Xiaoqing Liu

Supervisor of Doctorate Candidates  
Supervisor of Master's Candidates

E-Mail:

School/Department:化学与分子科学学院

Education Level:With Certificate of Graduation for Doctorate Study

Business Address:化学与分子科学学院化中219

Gender:Female

Contact Information:13618660366

Discipline:Analytical Chemistry


Student Information

孙俊林

Hits:

Major:Analytical Chemistry

Research Focus:色谱学及相关分离分析技术

Current Status:Studying

Student ID:2016202030013

Date of Registration:2016-09-01

Date of Graduation:2019-06-30

Profile

教育与研究经历:

2003年于山东师范大学化学化工与材料科学学院获学士学位,2009年初于中科院长春应用化学研究所电分析化学国家重点实验室获博士学位。2009至2015年先后在丹麦奥胡斯大学化学系、交叉学科纳米中心,以色列耶路撒冷希伯来大学化学研究所、纳米科学与技术中心工作。2015年加入武汉大学化学与分子科学学院,任教授、博士生导师。曾获中科院刘永龄特等奖,入选国家级人才计划重点资助。

研究领域与兴趣:

研究兴趣包括分析化学方法、生物医学材料等。主要围绕核酸分子的组装与调控,开发先进材料与探针,用于传感分析检测、精准诊疗研究。相关成果发表在J. Am. Chem. Soc., Angew. Chem. Int. Ed., Nat. Commun., ACS Nano, Nano Lett., Acc. Chem. Res., Adv. Mater., Adv. Funct. Mater., Biomaterials, Chem. Sci., Anal. Chem.等国际一流期刊100余篇并被广泛引用,授权专利6项。

ResearchGate: https://www.researchgate.net/scientific-contributions/Xiaoqing-Liu-2129095645 

ORCID: https://orcid.org/0000-0002-1309-5454 

招生招聘:

课题组科研条件先进完备、学习环境优越。实验室学生多次荣获研究生学术创新奖、优秀研究生标兵、优秀毕业生、中国光谷奖学金、人福科研奖学金、蓝月亮奖学金,优秀学业奖学金等荣誉。欢迎联系报考。

部分通讯/一作论文:

(1) Programming Fast DNA Amplifier Circuits with Versatile Toehold Exchange Pathway. Small, 2024, https://doi.org/10.1002/smll.202402914

(2)   Programming DNA Nanoassemblies into Polyvalent Lysosomal Degraders for Potent Degradation of Pathogenic Membrane Proteins. Nano Lett., 2024, 24, 37, 11573-11580. https://doi.org/10.1021/acs.nanolett.4c03102

(3)   An Intelligent Redox-Responsive DNA Circuit for Robust On-Site Profiling of Glutathione-MicroRNA Signaling Pathway.  Adv. Funct. Mater., 2024, 34(26), 2315993. https://doi.org/10.1002/adfm.202302708 

(4) Light-Up Aptameric Sensor of Serotonin for Point-of-Care Use. Anal. Chem., 2023, 95(23), 9076-9082. https://doi.org/10.1021/acs.analchem.3c01456

(5)     Synergistic Immunostimulation for Tumor Sensitization with a Biomineralized DNA Sponge. Nano Today, 2023, 52, 101996. https://doi.org/10.1016/j.nantod.2023.101996

(6)     Construction of a Stimuli-Responsive DNAzyme-Braked DNA Nanomachine for the Amplified Imaging of miRNAs in Living Cells and Mice. CCS Chem., 2023, 5, 1697-1708. https://doi.org/10.31635/ccschem.022.202202171

(7)     A Cellular Membrane-Confined Concatenate DNA Circuit for Non-Invasive Cell Modulation with High Accuracy and Efficiency. Adv. Funct. Mater., 2023, 33(40), 2302708. https://doi.org/10.1002/adfm.202302708 

(8) Triggered Amplification of Gene Theranostics with High Accuracy and Efficacy Using Metallo-Nanoassemblies. Chem. Eng. J., 2023, 452, 139323. https://doi.org/10.1016/j.cej.2022.139323

(9)  High-Fidelity ATP Imaging via an Isothermal Cascade Catalytic Amplifier. Chem. Sci., 2022, 13, 12198-12207.  https://doi.org/10.1039/D2SC04560E

(10)  Boosting Cancer Immunotherapy Via the Convenient A2AR Inhibition Using a Tunable Nanocatalyst with Light-Enhanced Activity. Adv. Mater., 2022, 34, 2106967.  https://doi.org/10.1002/adma.202106967

