Huang Chi
+
Personal Information
- Supervisor of Doctorate Candidates
- Supervisor of Master's Candidates
- Name (Pinyin):Huang Chi
- E-Mail:
- Administrative Position:Professor
- Education Level:研究生毕业
- Business Address:化学与分子科学学院
- Gender:Male
- Contact Information:++86-27-68754226
- Status:Employed
- Alma Mater:Wuhan University
- Teacher College:School of Chemistry and Molecular Sciences
- Honors and Titles
2023 elected:2023年度湖北省科技进步奖三等奖. 医用水溶性高分子PVP自由基聚合关键技术、成套设备及产业化
2020 elected:湖北省双创战略团队A类负责人
2019 elected:湖北省双创战略团队B类负责人
2018 elected:湖北省双创战略团队C类负责人
2012 elected:江苏省双创人才
2011 elected:武汉市东湖高新技术开发区“3551光谷人才”
2017 elected:首批“全国万名优秀创新创业导师人才库”
2017 elected:甲基芳烃氨氧化的高效长寿面催化剂的研制与工业化应用. 中国石油与化学工业联合会技术发明三等奖
2016 elected:取代甲苯氨氧化的含钒复合氧化物催化剂的研制与应用. 湖北省技术发明二等奖
2014 elected:科研反哺教学 培养化学创新人才. 第七届国家高等学校教学成果二等奖
2013 elected:科研反哺教学 培养化学创新人才. 湖北省高等学校教学成果一等奖
2005 elected:理科化学类专业化工课程体系和教学内容改革研究. 度湖北省高等学校教学成果一等奖.
2005 elected:《大学化学实验》.湖北省多媒体课件二等奖
2003 elected:含碳官能团有机硅化合物的研究、开发与产业化. 湖北省科技进步一等奖
Other Contact Information
- ZipCode:
- PostalAddress:
- OfficePhone:
- Telephone:
- email:
Hierarchical MOFs with Good Catalytic Properties and Structural Stability in Oxygen‐Rich and High‐Temperature Environments
- Date of Publication:2024-02-16
- Hits:
Impact Factor:
13.3DOI number:
10.1002/small.202309302Journal:
SmallKey Words:
catalytic mechanism; decomposition kinetics; high temperature catalysis; metal-organic framework materialsAbstract:
Metal-organic framework materials are ideal materials characterized by open frameworks, adjustable components, and high catalytic activity. They are extensively utilized for catalysis. Due to decomposition and structural collapse under high temperatures and an oxygen-rich environment, the potential of thermal catalysis is greatly limited. In this research, Co-rich hollow spheres (Co-HSs) with a gradient composition are designed and synthesized to investigate their thermal catalytic properties in the ammonium perchlorate(AP)system. The results demonstrate that Co-HSs@AP exhibits good thermal catalytic activity and a high-temperature decomposition of 292.5 °C, which is 121.6 °C lower than pure AP. The hierarchical structure confers structural stability during the thermal decomposition process. Thermogravimetry-infrared indicates that the inclusion of Co-HSs successfully boosts the level of reactive oxygen species and achieves thorough oxidation of NH3. Based on the above phenomenon, macro dynamics calculations are carried out. The results show that Co-HSs can promote the circulation of lattice oxygen and reactive oxygen species and the multidimensional diffusion of NH3 in an oxygen-rich environment. This material has significant potential for application in the fields of thermal catalysis and ammonia oxidation.Co-author:
Zhou Peng,Tang Xiaolin,Zeng Qihui,Yi Shengping,Liao Jun,Hu Mingjie,Wu Dan,Zhang BinIndexed by:
Journal paperCorrespondence Author:
Liang Jiqiu*,Huang Chi*Discipline:
Natural ScienceDocument Type:
JVolume:
20Page Number:
202309302ISSN No.:
1613-6810Translation or Not:
noDate of Publication:
2024-02-19Included Journals:
SCILinks to published journals:
https://doi.org/10.1002/smll.202309302
- Pre One:Novel ablation resistant additive (Li2Mn4)O(CO3)4·H2O and its application in silicone rubber
- Next One:Preparation of polydimethylsiloxane/poly (styrene-butadiene-styrene) blend membrane by in-situ reactive compatibilizer γ-methacryloxy propyl trimethoxyl silane for efficient recovery of n-butanol from aqueous solution