当前位置: 中文主页 >> 科学研究 >> 论文成果

黄冰

个人信息Personal information

  • 博士生导师
  • 硕士生导师
  • 教师拼音名称:Huang Bing
  • 电子邮箱:
  • 所在单位:化学与分子科学学院
  • 学历:博士研究生毕业
  • 办公地点:化学院C214
  • 性别:男
  • 联系方式:bhuang@whu.edu.cn
  • 在职信息:在职
  • 主要任职:教授
  • 毕业院校:武汉大学化学与分子科学学院
  • 所属院系:化学与分子科学学院

联系方式Contact information

邮编: 

通讯/办公地址: 

邮箱: 

论文成果

The central role of density functional theory in the AI age

发表时间:2024-03-18 点击次数:

DOI码:10.1126/science.abn3445

所属单位:University of Vienna

发表刊物:Science

摘要:Density functional theory (DFT) plays a pivotal role in chemical and materials science because of its relatively high predictive power, applicability, versatility, and computational efficiency. We review recent progress in machine learning (ML) model developments, which have relied heavily on DFT for synthetic data generation and for the design of model architectures. The general relevance of these developments is placed in a broader context for chemical and materials sciences. DFT-based ML models have reached high efficiency, accuracy, scalability, and transferability and pave the way to the routine use of successful experimental planning software within self-driving laboratories.

论文类型:期刊论文

通讯作者:Bing Huang,Guido Falk von Rudorff,O. Anatole von Lilienfeld

学科门类:理学

文献类型:J

卷号:381

页面范围:170-175

是否译文:否

发表时间:2023-07-13