Huang Chi
+
Personal Information
- Supervisor of Doctorate Candidates
- Supervisor of Master's Candidates
- Name (Pinyin):Huang Chi
- E-Mail:
- Administrative Position:Professor
- Education Level:研究生毕业
- Business Address:化学与分子科学学院
- Gender:Male
- Contact Information:++86-27-68754226
- Status:Employed
- Alma Mater:Wuhan University
- Teacher College:School of Chemistry and Molecular Sciences
- Honors and Titles
2023 elected:2023年度湖北省科技进步奖三等奖. 医用水溶性高分子PVP自由基聚合关键技术、成套设备及产业化
2020 elected:湖北省双创战略团队A类负责人
2019 elected:湖北省双创战略团队B类负责人
2018 elected:湖北省双创战略团队C类负责人
2012 elected:江苏省双创人才
2011 elected:武汉市东湖高新技术开发区“3551光谷人才”
2017 elected:首批“全国万名优秀创新创业导师人才库”
2017 elected:甲基芳烃氨氧化的高效长寿面催化剂的研制与工业化应用. 中国石油与化学工业联合会技术发明三等奖
2016 elected:取代甲苯氨氧化的含钒复合氧化物催化剂的研制与应用. 湖北省技术发明二等奖
2014 elected:科研反哺教学 培养化学创新人才. 第七届国家高等学校教学成果二等奖
2013 elected:科研反哺教学 培养化学创新人才. 湖北省高等学校教学成果一等奖
2005 elected:理科化学类专业化工课程体系和教学内容改革研究. 度湖北省高等学校教学成果一等奖.
2005 elected:《大学化学实验》.湖北省多媒体课件二等奖
2003 elected:含碳官能团有机硅化合物的研究、开发与产业化. 湖北省科技进步一等奖
Other Contact Information
- ZipCode:
- PostalAddress:
- OfficePhone:
- Telephone:
- email:
Structural design and evolution of one-dimensional Cu hydrogen-bonded organic framework for catalyzing the rapid decomposition of ammonium perchlorate
- Date of Publication:2024-12-31
- Hits:
Impact Factor:
12.2DOI number:
10.1016/j.jhazmat.2024.136961Journal:
Journal of Hazardous MaterialsKey Words:
Structural design and evolutionCu-HOFHeterostructureOne-dimensional structureAmmonium perchlorateAbstract:
Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition. Based on this, we propose a strategy to use a one-dimensional hydrogen-bonded organic framework (HOF) as a base to construct Cu complexes on the surface through coordination interactions to form heterostructure, which in turn yields a Cu-coordinated hydrogen-bonded organic framework(Cu-HOF) as a catalytic material. The good catalytic decarboxylation ability of Cu endows the material with a thermal instability that enables it to decompose rapidly and in situ during the catalytic process, leading to the exposed dispersive behavior of the active sites and the efficient catalysis. The experimental results showed that the decomposition rate of AP was dramatically increased by the addition of Cu-HOF, and the peak value of DTG was enhanced by 17.46 times, demonstrating the effectiveness of the design strategy.Co-author:
Zhou Peng,Zhou Yuming,Yuan Bo,Zhan Falu,Gao Junjie,Liang Tao,Ren Zhuoqun,Zhang YifuIndexed by:
Journal paperCorrespondence Author:
Hu Mingjie*,Huang Chi*Document Code:
136961Discipline:
EngineeringDocument Type:
JVolume:
481Page Number:
136961. 2025ISSN No.:
0304-3894Translation or Not:
noIncluded Journals:
SCILinks to published journals:
https://doi.org/10.1016/j.jhazmat.2024.136961