Journal:REMOTE SENSING
Key Words:geological landslide monitoring; 3D deformation estimation; UAV; feature extraction;3D point matching; real-scene 3D model
Abstract:This study proposes a three-dimensional (3D) deformation estimation framework based on the integration of shape and texture information for real-scene 3D model matching, effectively addressing the issue of deformation assessment in large-scale geological landslide areas. By extracting and merging the texture and shape features of matched points, correspondences between points in multi-temporal real-scene 3D models are established, resolving the difficulties faced by existing methods in achieving robust and high-precision 3D point matching over landslide areas. To ensure the complete coverage of the geological disaster area while enhancing computational efficiency during deformation estimation, a voxel-based thinning method to generate interest points is proposed. The effectiveness of the proposed method is validated through tests on a dataset from the Lijie north hill geological landslide area in Gansu Province, China. Experimental results demonstrate that the proposed method significantly outperforms existing classic and advanced methods in terms of matching accuracy metrics, and the accuracy of our deformation estimates is close to the actual measurements obtained from GNSS stations, with an average error of only 2.2 cm.
Co-author:Zhuangqun Niu,Xiaokun Zhu,Yansong Duan,Tao Ke,Zuxun Zhang
First Author:Ke Xi
Correspondence Author:Pengjie Tao
Translation or Not:no
Date of Publication:2024-08-27
Included Journals:SCI、EI
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
E-Mail:
School/Department:遥感信息工程学院
Education Level:研究生毕业
Business Address:信息学部教学实验大楼
Gender:Male
Status:Employed
Alma Mater:武汉大学
Discipline:Photogrammetry and Remote Sensing
ZipCode :
PostalAddress :
email :
The Last Update Time : ..