(11)  Programmable Assembly of Multivalent DNA-Protein Superstructures for Tumor Imaging and Targeted Therapy. Angew. Chem. Int. Ed., 2022, 61(44), e202211505. https://doi.org/10.1002/anie.202211505

(12)  A Dynamic DNA Nanosponge for Triggered Amplification of Gene-Photodynamic Modulation. Chem. Sci., 2022, 13, 5155-5163. https://doi.org/10.1039/D2SC00459C

(13)  Multifunctional DNAzyme-Anchored Metal–Organic Frameworks for Efficient Suppression of Tumor Metastasis. ACS Nano, 2022, 16(4), 5404-5417. https://doi.org/10.1021/acsnano.1c09008

(14)  Visualization of Vaccine Dynamics with Quantum Dots for Immunotherapy. Angew. Chem. Int. Ed., 2021, 60(45), 24275-24283. https://doi.org/10.1002/anie.202111093

(15)  A Smart Multiantenna Gene Theranostic System Based on the Programmed Assembly of Hypoxia-Related siRNAs. Nat. Commun., 2021, 12, 3953. https://doi.org/10.1038/s41467-021-24191-9

(16)  A Bionanozyme with Ultrahigh Activity Enables Spatiotemporally Controlled Reactive Oxygen Species Generation for Cancer Therapy. Adv. Funct. Mater., 2021, 31, 2104100. https://doi.org/10.1002/adfm.202104100

(17)  Precision Photothermal Therapy and Photoacoustic Imaging by In Situ Activatable Thermoplasmonics. Chem. Sci., 2021, 12, 10097-10105. https://doi.org/10.1039/D1SC02203B

(18)  Regulation of Redox Balance Enhances Phototherapy Efficacy and Suppresses Tumor Metastasis Using a Biocompatible Nanoplatform. Chem. Sci., 2021, 12, 148-157. https://doi.org/10.1039/D0SC04983B (Highlighted as Outside Front Cover)

(19)  A Cooperatively Activatable DNA Nanoprobe for Cancer Cell-Selective Imaging of ATP. Anal. Chem., 2021, 93(41), 13960–13966. https://doi.org/10.1021/acs.analchem.1c03284  

(20)  Precision Spherical Nucleic Acids Enable Sensitive FEN1 Imaging and Controllable Drug Delivery for Cancer Specific Therapy. Anal. Chem.2021, 93(32), 11275–11283. https://doi.org/10.1021/acs.analchem.1c02264

(21)  Modulation of Oxidative Stress in Cancer Cells with A Biomineralized Converter. ACS Materials Lett., 2021, 3, 1778-1785. https://doi.org/10.1021/acsmaterialslett.1c00470

(22)  Multiple Blockades of the HGF/Met Signaling Pathway for Metastasis Suppression Using Nanoinhibitors. ACS Appl. Mater. Inter., 2021, 13(26), 30350–30358.  https://doi.org/10.1021/acsami.1c07010

(23)  An Efficient Photochemotherapy Nanoplatform Based on the Endogenous Biosynthesis of Photosensitizer in Macrophage-Derived Extracellular Vesicles. https://doi.org/10.1016/j.biomaterials.2021.121234

(24)  Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angew. Chem. Int. Ed., 2020, 59(5), 1897-1905. https://doi.org/10.1002/anie.201915591 (Highlighted as Front Cover)

(25)  Biosynthesized Quantum Dot for Facile and Ultrasensitive Electrochemical and Electrochemiluminescence Immunoassay. Anal. Chem.2020, 92(1), 1598-1604.  https://doi.org/10.1021/acs.analchem.9b04919

(26)  Immunostimulatory DNA Nanogel Enables Effective Lymphatic Drainage and High Vaccine Efficacy. ACS Materials Lett., 2020, 2(12), 1606–1614. https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00445 (Highlighted as Supplementary Cover)

(27)  Enhanced Immunostimulatory Activity of a Cytosine-Phosphate-Guanosine Immunomodulator by the Assembly of Polymer DNA Wires and Spheres. ACS Appl. Mater. Inter., 2020, 12(15), 17167-17176. https://doi.org/10.1021/acsami.9b21075

