hence we propose
four strategies to select toxicity-relevant word:

Online Toxic Words. We collect online toxic words from Google,
including bad words and the banned swear words (2.9K words).

Words Identified as Toxic. We employ PerspectiveAPI [32] to
detect the toxicity of each word in the dataset. We collect the word
identified as toxic (1.1K words).

Words Increasing Toxicity Scores. We compute the expectation of
decreased toxicity score (supplied by PerspectiveAPI) for each word
to examine its contribution to the sample’s toxicity. Specifically,
given the word 𝑤𝑖 and the sentences 𝑇𝑤𝑖

it appears, we compute
the expectation 𝐸𝑤𝑖

as:

𝐸𝑤𝑖
=

1
|𝑇𝑤𝑖

|
∑︁

𝑡 𝑗 ∈𝑇𝑤𝑖

[𝑠 (𝑡 𝑗 ) − 𝑠 (𝑡 𝑗/𝑤𝑖 )], (14)

where 𝑠 (𝑡 𝑗 ) and 𝑠 (𝑡 𝑗/𝑤𝑖 ) denote the toxicity score of the text 𝑡 𝑗 ∈
𝑇𝑤𝑖

before and after removing𝑤𝑖 , and 𝑠 (𝑡 𝑗 ) − 𝑠 (𝑡 𝑗/𝑤𝑖 ) denotes the
decreased toxicity score after removing 𝑤𝑖 . The expectation 𝐸𝑤𝑖

represents the contribution of the word 𝑤𝑖 to the toxicity of text.
We select the words whose expectations are greater than 0 (1.5K
words).

Spuriously Correlated Words. Some words often appear with toxic
label so that detectors tend to identify the text including these words
as toxic, i.e., the words are spuriously correlated to labels [15]. We
compute mutation information to get such words [63].

𝑀𝐼 =
𝑝 (𝑤𝑖 , 𝑐)

𝑝 (𝑤𝑖 , ·)𝑝 (·, 𝑐)
, (15)

where 𝑝 (𝑤𝑖 , ·) and 𝑝 (·, 𝑐) are the marginal distribution of the word
𝑤𝑖 and the label 𝑐 , and 𝑝 (𝑤𝑖 , 𝑐) is the joint distribution of 𝑤𝑖 and
𝑐 . The larger𝑀𝐼 , the stronger the spurious correlation between𝑤𝑖

and 𝑐 . Based on multiple manual checks and previous empirical
setting [63], we set the spurious correlation threshold as the sum
of the mean and standard deviation of𝑀𝐼 (1.1K words).

With these strategies, we totally collect 5.6K toxicity-relevant
words after de-duplicating.

Stage 2. Perturbation Tool Creation. This stage aims to provide
the definitions of perturbations and then create a perturbation tool,
which will be used as the attacker to perturb samples.

In this stage, we create a perturbation tool that could perform 9
types of perturbations.

(1) Perturbation PreparationWe prepare necessary material
for perturbation, including 2.7K homoglyphs, 80.6K abbrs/slangs,
and 3.3K roles.

(2) Perturbation PatternsWe then define perturbation patterns
as follows (Tab. 5 shows the examples).

Character-level Perturbation. Insert randomly adds special char-
acters (from Python string package) into the text. Remove/Repeat
randomly deletes/duplicates characters. Swap randomly exchanges
the order of characters.Homoglyph randomly replaces characters
with visually similar characters (using prepared 2.7K homoglyphs).

Word/Phrase-level Perturbation.Maskword randomly obscures
characters in the selected words with special characters. Abbrevia-
tion employs abbreviations/slangs to replace the associated words
or phrases (using prepared 80.6K abbrs/slangs).

Sentence-level Perturbation. Distract adds the prefix consisting
of extra random non-toxic words before the text. Authorization
firstly instructs the LLMs to generate a self-introduction by acting as
authoritative experts (using prepared 3.3K roles). Then, it adds the
introduction before text to confuse detectors. This is an exploratory
perturbation for evading detectors since the emergence of LLMs.

Based on the definitions, we implement 9 perturbations to create
a perturbation tool that provides automated perturbation patterns.

We finally conduct a human verification bymanually checking 50
perturbed samples for each perturbation type (450 in total). Results
show that all perturbed samples conform to the definitions, which
proves our tool’s reliability.

Stage 3. Adversarial Attack and Quality Assessment. This stage
aims to attack detectors using the samples perturbed by our tool and
to select the challenging perturbed samples to compose DynEscape.

In this stage, we utilize the perturbation tool as an attacker to
disturb clean samples for evading detectors (e.g., safety-aligned
LLama3). The perturbed samples bypassing detectors are selected
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Table 5: Examples of different perturbations.

