当前位置: 中文主页 >> 科学研究 >> 论文成果

黄驰

个人信息Personal information

  • 博士生导师
  • 硕士生导师
  • 教师拼音名称:Huang Chi
  • 电子邮箱:
  • 所在单位:化学与分子科学学院
  • 职务:教授
  • 学历:研究生毕业
  • 办公地点:化学与分子科学学院
  • 性别:男
  • 联系方式:+86-27-68754226
  • 在职信息:在职
  • 毕业院校:武汉大学
  • 所属院系:化学与分子科学学院

联系方式Contact information

邮编: 

通讯/办公地址: 

办公室电话: 

移动电话: 

邮箱: 

论文成果

Dual modification of cobalt silicate nanobelts by Co3O4 nanoparticles and phosphorization boosting oxygen evolution reaction properties

发表时间:2024-12-31 点击次数:

影响因子:9.9

DOI码:10.1016/j.jcis.2024.10.033

发表刊物:Journal of Colloid and Interface Science

关键字:Cobalt silicate; Cobalt phosphide; Phosphorization; Electrocatalys; Oxygen evolution reaction

摘要:Oxygen evolution reaction (OER) process is the “bottleneck” of water splitting, and the low-cost and high-efficient OER catalysts are of great importance and attractive but they are still challenging. Herein, a dual modification strategy is developed to tune and enrich the structure of cobalt silicate (Co2SiO4) showing boosted OER properties. Cobalt oxide (Co3O4) decorated Co2SiO4 nanobelts, denoted as CS, is firstly prepared using a Co-based precursor by a facile hydrothermal reaction. Then, cobalt phosphide (CoP) nanoparticles are in-situ grown on CS (denoted as CS-P) by the phosphorization process, which provide many active sites and boost the surface reactivity. The experimental results and density function theory (DFT) calculations both reveal that the CoP on CS can improve the conductivity and ensure fast kinetics, thus leading to boost the OER properties of Co2SiO4. When the phosphorization temperature is at 400 °C (CS-P400), it gains the lowest overpotential of 297 mV, which is much lower than CS (340 mV) and Co2SiO4 (409 mV) at 10 mA·cm−2, and even superior to the state-of-the-art transition metal silicates. CS-P400 also achieves high electrochemical active surface area (ECSA) and small Tafel slope owing to its porous structures with large specific surface area and nanosheet-like structures which are good for exposing many active sites and favorable to the fast kinetics. This work not only provides a dual modification route to boost catalytic activity of Co2SiO4 (CS-P400), but also sheds light on a new avenue for developing highly dispersed CoP on silicates to boost OER performances.

合写作者:Tan Xianfang,Han Zhixuan,Wang Yang,Jiang Hanmei,Zhu Xiaoming,Meng Changgong

通讯作者:Zhang Fangfang*,Huang Chi*

卷号:679

页面范围:1036-1045. 2025

ISSN号:0021-9797

是否译文:否

收录刊物:SCI

发布期刊链接:https://doi.org/10.1016/j.jcis.2024.10.033