苏科华

Supervisor of Doctorate Candidates  
Supervisor of Master's Candidates

E-Mail:

Date of Employment:2008-11-02

School/Department:计算机学院

Education Level:研究生毕业

Business Address:D203

Gender:Male

Contact Information:13517299596

Status:Employed

Discipline:Computer Applications Technology
Communications and Information Systems
Other specialties in Software Engineering
Cyberspace Security


Paper Publications

Mesh Parametrization Driven by Unit Normal Flow

Hits:

Impact Factor:2.5

DOI number:10.1111/cgf.13660

Affiliation of Author(s):WILEY

Journal:COMPUTER GRAPHICS FORUM

Place of Publication:111 RIVER ST, HOBOKEN 07030-5774, NJ

Key Words:mesh parametrization;deformation;constant mean curvature;rotation;unit normal flow

Abstract:Based on mesh deformation, we present a unified mesh parametrization algorithm for both planar and spherical domains. Our approach can produce intermediate frames from the original meshes to the targets. We derive and define a novel geometric flow: 'unit normal flow (UNF)' and prove that if UNF converges, it will deform a surface to a constant mean curvature (CMC) surface, such as planes and spheres. Our method works by deforming meshes of disk topology to planes, and spherical meshes to spheres. Our algorithm is robust, efficient, simple to implement. To demonstrate the robustness and effectiveness of our method, we apply it to hundreds of models of varying complexities. Our experiments show that our algorithm can be a competing alternative approach to other state-of-the-art mesh parametrization methods. The unit normal flow also suggests a potential direction for creating CMC surfaces.

Co-author:Li Chenchen,Zhang Boyu,Yang Lei,Lei Na,Wang Xiaoling,Goltler, Steven J.,Gu Xianfeng

First Author:Zhao Hui

Indexed by:Article

Correspondence Author:Su Kehua

Document Type:J

Volume:39

Issue:1

Page Number:34-49

ISSN No.:0167-7055

Translation or Not:no

Date of Publication:2020-03-31

Included Journals:SCI、EI

Profile

苏科华,男,武汉大学计算机学院教授、博导;武汉大学科技成果转化中心(技术转移中心)副主任。研究主要集中在最优传输(Optimal Transport)领域,它是研究概率测度间最优变换的一类优化问题。在计算机图形学、机器视觉、人工智能、医学图像处理等领域有着广泛的应用。本人主要研究最优传输的几何计算理论和高效算法,并将其应用于网格保测参数化、三维场景优化、智能烧伤评估和卫星互联网任务优化中。主持包括国家自然科学基金、中央军科委、航天5院、华为公司等20多个项目支持,发表论文50余篇,获批发明专利10余项。为CCF计算机辅助设计与图形学(CAD/CG)和虚拟现实与可视化(TCVRV)专委会执行委员。