Perturbations Examples

Insert moron→mo*ro#n; idiot→idi+ot
Remove (Mv) moron→moro; idiot→idot
Repeat moron→ mooron; idiot→ iddiot
Swap fool→ folo; idiot→ idoit
Homoglyph (Homo) idiot→id10t; fool→ f001
Maskword (Mask) fool→f**l; idiot→i*iot
Abbreviation (Abbr) fuck→ 4Q; bite me→ BTM
Distract (Dis) [text]→[apple earth...];[text]
Authorization (Auth) [text]→[I am a scientist...];[text]

to compose our DynEscape. Note that to prevent detectors from
taking shortcuts by judging whether the text has been disturbed,
non-toxic samples are also perturbed in the same way as toxic ones.

We collect all successful samples to evade detectors, and they
are reallocated with 4K non-overlapped samples per perturbation.
We then split them into train/valid/test subsets with a ratio of 6:1:3
(2584/430/1294). Finally, our perturbation-wise dataset DynEscape
consists of 38K ((2584+430+1294)*9) challenging perturbed samples.

To ensure the quality of our dataset, we randomly select 50
samples per perturbation and employ three master students to
evaluate the semantic consistency before/after perturbations on a
scale of 0 to 1. We get a score of 0.88±0.07 averaged over all samples
and more than two masters assign a score exceeding 0.5 in 99% of
the samples, indicating a high consistency of our dataset.

During data collection, we employ online toxic words collected
by Google, which are available by ‘https://github.com/coffee-and-
fun/google-profanity-words/tree/main’, and we set perturbation
rate to 20%, i.e., 20% of the words in the original text are perturbed.
We utilize punctuation as special characters from the Python pack-
age ‘string’, and we collect homoglyphs from the ‘homoglyphs’
python tool to replace the characters. In addition, we collect the
abbreviations/slangs from the online resources, including ‘onli-
neslangdictionary.com’,‘slang.net’, ‘www.acronymfinder.com’ and
‘acronymsandslang.com’.

C Experimental
C.1 Details of Experimental Implementation
In all experiments, we use the bert-base-uncased model (110M) as
the encoder of the detector to encode the sentences, where the
maximum sequence length is set to 360. The parameters of the
models are updated using theAdamWoptimizerwith a learning rate
of 2e-5. The random seed for all experiments is set to 0, and training

is conducted with an early stopping strategy. All experiments are
conducted on the A800 GPU. Considering the strong reasoning
ability, we employ gpt-4o-mini to capture the auxiliary information.

C.2 Introduction of Existing Methods
LFL [22] reduces knowledge forgetting by regularizing the parame-
ters between old and new classifiers.

EWC [26] uses the Fisher matrix to assess parameter importance
and applies weighted regularization based on that importance.

LWF [34] transfers knowledge by having the old model generate
pseudo-labels for the new model.

GEM [37] stores gradient information from past tasks and con-
strains the gradient direction of the current task to prevent it from
conflicting with the gradient directions of old tasks.

EPI [55] trains task-specific prefix parameters for each task and
identifies the task IDs of test samples to select the appropriate prefix
parameters for classification.

CEAR [64] learns memory-insensitive prototypes and uses mem-
ory augmentation to reduce overfitting and enhance performance.

DUCT [65] proposes dual consolidation to construct a unified
representation space applicable to multiple domains and integrate
backbones from different moments to mitigate the forgetting.

SOYO [54] introduces a gaussian mixture compressor and feature
re-sampler to store balance prior domain data, and proposes a multi-
level feature fusion network to enhance domain feature extraction,
boosting the domain-incremental learning ability.

C.3 Supplementary Experiments
The performance of directly using gpt-4o-mini We also ex-
plore how 4o-mini performs on perturbed text, as Tab. 6 shows.
We find that 4o-mini performs well on ordinary text (DynEscape
(ord.)), but its performance still degrades to 69.50 with a drop of
19% when dealing with perturbed text (DynEscape). In addition,
compared to DynEscape, 4o-mini performs better on NoisyHate
due to minor perturbations within NoisyHate, but it was still worse
than ContiGuard and even ContiGuard𝐸𝑐𝑜 . We believe that using
4o-mini’s reasoning capability to extract auxiliary information to
enhance the detector is a good alternative approach compared to
directly using it for toxicity detection against perturbed text.

Table 6: Result of 4o-mini. DynEscape (ord.) represents the
original ordinary sample corresponding to DynEscape.

DynEscape (ord.) DynEscape NoisyHate

4o-mini 85.81 69.5019%↓ 80.06
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