(28)  Quantum Dot-Pulsed Dendritic Cell Vaccines Plus Macrophage Polarization for Amplified Cancer Immunotherapy. Biomaterials2020, 242, 119928. https://doi.org/10.1016/j.biomaterials.2020.119928

(29)  Plasmonic and Photothermal Immunoassay via Enzyme-Triggered Crystal Growth on Gold Nanostars. Anal. Chem.2019, 91(3), 2086–2092. https://doi.org/10.1021/acs.analchem.8b04517

(30)  Versatile Catalytic Deoxyribozyme Vehicles for Multimodal Imaging-Guided Efficient Gene Regulation and Photothermal Therapy. ACS Nano2018, 12 (12), 12888–12901. https://doi.org/10.1021/acsnano.8b08101

(31)  DNA Switches: From Principles to Applications. Angew. Chem. Int. Ed. 2015, 54, 1098–1129. https://doi.org/10.1002/anie.201404652

(32)  Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 2014, 47, 1673–1680. https://doi.org/10.1021/ar400316h

(33)  Dual Switchable CRET-Induced Luminescence of CdSe/ZnS Quantum Dots (QDs) by the Hemin/G-Quadruplex-Bridged Aggregation and Deaggregation of Two-Sized QDs. Nano Lett. 2014, 14, 6030-6035. https://doi.org/10.1021/nl503299f

(34)  Graphene Oxide/Nucleic Acid-Stabilized Silver Nanoclusters: Functional Hybrid Materials for Optical Aptamer Sensing and Multiplexed Analysis of Pathogenic DNAs. J. Am. Chem. Soc. 2013, 135, 11832–11839. https://doi.org/10.1021/ja403485r

(35)  Probing Biocatalytic Transformations with Luminescent DNA/Ag Nanoclusters. Nano Lett. 2013, 13, 309–314. https://doi.org/10.1021/nl304283c

(36)  Switching Photonic and Electrochemical Functions of a DNAzyme by DNA Machines. Nano Lett. 2013, 13, 219–225. https://doi.org/10.1021/nl303894h

(37)  Multiplexed Aptasensors and Amplified DNA Sensors Using Functionalized Graphene Oxide: Application for Logic Gate Operations. ACS Nano 2012, 6, 3553–3563. https://doi.org/10.1021/nn300598q

(38)  Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer-Substrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots. J. Am. Chem. Soc. 2011, 133, 11597–11604. https://doi.org/10.1021/ja202639m

(39)  Chemiluminescence and Chemiluminescence Resonance Energy Transfer (CRET) Aptamer Sensors Using Catalytic Hemin/G-Quadruplexes. ACS Nano 2011, 5, 7648–7655. https://doi.org/10.1021/nn202799d

(40)  Environmentally Friendly and Highly Sensitive Ruthenium(II) Tris(2,2'-bipyridyl) Electrochemiluminescent System Using 2-(dibutylamino)ethanol as Co-Reactant. Angew. Chem. Int. Ed. 2007, 46, 421–424. DOI: 10.1002/anie.200603491 (VIP, Very Important Paper)

专利:

(1)发明人:李景虹,王美佳,刘晓庆,专利名称:脱氧核糖核酸电化学纳米传感器的制备方法,专利号: 03127158.8,公开号:CN1525163,授权公告日:2005.08.17

(2)发明人:徐国宝,刘晓庆,史立红,专利名称:环境友好的高灵敏电化学发光检测方法,专利号:200510016848.4,公开号: CN1696666,授权公告日:2010.01.27

(3)发明人:徐国宝,史立红,刘晓庆,牛文新,专利名称:三联吡啶钌电化学发光测定血浆钙的方法,专利号: 200510017231.4,公开号:CN1773259,授权公告日: 2009.05.20

(4)发明人:徐国宝,史立红,刘晓庆,李海娟,专利名称:溶胶-凝胶法制备的碳陶瓷材料的应用,专利号: 200510017012.6,公开号:CN1736581,授权公告日:2007.10.10

(5)发明人:徐国宝,史立红,刘晓庆,专利名称:Nafion-碳陶瓷复合材料电化学发光传感器的制备方法,专利号:CN200510016770.6, 公开号: CN1693285,授权公告日:2007.05.09

(6) Itamar Willner, Fuan Wang, Chun-Hua Lu, Xiaoqing Liu, Lina Freage, Compositions, kits, uses and methods for amplified detection of an analyte, United States Patent 9809846, Application Number:14/586214, Publication Date: 11/07/2017, Filing Date: 12/30/2014